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Detecting Humans in Dense Crowds Using
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Occlusion Reasoning
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Abstract—Human detection in dense crowds is an important problem, as it is a prerequisite to many other visual tasks, such as
tracking, counting, action recognition or anomaly detection in behaviors exhibited by individuals in a dense crowd. This problem is
challenging due to the large number of individuals, small apparent size, severe occlusions and perspective distortion. However,
crowded scenes also offer contextual constraints that can be used to tackle these challenges. In this paper, we explore context for
human detection in dense crowds in the form of a locally-consistent scale prior which captures the similarity in scale in local
neighborhoods and its smooth variation over the image. Using the scale and confidence of detections obtained from an underlying
human detector, we infer scale and confidence priors using Markov Random Field. In an iterative mechanism, the confidences of
detection hypotheses are modified to reflect consistency with the inferred priors, and the priors are updated based on the new
detections. The final set of detections obtained are then reasoned for occlusion using Binary Integer Programming where overlaps and
relations between parts of individuals are encoded as linear constraints. Both human detection and occlusion reasoning in proposed
approach are solved with local neighbor-dependent constraints, thereby respecting the inter-dependence between individuals
characteristic to dense crowd analysis. In addition, we propose a mechanism to detect different combinations of body parts without
requiring annotations for individual combinations. We performed experiments on a new and extremely challenging dataset of dense
crowd images showing marked improvement over the underlying human detector.

Index Terms—Crowd analysis, dense crowds, human detection, scale context, spatial priors, locally-consistent scale prior,
combinations-of-parts detection, global occlusion reasoning, deformable parts model, Markov Random Field

1 INTRODUCTION

ROWD Analysis is fundamental to solving many real-

word problems. It is important for management of
crowded events, such as protests, demonstrations, mara-
thons, rallies, political speeches and music concerts which
are characterized by gatherings of thousands of people. It
has use in the design of public spaces and infrastructure, as
well as in their expansion and modification, by analyzing
the counts of customers and commuters that frequent and
travel through these places. It has applications in computer
graphics as well, where crowd simulation models can be
learned using data from real-world crowded scenes. But,
perhaps its most important use is in visual surveillance and
anomaly detection. The recurrent and tragic stampedes at
pilgrimages [1] and parades [23] as well as the recent terror-
ist attack at a marathon [5] call for improved and sophisti-
cated techniques for visual analysis of dense crowds.

Since human detection is the primary task even in non-
crowded scenes, as it precedes person tracking, action rec-
ognition, anomaly detection and higher-level event classifi-
cation, it has the same importance in crowded scenes where
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all the other tasks aimed at individuals depend on it. But, a
crowd is more than the sum of individuals; the difficulty of
computer vision tasks increases disproportionately depend-
ing on the number of individuals making up the crowd.
This can be gauged by the fact that the human response to
an image of a crowd is much slower than that on a non-
crowd image. For instance, a human or a member of surveil-
lance team can easily detect, track and count in an image of
few people, but when presented with a crowd image
containing hundreds to thousands of people, will require a
considerably large amount of time. Thus, the straightfor-
ward extension of computer vision algorithms does not
yield corresponding improvement [41], [49]. And since
human detection is fundamental to other tasks in crowd
analysis, it assumes even more importance. Until now, the
methods that track individuals in dense crowds manually
initialize the individuals and track them across frames [3],
[28], primarily due to the difficult nature of human detec-
tion in crowded scenes.

