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ABSTRACT

Positron emission tomography (PET) is capable of capturing
the functional information. A major limitation for PET imag-
ing is the low spatial resolution, leading to partial volume
effects (PVE). PVE introduces significant bias to the image
quantification, causing compromised measurement for uptake
regions, especially smaller ones. For quantitative PET, accu-
rate uptake values are critical for diagnostic evaluation and
treatment planning. Therefore, a partial volume correction
(PVC) technique is highly desirable in order to avoid size-
dependent underestimation for true activities. In this paper,
we present a new iterative PVC approach for PET images.
The proposed method uses the state-of-the-art simultaneous
delineation and noise removal algorithm to estimate the lo-
cal uptake regions. The delineation is further utilized for
weighted PVC with regard to a shape consistency measure-
ment. The process is performed iteratively until delineation
convergence. Qualitative and quantitative results demonstrate
that the proposed framework successfully corrects the PVE
and preserves local structures.

Index Terms— Positron Emission Tomography, Partial
Volume Correction, Shape Consistency, Regional Means,
Affinity Propagation

1. INTRODUCTION

Positron emission tomography (PET) has tremendous advan-
tages over other image modalities, such as CT and MRI, due
to its ability of detecting areas of molecular biology details
by accurately measuring tracer concentration in vivo. Indices
characterizing tumor uptake, such as standardized uptake
values (SUV), are becoming routine in PET tumor imaging.
Both uptake region size and uptake value are important for
accurate measurement of PET images.

However, large biases can be introduced by the partial
volume effect (PVE), when tracer uptake in small tumors is
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measured. PVE can have a significant negative impact on the
image quality too. There are basically two reasons that PVE
occurs: (I) 3-D image blurring introduced by the finite spatial
resolution of the imaging system, and (II) image sampling.
Beside that, the biases introduced by PVE depend on numer-
ous parameters, such as tumor size and shape, surrounding
tissues and measurement method [1].

PVE can severely affect images both qualitatively and
quantitatively. Such that, PVC is needed to restore the true
activity distribution. Major challenges for PVC are noise
and unknown uptake region definition. There is no general
solution of the PVE problem, while existing algorithms fall
into the following categories [2]. Some PVC methods are ap-
plied at a regional/voxel level by modifying some properties
of that particular location to obtain a PVE-corrected value,
such as the use of Recovery Coefficient (RC) [3], Geometric
Transfer Matrix (GTM) [4], and deconvolution [5]. Another
category of PVC rely on the joint use of PET images with the
uptake region definitions from segmentation and/or its high
resolution anatomic correspondence (CT or MRI) [6]. The
goal of anatomy-based PVC methods is to utilize structural
information from other imaging modalities as a prior infor-
mation. Anatomical regions delineated from CT/MRI images
are assumed to be functionally homogeneous. The unifor-
mity assumption is an approximation used for the purpose of
calculating the PVC.

In this paper, we presented an accurate iterative approach
for PVC of PET images via shape consistency. In order
to address the challenges described above, the method in-
cludes simultaneous noise removal and uptake region delin-
eation. As shown in the flowchart for the presented scheme
(Fig. 1), affinity propagation (AP) based PET image segmen-
tation [7] is first employed to estimate the local uptake region
boundaries. Then, noise is suppressed using regional means
method by incorporating class information from segmenta-
tion [8]. PVE in the resulting image is further corrected with
a region-based voxel-wise method [6] with the current region
definition. These steps are employed iteratively to enhance
the performance of each other until the convergence of AP
clustering result. Since the region definition may be differ-
ent during each iteration, the correction is weighted by the
shape consistency between the current and previous segmen-



tations, favoring more similar delineations, or reliability in
other words. In the next section, the proposed framework is
presented in detail.

Fig. 1. Flowchart of the iterative PVC algorithm.

2. METHODS

In the presented framework, we utilized the uptake regions
definition from the segmentation result to constrain the noise
removal process, and to estimate the spill-over between re-
gions. The resulting image with higher Signal-to-Noise Ratio
(SNR) and higher contrast can further enhance the perfor-
mance of segmentation iteratively. Therefore, robust segmen-
tation, structure preserving denoising, and an efficient PVC
algorithm are integrated.

