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ABSTRACT
Measuring the similarity of human actions in videos is a chal-
lenging task. Two critical factors that affect the performance
include low-level feature representations and similarity met-
rics. However, finding the right feature representations and
metrics is hard. In this paper, we describe a novel approach
that jointly learns both of them from the data, while current
approaches either only learn one or not learn at all. We pro-
pose a generative plus discriminative learning method based
on gated auto encoders to simultaneously learn the features
and their associated metrics. Our method differs from exist-
ing feature or metric learning methods in two ways: 1) while
other methods treat feature learning and metric learning as in-
dependent tasks, we argue that they should be learned jointly
since features and metrics are tightly inter-dependent; 2) our
method learns more discriminative features than its purely
generative counterparts.

1. INTRODUCTION

Measuring the similarity of two human actions is an im-
portant task with many applications. It is challenging since
matching actions intimately tied to the invariance modeling:
two actions belong to the same category if they are invariant
under some classes of allowable transformations. Modeling
action invariances has received a fair amount of attention in
the past. Invariances are common modeled from two per-
spectives: (1) the feature invariance. Researchers in action
recognition have proposed various video descriptors such
as HoG[1], sparse spatial-temporal features[2], MBH[3],
ISA[4], STIP[5] to (partially) achieve invariance to view-
points, illumination changes, camera motions, etc. Recently,
feature learning becomes popular as the learned features fit
better to a particular task/dataset than the handcraft ones, thus
yield better performance. (2) Model invariance by learning
metrics.

Predefined distance metrics, such as Euclidean, χ2 and
histogram intersection empirically do not work well on mea-
suring the similarity of high-dimension features. Metric
learning [6, 7, 8, 9, 10, 11] can achieve better performance by
finding the “good” distance measurement in high dimensional
feature spaces that is more suitable for a specific task. How-
ever, as the features and metrics are tightly inter-depended
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Fig. 1. An illustration of the proposed model. The model
(as shown in the red rectangle) learns the features and metrics
simultaneously. The features are discovered as the spatial-
temporal feature pairs which find the similarity between two
videos. We show three pairs of feature sets marked with red,
green and purple. The model learns multiple metrics to model
the complex transformations between two videos. From the
multi-metrics outputs, we can further build a classifier to get
the final labels which tell whether the two input videos con-
tain the same action or not.

to each other, designing them separately will likely degrade
the overall performance. In this paper, we propose to learn
the similarity metrics and the feature representations jointly.
Figure 1 illustrates the proposed model. More specifically, we
learn the spatial-temporal feature pairs and multiple metrics
which can model the complex action transformations. In this
way, the features and the metrics will co-operate to achieve
an optimal solution.

Oftentimes two distinct actions share the same scene
background (this happens a lot in sport videos). Existing gen-
erative feature learning approaches [4] tend to be distracted



by the common scene instead of learning discriminative fea-
tures to tell apart two actions.

In order to improve the discriminative ability of the
learned features, we propose a new learning method using
both generative and discriminative objectives based on gated
auto encoders [12].

Our model differs from the existing methods in two ways:
first it learns the features and metrics jointly, while others ei-
ther fix one of them or learn them separately; second, our
approach optimizes an objective function with both discrim-
inative and generative terms, which gives our model better
discriminative ability. Experiments with qualitative and quan-
titative results on action verification demonstrate the efficacy
of our approach.

2. THE MODEL

The proposed model is illustrated in Fig. 2. Given a video
pair x and y together with the “same or not” binary label
c ∈ {[0, 1], [1, 0]}, the model learns the features U , V , the
metrics Z and classifier T simultaneously by minimizing a
hybrid objective function consisting of both generative and
discriminative terms. The generative term guarantees good
reconstructions of the input videos, while the discriminative
term produces good predictions on whether two videos are
the same or not. We will describe the details in the follow-
ing subsection. We start with introducing the auto-encoders
[13] for unsupervised feature learning, then move to gated
auto-encoders for pair matching specifically for video pairs.
Finally, we describe our hybrid joint learning of features and
metrics.