Dense crowds offer a set of challenges when it comes to
visual analysis—fewer pixels per target, perspective effects
and severe occlusions. But, they also provide constraints
which can be employed to tackle these challenges. These
can be both contextual (spatial) or temporal constraints. For
instance, tracking methods for dense crowds learn the
crowd flow, and use that flow to reliably track individuals
in the crowd [3], [28], [37]. Such use of repetition of behavior
in time is largely exclusive to dense crowds. In this
paper, on the other hand, we explore the use of spatial or
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Fig. 1. This figure shows several images from the dataset on which experiments were performed. Although there are severe occlusions and pose var-
iations, the consistency in scale (size of humans) is evident in all images which can be used to restrict the space of detection hypotheses in these

images.

contextual constraints for improving human detection. Con-
sider, for instance, the images in Fig. 1 which depict crowds
of varying densities. In all the images, it can be observed
that the scale or size of neighboring individuals is similar.
Furthermore, although the scale changes across all the
images, the change in scale is gradual due to the perspective
effect and position of the camera which is generally over-
head. Even when the camera is not located overhead or
there are multiple ground planes, for instance, stairs, stadi-
ums, or multiple head planes, e.g., people sitting and stand-
ing, the scale is still locally consistent but with sharp
discontinuities due to humans at various heights and
depths. These qualitative observations can be embedded in
a discontinuity-preserving Markov Random Field that cap-
tures the scale of an entire image. Similarly, there can be
several heuristic based methods for occlusion handling, but
such methods are not applicable in dense crowds, as there
are no isolated pairs of individuals which have to be rea-
soned for occlusion - individual A may occlude B, individ-
ual B may occlude C and so on, making all of them tied to
each other. An incorrect solution for one individual in a
greedy algorithm can affect detection of many other indi-
viduals. Thus, instead of developing a greedy or heuristic
solution, we leverage the advanced solutions of Integer Pro-
gramming to simultaneously reason all occlusions and infer
visible areas of detections. Unlike, non-crowd human detec-
tion methods that detect and localize humans in isolation,
our approach solves the problem in a global fashion,
thereby, honoring the relationship that individuals in a
dense crowd have with each other.

The key ideas presented in this paper are independent of
the underlying human detector used, but due to its popular-
ity, we used Deformable Parts Model (DPM) [18] to obtain
the scales and confidences of humans and their component
parts, which are then used by the proposed method. Since
individuals in dense crowds undergo severe occlusions,
and full-body human detection is not sufficient to detect all
humans, part-based analysis, therefore, assumes greater sig-
nificance in such scenes. We propose a solution to detect
combinations-of-parts of humans which is able to increase
recall by detecting partially occluded humans—a common
occurrence in dense crowds. This allows us to have multiple
detectors that use same parts, which spares us from part-
specific annotations and is computationally efficient as it
reuses results of filter responses on the shared parts.

Our approach bridges the gap between holistic
approaches to crowds and isolated analysis of individuals
in non-crowded scenes. The contributions of this paper are

summarized as follows: 1) use of locally-consistent scale
prior for human detection and an approach for its applica-
tion in dense crowds, 2) a method to create detectors com-
prising multiple parts without requiring annotations of
those parts, made possible through the use of Latent SVM,
3) occlusion reasoning in crowds with a global solution, and
4) a new and challenging dataset of dense crowd images
with tens of thousands of annotated humans.

The rest of the paper is structured as follows. We present
literature relevant to our problem in Section 2, followed by
technical details of the proposed approach in Section 3.
Then, we provide results of our extensive evaluation on the
new dataset in Section 4. Finally, we conclude with sugges-
tions for future work in Section 5.

2 RELATED WORK

Human detection is often the precursor to many computer
vision tasks and the problem has been tackled by various
approaches in literature [8], [12], [13], [16], [18], [26], [29],
[35], [43], [47]. A recent comprehensive survey by Dollar
et al. [14] compares various state-of-the-art pedestrian
detectors and evaluates their performance based on scale,
degree of occlusion and localization accuracy. They
conclude that under partial occlusion the performance
degrades significantly, and becomes disappointing at low
resolutions. The authors make an assessment that there is
still a considerable gap between the current and desired
performance of these human detectors. However, they do
suggest that the use of some form of context and better
occlusion handling can improve the performance of detec-
tors. Another survey from the perspective of traffic safety is
by Geronimo et al. [22] which focuses on application of
pedestrian detection to assist drivers, with the goal of avoid-
ing possible accidents and casualties.

