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Abstract

To enable computer systems to recognize meaningful
lip movements is a potential means to let computers in-
teract naturally with people. We consider the problem
of recognizing spoken English alphabet, and present a
method for lipreading which uses eigensequences. Since
lip movements are essentially spatiotemporal in nature,
to remove this statistical redundancy in an integral way,
we use the spatiotemporal eigen decomposition, in which
the set of eigenvectors span the space of all possible se-
quences. In order to recognize the successive utterances,
a method for separating letters in a connected sequences
is also proposed. The method is based on a function of
the frame average difference for the sequences and the
separation proceeds in a coarse to fine manner.

We have experimented with sequences of English let-
ters “A” to “J”, and obtained very encouraging results.
The eigensequence based approach for lipreading is very
simple and straightforward; the major computation dur-

ing recognition is a simple dot product.

1 Introduction

Lipreading using computers is a challenging task. Many
ideas and methods have been put forward. Yet the gen-
eral problem of lipreading remains unsolved. In this
paper, we present a method for lipreading which uses
eigensequences. We consider the problem of recognizing
the spoken English alphabet. In our approach, gray level
values of all the pixels in all frames in a sequence repre-
senting a spoken letter are put in one large vector. Sev-
eral such vectors corresponding to the training sequences

are used to compute eigenvectors (eigensequences), for

each spoken letter. The recognition of an unknown se-
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quence representing a spoken letter is performed by com-
puting the energy ratio when the sequence is projected
on the model eigenspace. For a perfect match, this ratio
tends to 1.

Our approach is based on the demonstrated success
of the eigenvector approach using static images for face
recognition [10, 7] and the similar approach for illumina-
tion planning [6]. Turk and Pentland [10] decompose face
images into a small set of characteristic feature images
called “eigenfaces”, the principal components of the ini-
tial training set of face images. Recognition is performed
by projecting a new image into the subspace spanned by
the eigenfaces. As for the problem of lipreading, sep-
arate spatial and temporal eigen decompositions have
been used [4]. Since lip movements are essentially spa-
tiotemporal in nature. To exploit this statistical redun-
dancy in an integral way, we use the spatiotemporal eigen
decomposition, where a set of eigensequencesis derived
as the basis for each modular space corresponding to a
spoken letter. Recognition depends on the selection of
the modular space which best represents the input lip
sequences.

In order to recognize successive utterances, we have
developed a method for extracting letters from connected
sequences. Our method measures the averaged frame
difference of a sequence and extract subsequences corre-
sponding to individual letters in a coarse to fine manner.
The procedure begins with the valleys of the smoothed
version of the difference function, then locates the begin-
ning and the end of a letter in the neighborhood of the
respective valley.

We have experimented with several sequences of En-
glish alphabet letters “A” to “J”, and obtained very
encouraging results. These sequences varied in length,

since in real life we speak the same letter with differ-



ent speeds at different occasions. We use dynamic time
warping to align each sequence to a fixed length. Our
eigensequence based approach for lipreading is very sim-
ple and straightforward; once the eigensequences of each
letter are obtained, the major computation during recog-

nition is a simple dot product.

2 Related Work

In Petajan et al. [8], the lipreading task is performed
through vector quantization, which replaces each mouth
opening image of a sequence by the index of the clos-
est image in the codebook, thus creating a vector of in-
dices representing the sequence. Recognition is done by
computing the distance between vector quantized word
samples and every vector quantized word model.

In Finn and Montgomery’s algorithm [2], twelve dots
were placed around the mouth of a speaker and tracked
during the experiments; a total of fourteen distances
were measured, and used as a feature vector for recogni-
tion.

A different scheme was developed by Mase and Pent-
land [5]. They used optical flow to express the two prin-
cipal types of motions of the mouth as functions with
respect to time: mouth opening O(t) and elongation of
the mouth E(t). Templates were used for recognition af-
ter a resampling step that normalizes the time to speak
one word (time warping).

Kirby et al. [4] used a linear combination of the fixed
set of eigenvectors of the ensemble averaged covariance
matrix to express mouth images. A spoken word made
up of P images can then be expressed as a ¢ x P matrix
of coefficients computed with respect to the set of @
eigen images. A template matching technique was then
used for identification of particular words.