2.1. Preliminaries: Auto-encoders

Auto-encoders (AE)[13] has been widely used as a basic
learning module. It is an unsupervised learning architec-
ture used to pre-train deep networks. The underlying idea
of this module is to minimize the reconstruction error of the
inputs. A typical structure of an auto-encoder is plotted in
the red box in Fig. 2. More specifically, suppose we have
a set of spatial-temporal cuboids {x(n)} randomly sampled
from input video X , where x(n) ∈ RDx . The conventional
auto-encoders minimize the following reconstruction loss:

LAE =
∑

n

‖x(n) − U2s(U1x
(n) + b1) + b2‖2 (1)

where U1 ∈ RNf×Dx is a weight matrix which maps the
visible nodes to hidden nodes, U2 ∈ RDx×Nf is a weight
matrix which reconstructs the visible node from the hidden
node. b1 ∈ RNf is a hidden bias vector, b2 ∈ RDx is an
input bias vector. s(x) = 1

1+exp(−x) is a non-linear sigmoid
function. To simplify the formulation, we ignore the regular-
ization term and use linear activation, zero biases and tied
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Figure 2. An illustration of the proposed neural networks. Video
X and Y are the input video pair. c0 is the predicted label telling
whether X, Y are the same action. U, V are the learned feature
pairs. F, G are the feature representation of video X, Y . Z is the
multi-metrics learned together with U, V . H is the hidden unit.
T is the learned classifier. E is computed by the element-wise
multiplication of F, G.

local patches x(i) 2 X ⇢ RDx from the training set (shown
as the left red nodes in figure 2), to learn features from them,
the conventional auto-encoders attempts to reconstruct the
data by minimizing the following loss function:

LAE =

NsX

n=1

kx(n) � U2s(U1x
(n) + b1) + b2k2 (1)

where U1 2 RNf⇥Dx is a weight matrix which maps the
visible nodes to hidden nodes, U2 2 RDx⇥Nf is a weight
matrix which reconstructs the visible node from the hidden
node. b1 2 RNf is a hidden bias vector, b2 2 RDx is an
input bias vector. s(x) = 1

1+exp(�x) is a non-linear sig-
moid function. To simplify the formulation, we ignore the
regularization term and use linear activation, no biases and
tied weights (U = U1 = UT

2 ). Hence, the loss function of
auto-encoders can be simplified as:

LAE =

NsX

n=1

kx(n) � UT f (n)k2 (2)

where, we let hidden units f (n) = Ux(n) as the left light
blue nodes in the neural network shown in figure 2. From
f (n), we can reconstruct back x0(n) using x0(n) = UT f (n).

From equation 2 we see that the auto-encoder models
the relationship between the input units X and the hidden
units F by minimizing the reconstruction error. The learned

weights U serve as the filters(features) which will be used
in the feature extraction process once the learning is done.

3.2. Gated Auto Encoder

The conventional auto-encoders models individual im-
age x which only emphasizes on the content presented in x
itself. When dealing with video pairs (x(n) 2 RDx, y(n) 2
RDy), our interest is not only in each individual, but more
about the relationship between x and y. By relationship,
here, we mean the complex transformations which make
two videos the “same”(same action) though the appear-
ance can be very different(different view point, background,
etc.). Hence, instead of using the hidden units to model
what kind of content is presented in individual x, we want
to use them to model what kind of relationship or transfor-
mations does the pair x and y have.