Human detection poses a range of challenges, the most
important of which are to deal with articulation and occlu-
sions. The non-rigid structure and deformity in humans is
modeled using the notion of constituent parts which allow
certain degree of displacement of parts relative to their
desired positions. Several part-based approaches have been
proposed in the literature [18], [20], [30], [44], [46]. In [18],
the part filters are learned and applied individually, with
each part placed relative to the root location and a deforma-
tion cost added to the final confidence. Similarly, some of
the recent approaches have used the visibility of parts to
infer the occluded regions. Ouyang and Wang in a series of
papers handle occlusion by modeling visibility of parts as
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hidden variables [31], explicit training of multi-person
detection [33] or automatically through deep learning [32].
Enzweiler et al. [17] use mixture-of-expert classifiers and
train them on features from intensity, depth, and motion to
handle partial occlusions. Duan et al. [15] describe the rela-
tions between parts using manually defined rules in a hier-
archical structure of words, sentences and paragraphs to
deal with articulation and occlusions. Wang et al. [43] train
a HOG-LBP/SVM classifier, and present a method to find
contributions from individual parts, which are used to con-
struct an occlusion map depicting visible regions in detec-
tions. Unlike [43] which divides the regular SVM bias
among rigid blocks of the human detector for occlusion rea-
soning, we propose to divide the Latent SVM bias term
among deformable parts to automatically create detectors
for different combinations of body parts. In particular, we
create head, head and shoulder and upper body detectors
besides the full body detector using only the annotations for
complete humans.

State-of-the-art human detectors perform reasonably
well to handle deformation and mild occlusions in non-
crowded scenes. However in dense crowds, where individ-
uals undergo severe occlusions, large deformations as well
as extreme variations in apparent size, human detection
becomes an extremely challenging task. For detection in
low-density crowd scenes, a unified probabilistic frame-
work by Yan et al. [48] uses appearance and spatial interac-
tion to describe multiple pedestrians. Improved occlusion
handling using a multi-view geometry approach is pre-
sented by Ge and Collins [21], who estimate the number of
people in a crowd and their locations by sampling from a
posterior distribution over a 3d crowd configuration. Simi-
larly, Arteta et al. [4] propose a method to correctly detect
overlapping objects using segmentations in video sequen-
ces. Crowd density is utilized by Rodriguez et al. [38] who
show improved person localization and tracking perfor-
mance in crowded scenes. They formulate the problem as
an optimization of a joint energy function by incorporating
confidences of detections subject to overlap and scene-
specific density constraints. A video is divided into two
sets, where the first set with annotated humans is used to
train the density estimator, while the second set is used for
testing. The ideas presented in this paper are complemen-
tary to [38], but our goal is to use cues or priors that are gen-
erally applicable, and not learned from, and applied on,
individual scenes or videos.

Human detection is a pre-requisite to tracking, but due to
the difficulty in detecting humans in dense crowds,
approaches rely on temporal repetition in the form of
motion patterns [28], [50] and floor fields [3] to track and
analyze crowded scenes, and require manual initialization
of tracks. Ali and Shah [3] use this idea in the form of floor
fields, which determine the probability of motion from one
location to another. Crowd behavior has been similarly
modeled by Rodriguez et al. [37] in unstructured scenes to
track individuals. Rodriguez et al. [39] use a large collection
of crowd videos to learn motion patterns which are then
used to drive a tracking algorithm. Multi-target tracking
combined with motion pattern learning by Zhao et al. [50]
has shown to improve tracking in structured crowds. It
requires user labeling of the target in the first frame, which
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is used to learn a detector, later employed to detect and
track other similar objects in the sequence. The common
theme in these works is temporal modeling of crowd
motion and manual initialization of individual tracks. In
addition to tracking, human detection can also be used as a
source of information for counting as was done by Idrees
et al. [25] who used only the head detections for estimating
the number of people in an image. This work differs from
[25] as our goal is human detection in terms of bounding
boxes and not just counting which produces one number
for an entire image. Thus, improved human detection is
consequential for counting where it can improve count esti-
mation, as well as for tracking in dense crowds where it can
significantly reduce the effort of manual initialization.