AP based PET Image Segmentation: Robust and accurate
segmentation algorithm is crucial for the proposed frame-
work, as the denoising and PVC both relies on the estimation
of uptake regions. For this purpose, we use AP algorithm [9],
which has been shown to be effective for PET images in our
previous studies [7, 10]. AP is an exemplar based clustering
method that initially set all candidates as potential exemplars,
instead of random selection that compromise global optimal-
ity. Briefly, it is utilized to identify the optimal threshold
levels that separate the candidate PET images into different
uptake regions. Herein, we followed our previous scheme
with novel similarity functions and delineation steps as de-
scribed in [7]. Also, it worths mentioning that other segmen-
tation methods can also be applied in our PVC framework, as
long as they produce accurate delineation as AP based system.

Regional Means Denoising: A major challenge for PVC is
that most PVC algorithms, such as deconvolution, often lead
to noise amplification. Therefore, proper denoising is needed
priori to PVC. The key requirement is to enhance SNR while
preserving the uptake region boundaries, so that PVC can be
performed over the corrected regions, and the enhanced image

can help AP to generate more precise delineations in next iter-
ations. For this purpose, we utilized non-local means (NLM)
filtering [11] for its edge preserving capability. The basic idea
of NLM method is that the filtering result of a specific pixel
is not only determined by its neighbors, but weighted over
all pixels within the image. Practically, however, such opera-
tion is computationally too expensive, and it is often restricted
within a search neighborhood. As described in [8], our pro-
posed regional means denoising method is based on AP and
NLM methods. While region information from AP cluster-
ing serves as “pre-screening” for NLM, it also covers more
reliable regions over the whole image.
Shape Consistency Weighted PVC: With the region defini-
tion from AP clustering, voxel-wise PVC can be performed
using the binary mask with system point spread function
(PSF). To restore the true uptake value t, which is affected
by PVE from a known system PSF (i.e. h), the observed
image f can then be defined as: f = t ⇤ h + n, where ⇤
is the convolution operation, and n is the noise, which is
handled with regional mean denoising in the last step. The
major task for PVC is to recover t from f . Here, we have
designed a shape consistency based iterative method based
on voxel-wise PVC scheme. First, the region definition b
from AP segmentation is used to find the spill-over between
voxels, and GTM method [4] is used to find the interactions
between regions. Then, using the GTM corrected value g, an
intermediate image is created as s = b · g. Finally, voxel-wise
correction at pixel p can be performed as

t(p) = f(p) · s(p)

s(p) ⇤ h.

Practically, we have used an iterative scheme with shape con-
sistency to favor later iterations when segmentation becomes
stable. The shape consistency weighting parameter is evalu-
ated with Dice Similarity Coefficient (DSC) between current
and previous segmentations as ci = DSC(bi, bi+1)/N , where
N is the total iteration time and PVC is performed as

(
t0 = f,

ti+1 = ti + ci · f ·
⇣

si
si⇤h � 1

⌘
.

Fig. 2. PVC results: (A) the original CT image with ROI defi-
nition in high uptake regions (red), low uptake regions (blue), and
background (green), (B) the original PET image, (C) result of de-
convolution, (D) result of the proposed method.



Fig. 3. Shape consistency along iterations: (A) reference CT image, (B) initial AP segmentation, (C-E) intermediate segmentation results,
(F) final segmentation output at convergence.

3. EXPERIMENTS AND RESULTS

Data: In order to evaluate performance of the proposed PVC
method, we used 10 PET/CT images on a NEMA phantom
with different reconstruction parameters. Using phantom
PET/CT images, the boundaries between each uptake re-
gion and background can be accurately defined, and the true
uptake values are known.

Fig. 4. Intensity profile along three (1, 2, 3) sample lines in PET
image before (A) and after (B) PVE with (C) showing the final AP
segmentation result: (D1-D3) the proposed method with shape con-
sistency weights. (E1-E3) the proposed iterative method with evenly
distributed weights, and (F1-F3) deconvolution method.