One can think that each hidden unit can contribute a
“basis transformation” to model the overall dependency be-
tween x and y. The activation of hidden units, now, is not
only dependent on x, but also on y. In other words, one can
think of the outputs x as a function of the input image y, in
that different inputs y give rise to different transformation
over x. Hence, we can define an auto-encoder as a condi-
tional model of x given y, called as gated auto-encoder. The
kth hidden unit activation is:

hk(x; y) =

DyX

j=1

DxX

i=1

wijkxiyj , (3)

where W 2 RDx⇥Dy⇥Dh is the learned model. Dx, Dy
and Dh are the dimension of x, y and h respectively. This
shows that in the conditional model, hidden variable activi-
ties are now given by a simple basis expansion of x and y.
Similarly, the output x0 are given by a basis expansion of y
and h:

x0
i(h; y) =

DhX

k=1

DyX

j=1

wijkyjhk. (4)

Further, we can simplify this model by factorizing W
[20] and we can rewrite equation3 as the following:

h(n) = ZT (f (n)) · (g(n)). (5)

where · indicates the element-wised multiplication, and
f (n) = UT x(n), g(n) = V T y(n). As shown in figure 2,
U, V are the filters(features) applied on x and y respectively.
Z is the multi-metrics related to each hidden unit h. To en-
code the relationship between x and y, the hidden units h
correlate x and y by using element-wise products(shown in
fig2 orange line) between the filter response f, g of x and
y as inputs to the hidden variables. The reason for using
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Fig. 2. An illustration of the proposed neural networks. Video
X and Y are the input video pair. c′ is the predicted label
telling whetherX ,Y are the same action. U ,V are the learned
feature pairs. F ,G are the feature representation of video
X ,Y . Z is the multi-metrics learned together with U, V . H is
the hidden unit. T is the learned classifier. E is computed by
the element-wise multiplication of F ,G. Each video X or Y
is encoded with auto-encoders. Their relations (transforma-
tions) are modeled by a gated auto encoder, which learns the
features and metrics jointly. Our hybrid model incorporates
supervised information on top of the generative encoders to
achieve a good balanced between preserving information and
good discriminative ability.

weights (U = U1 = UT
2 ). Hence, the loss function of auto-

encoders can be simplified as:

LAE =
∑

n

‖x(n) − UT f (n)‖2 (2)

where, we let hidden units f (n) = Ux(n) as the left light blue
nodes in the neural network shown in figure 2. From f (n), we
can reconstruct x′(n) using x′(n) = UT f (n).

From Eqn. 2 we see that the auto-encoder models the rela-
tionship between the input units X and the hidden units F by
minimizing the reconstruction error. The learned weights U
serve as the filters (features) which will be used in the feature
extraction process once the learning is done.

2.2. Gated Auto Encoder

The conventional auto-encoders models individual image x
which only emphasizes on the content presented in x itself.
When dealing with video pairs (x(n) ∈ RDx , y(n) ∈ RDy ),
we use gated auto encoder (GAE) to model the relationship
between x and y (the green box in Fig. 2).



Gated auto encoder models the complex transformations
that make two videos the “same”(same action) though the
appearance can be very different(different view point, back-
ground, etc.). One can think that each hidden unit in H can
contribute a “basis transformation” to model the overall de-
pendency between x and y. The activation of hidden units
not only depend on x, but also on y. The kth hidden unit
activation is:

hk(x; y) =

Dy∑

j=1

Dx∑

i=1

wijkxiyj , (3)

where W ∈ RDx×Dy×Dh is the learned model. Dx, Dy and
Dh are the dimensions of x, y and h respectively. This shows
that in the conditional model, hidden variable activities are
now given by a simple basis expansion of x and y.

In other words, one can think of the outputs x′ as a func-
tion of the input image y, in that different inputs y give rise to
different transformation over x. The output x′ are given by a
basis expansion of y and h:

x′i(h; y) =
Dh∑

k=1

Dy∑

j=1

wijkyjhk. (4)

Further, we can simplify this model by factorizing W [14]
and we can rewrite Eqn. 3 as the following:

h(n) = Ze(n), where e(n) = f (n) · g(n) (5)

Here · indicates the element-wised multiplication, and f (n) =
Ux(n), g(n) = V y(n). As shown in Fig.2, U ,V are the filters
(features) applied on x and y respectively. Z is the multi-
metrics related to each hidden unit h. To encode the relation-
ship between x and y, the hidden units h correlate x and y by
using element-wise products(shown in Fig. 2 orange line) be-
tween the filter response f , g of x and y as inputs to the hidden
variables h. The reason for using multiple hidden units is to
model complex transformations. Different y causes different
h.