Inspired from human visual system which makes use
of contextual information to detect and recognize objects,
context in computer vision has been extensively studied
and used to improve object detection. Researchers have
experimented with various approaches: semantics [6],
image statistics [42], shape context [36], pixel context [8],
[45] and color/texture cues [40], 3D geometric context
[24] as well as intensity/depth/motion cues [17]. Divvala
et al. [11] evaluate several sources of context and propose
the use of geographic context and object spatial support.
The work by Desai et al. [9] focuses on learning spatial
context to simultaneously predict labeling of a scene
while bypassing heuristic-based post-processing steps.
Similarly, Ding and Xiao [10] combine the local window
with neighborhood windows to construct a multi-scale
image context descriptor from HOG-LBP features. Scale
information has also been used in different areas, which
is either obtained manually or is scene-specific [7], [27],
[34] and sometimes requires knowledge of camera param-
eters [2]. In this paper, we propose to use context in the
form of locally-consistent scale prior which enforces
the constraint that the size of proximal individuals in a
dense crowd is consistent and similar, though there may
be occasional discontinuities. Closely related with scale
prior is the confidence prior which gives the confidence
of the associated scale at each location in the image. We
show that both of these priors can be automatically dis-
covered from the scene and are extremely relevant to
detecting humans in dense crowds.

3 FRAMEWORK

In this section, we describe our approach in detail. To keep
the paper self-contained, we first describe essential details
of Deformable Parts Model [18] that are relevant to our
approach, using the same notation as in [18]. We, then,
describe how scale and confidence priors are automatically
discovered from given images by refining the priors and
human detections in an iterative fashion. Next, we present a
technique to detect combinations-of-parts using the existing
DPM formulation. Finally, the set of putative detections are
globally reasoned for occlusion, resulting in bounding boxes
on the visible parts of humans as output. Note that the
choice of DPM as underlying detector is arbitrary, any
human detection algorithm which performs detection at
multiple scales and uses part-based models can be substi-
tuted in its place.
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3.1 Background: Deformable Parts Model

In order to capture the changes in viewpoint as well as varia-
tions in pose due to the articulation, Deformable Parts Model
[18] uses HOG features to match appearance, and instead of
using just the filter scores from rigid templates, it considers
deformation, which when represented as a score, measures
the displacement of parts from their ideal locations.

To detect objects at multiple scales, a feature pyramid H
is constructed with L levels, with p = (z,y,[) representing
the position (,y) at level / in the pyramid. The parameter A
determines the rate for scale sampling in H, ie., A is the
number of levels down the pyramid at which the resolution
doubles compared to a given level. The feature vector at
position p in the pyramid is given by ¢(H, p). The appear-
ance score is, then, simply the dot product between filter,
F’, and feature vector, i.e., I - ¢(H, p). The model for part i
is represented as P, = (F}, v;, d;), where Fj is the filter for the
ith part, v; is the anchor position w.r.t root position, and d;
is the deformation cost. The deformation score of a part
with displacement (d,,d,) is given as d; - ¢4(d,,d,), where
¢, returns the deformation features. Finally, an object model
with n parts is given by (Fy, Py, P», ... P,,b), where Fj is the
root filter, P is the model for ith part consisting of appear-
ance and deformation costs, and b is the constant bias term.
The confidence output by human detector, confmp, for each
hypothesis is the sum of scores from the root filter, filter
and deformation scores from the parts, plus the bias, i.e.,