The phantom here contains six spheres with diameters of
10, 13, 17, 22, 28, and 37 mm, background concentration is
0.44 uCi/ml, and hot spheres concentration is 1.75 uCi/ml for

all spheres. The spatial resolution is 128⇥128⇥47 with spac-
ing 2.73⇥2.73⇥3.27 mm, and the image is in units of Bq/ml.
The performance of the proposed iterative shape consistency
weighted method is compared with deconvolution method.
PVC is performed with PET image only, while the region def-
inition for quantifications is manually traced from CT images
as the ground truth.
Evaluation: As shown in Fig. 2(A), each high uptake region
(red, 1-6) was accurately defined from CT scans to quantita-
tively evaluate the proposed algorithm. Meanwhile, ROIs in
low uptake region (blue) and background (green) were ran-
domly sampled. Statistics of PVC performance, including
noise level and max uptake value, were then computed for
each ROI, which were identical among original (Fig. 2(B))
and filtered images from deconvolution method (Fig. 2(C))
and the proposed method (Fig. 2(D)) for comparison. Param-
eter are selected according to intensity statistics from manu-
ally defined ROIs. As can be observed from the qualitative
results, the proposed method successfully preserved all up-
take regions, removed noise, and corrected PVE.

Here, shape consistency is evaluated between the segmen-
tation from each iteration and the previous one. As shown
in Fig. 3, AP yielded significant change at early stage of it-
eration (Fig. 3(B-C)), such difference became smaller and
smaller along iterations (Fig. 3(C-E)) because of noise reduc-
tion and PVC performed to stabilize the appearance, and fi-
nally reached convergence (Fig. 3(F)).

To better observe the performance of the proposed method
and the value of shape consistency weighting scheme, Fig. 4
illustrates intensity profiles along three sample lines (1, 2, 3 as
noted in Fig. 4) within the PET image before (Fig. 4(A), red)
and after (Fig. 4(B), blue) PVC. Fig. 4(C) is the final seg-
mentation result. Fig. 4(D1-D3) shows the result given by the
proposed shape consistency weighted scheme, Fig. 4(E1-E3)
shows the result with even weights instead of shape consis-
tency weights, and Fig. 4(F1-F3) illustrates the result from
deconvolution. As illustrated, the proposed algorithm suc-
cessfully corrects PVE for different objects and minimized
the noise from the original image.

Fig. 5 presents the quantitative results of PVC as com-
pared with phantom ground truth for object and inner back-
ground regions. Phantom ground truths are used as baseline
for PVC, and the ratio is calculated to test the performance



of the PVC methods, the perfect correction result in a ratio of
1. As illustrated in Fig. 5(A), the proposed method promotes
the signal strength while keeping it around 1, while decon-
volution result in Gibbs effect and overshooting as much as
40%. Here, the outer background is not included in the chart,
because it is supposed to have a uptake value of zero, and con-
sequently a ratio is impossible to calculate. From our experi-
ment, the outer background ROIs have an maximum intensity
(in Bq/ml) of 1676 before PVC, and 2 (proposed) and 5217
(deconvolution) after PVC. The noise reduction/amplification
is shown in Fig. 5(B), noise level is calculated as the standard
deviation of the intensities of the inner (low uptake region)
and outer background ROIs. As shown, the proposed method
successfully removed the noise from the PET image, while
deconvolution greatly amplified the noise level.

Fig. 5. Quantitative evaluations for PVC: (A) max uptake value
ratio within ROIs as compared with phantom truth; (B) noise levels
within background ROIs before and after PVC

4. DISCUSSION AND CONCLUSION

In this study, we presented an effective PVC method for PET
images. The proposed algorithm adopts AP clustering tech-
nique for estimating different level of uptake regions, and this
information is further incorporated within a regional means
denoising algorithm and PVC method to enhance the image.
The process is designed in an iterative manner, and PVC is
performed with shape consistency weighting, which in turn
helps promoting the accuracy of segmentation. Experimental
results demonstrated that the proposed framework is effective
in preserving small uptake regions and effectively corrects the
PVE from PET images. Note that for small and low contrast
lesions, the current framework employs a conservative strat-
egy to avoid potential over-correction and false-positives, a
future work would be to correctly identify true small lesions
and perform PVC without over estimation.
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