Similarly, given hidden units h and y, we can reconstruct
x′ by rewriting Eqn. 4 as:

x′(n) = UT (e(n) · g(n)), where e(n) = ZTh(n). (6)

To learn the features U , V , and metrics Z, we can deploy
the standard learning criteria, minimize the reconstruction er-
ror using gradient-based optimization on the loss function:

LGAE(U, V, Z) =
∑

n

‖x′(n) − x(n)‖2. (7)

In our verification task, we are interested in the joint dis-
tribution over x and y as oppose to the conditional one. As x
and y can be interchangeable in the pair matching problem, in
practice, we train the model symmetrically by reconstructing

both y from x and x from y. The overall objective function as
the sum of the two asymmetric objectives is defined as:

LGAE−sym =
∑

n

‖y′(n) − y(n)‖2 +
∑

n

‖x′(n) − x(n)‖2.

(8)

2.3. Discriminative Learning

So far, the features U, V and metrics Z of the model are
learned by a generative loss function which measures an av-
erage reconstruction error between the input x, y and the re-
construction x′, y′ to preserve most of the information from
original signal. However, good reconstruction does not neces-
sarily implies good discriminative ability. In order to improve
the discriminative ability we propose a hybrid objective by
adding a discriminative term to Eqn. 8:

Lhyb = LGAE−sym + αLdis, (9)

where α is a coefficient balancing LGAE−sym and Ldis, and

Ldis =
∑

n

‖c′(n) − c(n)‖2, (10)

here c′(n) = softmax(Th(n)) ∈ R2(since in our case there is
only two output nodes: “same” or “not same”). The label c is
a binary 2-dimension vector with one element being 1. T is
the classifier to be learned.

The first term of Eqn. 9 models the structure and the de-
pendencies among the input components of x,y. The sec-
ond term represents the supervised goal ensuring that learned
model is good for discriminating the similarity between ac-
tions. In the rest of the paper, we will call the model learned
with Eqn. 9 a hybrid model , the one learned with Eqn. 8
a generative model and the one learned with Eqn. 10 a dis-
criminative model.

3. EXPERIMENTAL RESULTS

The Action Similarity Labeling (ASLAN) dataset [15] is a
recent action verification benchmark which includes thou-
sands of video clips collected from YouTube, and over 400
complex action classes. A “same/not-same” challenge is pro-
vided, which transforms the action recognition problem from
a multi-class labeling task to a binary decision one. The goal
is to answer the question of whether a pair of video clips
presents the same action or not. We use View1 to select the
best parameters and test on View2 using the same evaluation
criteria of [15]. The performance is reported based on average
performance of ten separate experiments in a leave-one-out
cross validation fashion. Each of the ten splits contains 300
pairs of same action videos and 300 not-same pairs. All the
videos are first resized to 240 × 360. The cuboid size is
16 × 16 × 10 pixels. The number of features is 300 for both
video inputs and the number of metrics (H) is set as 40.



Accuracy+std err AUC
HOG [16] 58.55 ± 0.8 % 61.59
HOF [16] 56.82 ± 0.6 % 58.56
HNF [16] 58.67 ± 0.9 % 62.16
MIP [16] 62.23 ± 0.8 % 67.5
MBH [3] 59.85 ± 0.8 % 61.5
ISA [4] 59.11 ± 0.7 % 60.3

Generative feature 61.49 ± 0.7 % 65.5
Discriminative feature 59.13 ± 0.6 % 62.2

Hybrid feature 62.05 ± 0.9 % 67.1

Table 1. The average accuracy of different single features
with only pre-defined metric

√∑
(a · b) on ASLAN dataset.