COHfHD(p(hplvP?v . 'pn)

n , n (1)
= ZF" . ¢(vai) - Zdi : d’d(dlﬂzvd’yz) +b.
i=0 i=1

3.2 The Scale and Confidence Priors
In a densely crowded image or video, human detection
becomes difficult primarily due to the smaller target size and
severe occlusions. But, the scale of a human in crowded scene
provides cue to what the scale should be in the immediate sur-
rounding of the associated detection. We can transfer the
knowledge of scale from a point in scene to its surroundings
using the scale and confidence of that particular human detec-
tion. Fig. 2 illustrates this idea. Given scale and confidence pri-
ors, the confidence for detection hypotheses is altered to
reflect conformity with the priors. However, since both the
priors and detections are dependent on each other, this neces-
sitates an iterative mechanism where the priors are improved
using given detections, and detections are improved using
updated priors. Next, we present one cycle of this iterative
procedure to discover priors and obtaining the detections.
Inferring scale and confidence priors from given detections.
For a detection ,, let (z,,y,) denote its position in the
image, and s, and ¢, represent the scale and confidence,
respectively. Then, given a set of input detections, (),
g=1,2,...,Q, our goal is to infer the scale and confidence
at each location x = (z,y) in the image. All the detections
induce a local influence in terms of scale and confidence,
which can be captured with an Influence Function, induced
by every detection. Such a function should be dependent on
locations of input detections since scale-consistency is only
valid locally in most images depending on camera location,
number of ground planes (stairs, stadiums) or number of
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Fig. 2. Human detection in DPM [18] is performed using L = 67 levels of
the pyramid. Three pixel locations in given image, shown with different
colors, have different prior information on scale and confidence. In our
approach, the scale and confidence priors are discovered automatically
which then provide a 1d scoring function at each pixel in the image, as
shown on right. By transforming the priors to each level of the pyramid,
the confidence for detection hypotheses is altered based on their consis-
tency with the priors. Increasing the confidence of scale-consistent but
low-confidence hypotheses allows them to be detected without incurring
false positives in the rest of the image. Effectively, for a 2304 x 3072
image, this amounts to re-scoring all the 3.85 million hypotheses.

head planes (people sitting, standing). It should be a func-
tion of scales because a detection with a larger scale has its
neighbors at a larger distance than smaller detections.
Finally, since the scale information of high-confidence detec-
tions is more reliable, it should also be dependent on the
confidence, ¢,. We propose to use the following function:

2 2
garﬂ (Qq) _Cq'eXp<—||x_xq” + Hy—yq” )7 ©)

02 (1+ s,/ p(H)2))”

where o is the deviation along z and y axes, and p(H;)
returns the scale of a detection at level [ in the pyramid.
From the above equation, it is evident that ¢, , is a function
of all three aspects of a detection, its location (z,, y,), scale
s, and confidence ¢,. It also satisfies all the mentioned prop-
erties and, therefore, is a valid Influence Function. Further-
more, the detection that has the maximum value at the
location (z,y) in the image, )., determines the value of
scale (0,) and confidence (0,) priors at that location, i.e.,

@* = argmax fw,y(Qq)va = 17 27 37 e 7Q7
‘ (3)
®C(Ivy) = Ew,y(ﬂq*)v ®S(I7y) = Sq*-

The confidence prior ®. at each location in the image is
just the maximum value of Influence Function. The scale
prior Oy is the scale of the particular detection that has the
maximum influence at that location. Fig. 3b shows the scale
prior for an image shown in Fig. 3a. It is similar to Voronoi
Diagram except each region is represented by a scale and
the distance-measure is the influence function ¢, instead of
the euclidean distance.

Due to perspective effects, the scale of humans changes
from pixel to pixel, but its effect is usually gradual. While
the humans closer to the camera appear larger, the ones in
the background appear smaller. This consistency in scale is



Fig. 3. Intermediate computations of scale and confidence priors: (a) The
scales and confidences from detections in an image are transformed into
a 2d graph. (b) The observed scale prior is obtained using Equation (3),
(c) which is then smoothed through MRF using Equation (4). The corre-
sponding confidence prior is also shown in (d). Heat map is used in
(b)-(d) where brighter colors indicate larger values.

imposed by treating scales as random variables and placing
them in a Markov Random Field which enforces smooth-
ness at nearby image locations. We model this using grid
MRF (inferred using Max-Product/Min-Sum BP [19]),
given by,