Goldschen [3] used optical information from the oral-
cavity shadow of the speaker for continuous speech recog-
nition. His system uses Hidden Markov Models to recog-
nize a set of sentences using visemes, trisemes (triplets
of visemes), and generalize trisemes (clustered trisemes).

Bregler and Konig [1] created a hybrid system that
uses both acoustic and visual information. Either the

principal components of the contours or the principal

components of a gray level matrix centered around the
lips are taken as the basis of recognition. In the presence
of noise, their worked showed improvement for the com-

bined architecture over just acoustic information alone.

3 [Eigensequences

L 1p,

where each image has M rows and N columns, and P

Consider a sequence of mouth images, I1,1s,..

is the number of frames in the sequence. The gray level
values of all pixels are then collected throughout the se-
quence in a column vector as follows:

v = (L(1,1),...,h(M,N),I,(1,1),...,L(M,N),...
Ip(1,1),...,Ip(M,N))",

where I;(z,y) is the value of the pixel at location (z,y)
in frame 3. For n sequences with P frames, a matrix A

is made as
A= [ul,'uQ,...,u"]. (1)
where u’ is the column vector from jth sequence. The

eigenvectors of the correlation matrix I = AAT are de-
fined as

Léi=Xidi 1<1<mn
where ¢; is the eigenvector and A; is the corresponding
eigenvalue. Since the eigenvectors ¢; are of the same
dimension as the lip sequences, we call them eigense-
quences.

The matrix L is a MNP x MNP matrix, which is
exceedingly large, even for small M, N and P. However,
the eigenvectors, ¢;, can be derived through computing
the eigenvectors of the smaller matrix C' = AT A.

In equation 1 above, we have assumed that all u’ vec-
tors, hence sequences, are of the same length. Since this
can not be guaranteed in the real world, we apply a warp-
ing algorithm [9] to obtain sequences of equal length.

Any unknown sequence, u”, can be represented as a

linear combination of eigensequences as follows:

u® = Zaiéi. (2)
=1

The linear coefficients, a;, can be computed by finding
the dot product of vector u® with the eigensequences as:

ai=ul.d; 1<i<n (3)



4 Model Generation and Matching

In our approach, several training sequences for each spo-
ken letter are used to compute eigensequences, and the
@ most significant eigensequences are selected and used
as the model for that letter. Assume that we are given
a novel sequence, representing an unknown spoken let-
ter. In order to recognize this sequence, we project it on
the individual eigenspace represented by the model (by
computing the linear coeflicients, a;’s), then compute the
energy ratio (described below) for each projection. The
model corresponding to the highest projection energy ra-
tio indicates the possible match.

Suppose the set of the most significant eigensequences
for letter w is the set {(bf, o5, ..., (;56}, where the su-
perscript denotes the letter, and the subscript denotes
the eigensequence number. To generate the model, one
training sequence for each letter is selected as a reference,
and the remaining training sequences for that letter are
warped to the reference sequence so that all of them are
of the same length.

The projection of a novel sequence, u®, on the

eigenspace of letter w is given by:

af =ul.g¥, 1<i<Q; welA,. ... Z}. (4)

Note that before computing this projection, the novel
sequence, u”, is also warped to the reference sequence of
letter w in order to make it of equal length.

Due to slight head movement during the utterances,
the lips in the novel sequence may be spatially misaligned
with the reference sequence. We compensate for this
through frame by frame registration between the two se-
quences. The frame-size of the original novel sequence
is vertically greater (by a margin of 40 pixels) than that
of the reference sequence. Through the criterion of max-
imum correlation, a part, which is of the same size of
the reference frame, in each novel frame is selected to
represent the novel sequence for actual projection.

Let the energy of projection of «® on the eigenspace
of letter w be iQ=1 (a¥)?, and the energy of u® is ||u®||.
We will use the ratio of these two energies, £, defined

below, as the measurement for matching.

Q (a?)?
w o izl )t
B == )

For a perfect match, this ratio will be close to 1.