HOG, HOF, HNF, MIP are the best performance on ASLAN
reported by [15, 16]. MBH and ISA which has been demon-
strated as the state-of-the-art features on several action bench-
marks. The last third row is the generative learned feature (us-
ing Eqn.8), the last second row is the discriminative learned
feature (using Eqn.10), and the last row is the hybrid features
learned by Eqn.9. The performance is reported as accuracy
with standard error and Area Under the Curve (AUC). One
can see that the learned features (last three rows) perform al-
most equal with other features.

We first quantitatively compare our proposed method with
multiple algorithms, including HOG, HOF, HNF, MIP which
gives best performance on ASLAN reported by [15, 16],
MBH and ISA which has been demonstrated as the state-of-
the-art features on several action benchmarks. Besides, we
also test the performance of the generative model (learned
using Eqn.8) and the discriminative model (learned using
Eqn.10). The performance is tested in terms of “feature only”
and “feature+metrics”. The accuracy with standard error
and AUC is shown in table 1 for “feature only” compari-
son. The aim of this experiment is to first test the features
without the effect or aid of the learned metrics. In this ex-
periments, we use the hand designed features (HOG, HOF,
MIP, HNF, MBH) and the learned features (ISA, Generative,
Discriminative and Hybrid) followed by the pre-defined met-
ric

√∑
(a · b) as suggested by [15]. From table 1 we can

see that the learned features either learned by a generative
or hybrid objective perform almost equally well with other
state-of-the-art features.

We further compare the proposed model in terms of “fea-
ture+matrics” as shown in table 2. For the methods which
only focus on designing the features, we use CSML [10] to
learn the metrics on top of those feature representations. The
CSML has been demonstrated to have the best results on MIP
as reported in [16]. We also compare our proposed hybrid
model with the generative model (learned by Eqn.8). Since
the generative model only gives the hidden units response, we
train a linear SVM on top of it. Compare table 2 with table

Accuracy+std err AUC
HOG+CSML [16] 60.15 ± 0.6 % 64.2
HOF+CSML [16] 58.62 ± 1.0 % 61.8
HNF+CSML [16] 57.2 ± 0.8 % 60.5
MIP +CSML [16] 64.62 ± 0.8 % 70.4

MBH+CSML [3, 10] 61.67 ± 0.9 % 63.26
ISA+CSML [4, 10] 60.97 ± 0.9 % 62.64
Generative model 65.71 ± 0.7 % 70.16

Discriminative model 62.46 ± 0.6 % 68.16
Hybrid model 68.55 ± 0.8 % 72.43

Table 2. The average accuracy of different models on
ASLAN dataset. Each model is composed of features and
metrics. All the models with CSML design the features and
metrics separately. In contrast, the generative model and
hybrid model learn the features and metrics simultaneously.
Compare with table 1, one can see that the performance can
be improved using metric learning. Learning the metrics and
features jointly is better than learning them separately as our
proposed model is better than MIP+CSML by 4% on average
accuracy. Moreover, learning them discriminatively and gen-
eratively, is better than pure generative method as the hybrid
model also incorporates the label information for classifica-
tion tasks.

1, we see that using metric learning method such as CSML
improves the overall performance of low-level features on
ASLAN dataset in general. Further, by combining the co-
trained metrics and the hybrid features, our hybrid model out-
performs the MIP+CSML method by 4% on average accuracy
and 2% on AUC. This demonstrate that to learn the features
and metrics jointly can boost the overall performance given
that the hybrid features perform equally with MIP in terms
of ’feature only’ as shown in table 1. Moreover, the hybrid
model is better than the pure generative model by 2 − 3% as
shown in the last two rows in table 2. This means that learn-
ing the features and metrics in a discriminative and generative
manner is more suitable for classification tasks.

4. CONCLUSION AND FUTURE WORK

We propose to jointly learn the features and metrics directly
from raw pixels of videos for measuring action similarity.
We consider the discriminative property of features and met-
rics, and simultaneously learn them by using both a super-
vised and an unsupervised objective. Extensive experiments
results demonstrate the efficacy of our approach. The future
work will be incrementally learn the discriminative set of fea-
tures instead of a fixed size of feature set for large scale action
recognition.
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