B(l) =) @)+ > Wl —Ly), )
(

xe€V x,x')eEN

where ®, ¥ are the unary and binary potentials and V, N
define vertices (pixel locations) and neighborhoods in the
graph, respectively. The labeling ¢ assigns a label (scale) at
every location x in the image. The data term, ®,, is qua-
dratic, while smoothness term, V¥, is truncated quadratic.
Although the scale varies gradually due to perspective
effects, but due to particular viewpoints, there can exist
sharp discontinuities. These can also arise from false posi-
tives which are likely to be different in scale than correct
detections in a particular neighborhood. Thus, it is impor-
tant to infer the scale prior while preserving the sharp dis-
continuities. The truncated quadratic cost for smoothness
allows us to achieve this objective. Figs. 4a and 4c show the
case of rapid scale change and that of scale-inconsistent
false positives, respectively. In both cases, the scale informa-
tion was correctly captured using the proposed approach.
Altering confidences of detection hypotheses given priors.
Given priors, the confidences of detection hypotheses are
then re-evaluated, as illustrated in Fig. 2. The new confi-
dence is the sum of confidence from the underlying human
detector plus the output of scoring function that measures
consistency of scale of the detection hypothesis with the
scale prior at that location weighed by the confidence prior,

conf(Q,) = confup (L)

1
+a - Oc(xq,y,) - exp (*BHSq - @s(l’myq)ﬂz),
(%)

where «, § are the parameters of the scoring function.
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Fig. 4. Intermediate results on inferred scales after smoothing: Two
images are shown in (a) and (c) whereas the inferred scale priors are
shown in (b) and (d), respectively. Truncated quadratic cost in Equa-
tion (4), allows us to handle sharp discontinuities in the scale field, likely
to happen at specific viewpoints and due to false positives. The image in
(a) has a fountain, where there is a gradual change in scale around it
(yellow arrow) but a sharp discontinuity across it (yellow bar). Similarly,
in (c), the initial set of detections had a false positive at traffic light larger
in size than the immediate neighbors. In both cases, the gradual change
in scale and discontinuities were preserved by MRF.

Transformations between priors and feature pyramid. From
implementation’s perspective, there are two important
transformations between scale and confidence priors and
each level in the feature pyramid. The first relates the = and
y coordinates in priors, (ze,ye), which are the same size as
the image, to those in level [ in the pyramid, (z,, yr,), and
is given by,

p(H)) .
{le ] _ | w0 wotd "o ©)
- (1)) )
Yo, 0 p&aHlol)lk ho +1 1

where £ is the block size used for constructing HOG, wy, ho
are the width and height of root filter Fy, and p(H;) is the
scale at level [. The second transformation relates the scale
in the image or priors to that of each level in the feature pyr-
amid. The 1 — 1 mapping that relates size of detection (root
template) at image/prior scale to the level [ in the pyramid
is given by,

W, + ho - k

S = o) () @

In case, we desire to measure the scale of detections in terms
of some specific part instead of the root template, for instance
the one corresponding to head, we can replace wy, hy with
dimensions of that filter in Equation (7), and in image space
compute the area of bounding box associated with that part.
However, since responses to part filters are computed at
twice the resolution, H; must be replaced with Hy .

The above procedure describes details for one iteration of
prior inference and human detection. Fig. 5 quantifies the
improvement obtained using the priors at each iteration, as
well as the results of baseline [18] and combinations-of-
parts detection which is presented in next section. The
results are evaluated using only the heads to discard
the effect of bounding box sizes. There is very little
improvement after third iteration, so we used three itera-
tions in our experiments. The results improve over



IDREES ET AL.: DETECTING HUMANS IN DENSE CROWDS USING LOCALLY-CONSISTENT SCALE PRIOR AND GLOBAL OCCLUSION...