The definition of energy ratio in (5) is equivalent to
the definition of normalized distance. Suppose we use all
the eigensequences, then the novel sequence u® can be

expressed as:

'uzzzbiqzﬁi, 1< < n, (6)
i=1

where a;’s and b;’s are related as follows:

b if1<i<
4 = ifl<is@ (7)

0 otherwise

Now, consider the normalized distance between u® and

its projection

D= 2:‘;1(1” - a¢)2 ’ (8)

nop 2
g‘=1bi
which is equivalent to
Q 2
Y ai
D=1-==1_ 9
[Ju]] ®)

where |[u”|| = 3°"  b;°. Consequently, minimizing the
normalized distance D is equivalent to maximizing the
energy ratio, £, defined in equation 5.

It is important to use the energy ratio or normalized
distance in our case. As noted earlier, spatial registra-
tion has been applied to the novel sequences and the part
of the (spatial) sequence used by the projection may vary

with each mapping. This change needs to be compen-

sated for by the normalization.

5 Modular Vs. Global Eigenspaces

In the space of all possible sequences, the lip sequences
map to the clusters of individual letters. The task of
lipreading then becomes determining which cluster an
unknown sequence belongs to. We can use two meth-
ods of eigen representation. One method is to compute
the eigenvectors of the entire space (global eigenspace)

and discriminate the lip patterns by the distance to the



respective cluster centers. The other is to use the modu-
lar eigenspace, in which the principal eigenvectors which
give the most compact description of individual clusters
can be constructed, and the distance from the input to
the subspaces spanned by the principle eigensequences
can be used.

We use modular eigenspaces in our approach, that is,
separate eigensequences are computed for each spoken
letter. While the global approach would use training se-
quences of all letters to compute global eigensequences.
As noted earlier, before computing eigensequences, we
must convert all the sequences to some fixed length. An
important advantage of the modular eigenspace is that
sequences for construction of each model are only warped
among that group. Whereas in the global approach, it is
difficult to select any reference letter to which all other
sequences can be warped, because the sequences signifi-
cantly differ from each other.

This issue of modular vs. global has also been ad-
dressed in the context of face recognition using static
images. As pointed out by Pentland et al. [7], the rele-
vant analogy is that of modeling a complex distribution
by a single cluster model or by the union of several com-
ponent clusters. Naturally, modular representation can
yield a more accurate representation. Pentland et al’s ex-
perimental results show a slightly superior performance

obtained by the modular eigenspaces.

6 Extracting letters from connected

sequences

The approach used in this paper treats each spoken let-
ter as a basic unit for recognition. It is assumed that
the lip movements for a given letter can be expected to
follow similar spatiotemporal patterns. Consequently, a
good method for automatically isolating and extracting
letters from a continuous sequence is needed for success-
ful recognition.

For simplicity, we assume that our task is to recognize
independent letters from lip sequences. The speaker is
required to begin each letter with the mouth closed, a
constraint which was enforced with no difficulty during

the experiments. The separation of the letters is based

on the temporal variation of the sequence. This is de-
termined by computing the average absolute intensity

difference function, f(n), as defined below:

1) = 212 S ae,0) = sl w)ll - (10)

=1 y=1

From the plots of the average frame difference func-
tion, f, for a connected sequences, we found that the
value of f during the articulation intervals is not neces-
sarily greater than that during the non-articulation inter-
vals, so separation of letters by using direct thresholding
will not succeed. However, we note that the articula-
tion intervals in this function correspond to clusters of
big peaks and the non-articulation intervals correspond
to the valleys between peaks, which may also have small
local peaks.

Based on the waveform analysis, our approach begins
with separating those clusters of peaks. First, the frame
difference function, f, is smoothed to obtain function g.
Then the global valleys are detected in g. These valleys
occur between two consecutive letters. For each valley
in g, starting from the frame number corresponding to
the location of a valley in g, the hillside on the left and
the hillside on the right in f, where f crosses a preset
threshold, are identified. Next the first valley on left
of right hillside, and the first valley on the right of left
hillside in f are determined. The left valley is the ending
of a previous letter, and the right valley is the beginning
of the next letter. The threshold, T, used for determining

hillsides in f should satisfy the following constraint:
max(pr(1)) < T < min(pz(7)),
i J

where, pr is the value of a local peak in the non-
articulation interval and pz is value of a (left—most and
right-most ) outer-most peak during the articulation.
Since the outermost peaks usually are prominently high,

a large margin can be allowed for the setting of 7.

7 Warping

Warping is used twice in our method for lipreading.
First, during the generation of model eigensequences,

second during the matching of a novel sequence with



the model eigensequence. In this section, we briefly de-
scribe warping. This temporal warping of two sequences
uses the Dynamic Programming Algorithm of Sakoe and
Chiba [9]. The columns of each frame of a sequence are
concatenated to form one vector, and a sequence of vec-

tors is created. For each pair of sequences we have:

A=la1,a2,...,ai,...,01]

B =1[b1,bs,....b;,...,bJ]

where ay,, is the n'” vector of sequence A, and b, is the
n'™ vector of sequence B.

The algorithm employed uses the DP-equationin sym-
metric form with or without slope constraint. Without
the constraint, g(i, 5) is computed as follows:

Initial Condition:
9(1,1) = 2d(1,1)
where d(1, 7) = ||a; — bj]|.
The DP-equation:

9(2,0 —1) +d(3,5)
gt —1,5 — 1)+ 2d(3, j)
g(l - 1a]) + d(za])

The minimum equation used for the calculation of ¢

g(i,7) = min

at point (1, 7) gives the path from the previous point to
that point, thus creating a path from (1,1) to (I, J).
Each point on this path indicates which frames from
the input sequence match to frames in the reference se-
quence, which creates a warped sequence that uses the
frames of the input sequence and is the same length as
the reference sequence. If several frames from the input
sequence are matched to one frame in the reference se-
quence, the average of those frames is used as the result.
Conversely, if one input frame is mapped to multiple ref-

erence frames, copies of that single frame are used.

8 Results

We have performed experiments with sequences of ten
spoken letters (A-J). In one test, five sequences of each
letter were digitized. Three sequences out of each five
(seq-1, seq-2, and seg-3) were used as a training set to
generate the model eigensequences, and the method was

tested on recognizing the two remaining sequences (seq-4

and seq-5). Images were collected at a rate of 15 frames
per second. One person supplied all the sequences. The
sequences were taken with good lighting conditions. The
resulting images were then cropped from 640 x 480 to
220 x 180 centered around the lips.

During model generation, three training sequences of
each letter were first warped to a selected reference us-
ing the dynamic time warping method [9] without con-
straint. Next, the eigensequences were computed (which
will be shown in the paper). During the recognition,
seq-4 for a given unknown letter was warped to each of
the ten model letters for possible match. Then, ener-
gies were computed using equation 5. This process was
repeated for all ten unknown letters in seq-4. The recog-
nition rate was 100% for sequence seq-4, and 90% for
sequence seq-5.

We have also experimented with two connected se-
quences containing letters A /B,Cjand D. First, the
method discussed in section 6 was used to isolate spo-
ken letters. Then, the extracted sequence correspond-
ing to each letter was matched with the models as dis-
cussed above. The recognition rate was 100% for both

sequences.

9 Conclusions

We presented a method for lipreading which uses eigense-
quences. In our approach, gray level values of all the
pixels in all frames in a sequence representing a spoken
letter are taken as a whole vector. Several such vec-
tors corresponding to the training sequences are used to
compute eigenvectors (eigensequence), for each spoken
letter. The recognition of an unknown sequence repre-
senting a spoken letter is performed by measuring the
ratio of energy when the sequence is projected to the
model eigenspace over the energy of the sequence.
Future work will include the experimentation of the
proposed method with more training and test sequences.
Recognition of other letters “K” to “Z”, and digits “0”
to “9” will also be performed. We expect the main
idea can be extended to the general problem of "motion
based recognition” where spatiotemporal variation of the

objects is involved. Since the proposed spatiotemporal



eigen decomposition results in a very compact represen-

tation, it may also be useful for video signal compression.
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