1

e
o)

o
o

Precision
=]
~]

°
o

| —— LatsVMvy
~—@— CoP Detection (lter 1)
~—§— Proposed Prior (lter 2)
—— Proposed Prior (lter 3)
~—&— Global Prior (LS)
—— Global Prior (Robust LS)|,

o
n

0.4

015 0.2 0.25 0.3 035 0.4

Recall

0.05 0.1

Fig. 5. This graph shows the improvement in performance obtained
using the priors over three iterations. The y and = axes show precision
and recall, respectively. The curve without the priors is in blue, while the
curve with the priors after iterations is in red. Also shown are the results
of global scale priors in greens. Details of experimental setup are
in Section 4.

iterations because 1) the correct detections typically have
high confidence, and therefore, more influence on their sur-
roundings, 2) the scoring function increases confidence of
only those detection hypotheses that are consistent with the
scale prior which is smoothed and inferred using many
detections from the previous iteration. 3) Although the
detections are pre-processed to remove outliers (median
filtering) in terms of scale, even if some scale-inconsistent
false positive gets through, the discontinuity-preserving
MREF ensures that its impact remains restricted. In addition,
we report results of global head plane estimation with least
squares (LS) in light green and robust LS using RANSAC
(RLS) in dark green. Robust LS improves results over base-
line but proposed method still outperforms either method
of head plane estimation, primarily due to violation of sin-
gle ground / head plane assumption in many images and
re-scoring of all hypotheses before they are selected for out-
put. In Fig. 6, we show how the priors yield impressive
results in an image containing extremely dense crowd. For
clarity, all detections are shown with the bounding boxes
for heads. Interestingly, even the false positives (shown in
black) also occur at the correct scale, i.e., at the scale of the
neighboring true positives (shown in white).

3.3 Combination-of-Parts (CoP) Detection

Since a human detector always looks for a complete human,
it yields low confidences for individuals who are partially
visible. To detect such occluded humans in the image, we
can lower the threshold, but that incurs false positives
which may have higher confidences than the correct but
partially visible humans. And since we are dealing with
crowded images characterized by severe occlusions, this
phenomenon becomes significant. The solution is to detect
multiple combinations of parts, which depending on the
visibility of parts of an individual, will correspondingly
give higher confidence detections. For our approach, we use
four different combinations: head C;, head and shoulders
C,, upper body C, and full body C;. We modified the DPM
implementation to detect different combinations of parts by
ignoring the filter and deformation scores of excluded parts
in each combination. Excluding certain parts affects the

Fig. 6. Results after using scale-consistency and combinations-of-parts
detection on an image containing almost 3, 000 people. The result is 82 per-
cent precision at 60 percent recall evaluated only on heads. White bound-
ing boxes signify true positives, whereas black represents false positives.

Latent SVM bias, since the scores from those parts are not
included in the final confidence. In the following treatment,
we present a method to divide Latent SVM bias into compo-
nent parts, which are then used to create CoP detectors.

The bias b in Eq. (1) in Latent SVM [18] is optimized such
that confidences of positive examples are greater than 0,
while those of negative examples are less than 0. This means
that the bias balances the sum of filter and deformation
scores from different parts among the positive and negative
examples. Therefore, we divide the bias into constituent
parts by averaging the contribution of each part to the posi-
tive and negative examples while ensuring that the sum of
part biases sums to the Latent SVM bias b. Let j and £ index
positive and negative training examples, respectively. Then,
the sum of confidences from the N* positive examples
using Eq. (1) is given by,

Nt n )
=2 (Z g, p]) ~
=0

J=1

> didald,.d ) +b>. ®)
=1 i [

Similarly, the sum of confidences from all negative exam-
ples is given by,

N~ n
:Z(ZE'-MH"}R Zd $ald,prdy) + ) )
=0

k=1

Isolating the bias by multiplying Eq. (8) with &, Eq. (9)
with S, and subtracting former from the latter,

(SNt —StN )b

N n n
- s+z (Z Fl.p(H",pf) = > digpy(d k,dyk)>
k=1 \i= i=1
- S Z(ZF’ H] Zd¢ddj>d )

(10)

Now, we simply decompose the bias into parts b; under
the assumption b = Y b;. Define o = S" Nt — S*N~. For
deformable partsi € 1,...,n we have,
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ST&

- (11)
s &,
=2 (FLgU p) — dig(d,5.d, ),
j=1 i 74
and for root filter 7 = 0,

ST N~ S Nt o

bi==-3 (i p) == -3 (Fle(tp). (2
k=1 j=1

The bias for CoP detector C is the sum of bias of its con-
stituent parts, given by be = ;). <c) bi-

The above procedure allows us to detect combinations of
different body parts without requiring annotations for
them. This advantageous outcome is due to Latent SVM as
it infers the location of body parts using training examples
when only provided with full-body annotations. Further-
more, although we have found the equivalence between dif-
ferent combinations at zero threshold, § =0, the CoP
detectors have different sensitivities to changes in §. For
that, we find the linear relationship between confidences of
CoP detectors and the full-body detector using the confiden-
ces obtained on N positive examples.

3.4 Global Occlusion Reasoning (GOR)
Using the approach described in previous section, we obtain
a dense set of CoP detections along with the scores of
constituent parts. Although CoP detection significantly
improves recall especially for partially visible humans, it
adds a layer of complexity to the detection task. On one
hand, we can have multiple detections at each location in
the image due to outputs from the different CoP detectors.
Also since the bounding boxes are placed by each CoP detec-
tor without taking into consideration nearby individuals, the
resulting detections have significant overlap. On the other
hand, it is possible that the bounding box does not cover an
individual entirely, due to a relatively higher confidence
generated by a CoP detector with fewer parts. Thus, we pro-
pose to infer the correct bounding boxes for all the individu-
als in the scene through occlusion reasoning whose goal is to
expand and contract the bounding boxes so that they only
but entirely cover the visible parts of the respective individ-
uals. And due to cyclic dependencies among humans in
crowds (A occluding B, B occluding C, ...), we pose occlusion
reasoning as part-visibility inference problem for all individ-
uals in an image which can be solved in a global fashion
through Binary Integer Programming (BIP) given by,
argmin fzs.t. Az <b, z € {0,1}9", (13)
z
where f contains preferences (based on scores) associated
with selecting the corresponding variables in z, which for
our problem index over Qn parts from all the @) detections
in an image. Independent of the output of CoP detectors, all
parts go into the minimization. The scores of parts contrib-
uting to CoP detection are increased by the mean confidence
over different CoP detections, while rest of the parts are
given the raw scores obtained using the full-body detector.
Taking the negative of these values gives us the desired f.
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Fig. 7. Linear constraints for Binary Integer Programming: Left shows the
DPM model for a single person and the respective part numbers (from
model trained on INRIA person dataset). To ensure all parts selected by
IP are contiguous, we use chain constraints between parts as shown
with different colors. Similarly, models for two occluding persons are
shown on right. The overlap constraints ensure that the occluded parts
are rejected by the algorithm, thus giving bounding boxes consisting of
visible parts only.

However, this would output entire humans whether they
are occluded or not. To get non-trivial solutions, we intro-
duce several linear constraints. The first one is based on
overlap i.e., if two parts from different individuals have sig-
nificant overlap, then only one of them should be selected.
A single constraint is of the form,

where o(i, j) is the overlap of part ¢ with part j from two dif-
ferent detections, obtained by dividing the overlap between
7 and j with the total area of 7 and j. The indicator function
outputs 1 if overlap is greater than w. The constraint states
that the overlap between two parts which are selected
should be less than w, and if it exceeds w, one of the parts
should be set to invisible. Each of these constraints forms a
row in the matrix A and vector b in Eq. (13).

Overlap constraints alone may result in degenerate solu-
tions, where parts from the head and legs are selected by
the optimization while those belonging to shoulders or
abdomen are deselected. To alleviate this, we introduce
chain constraints which ensure that only contiguous parts
of all individuals are selected by the optimization. For a sin-
gle detection (), let its corresponding part visibility varia-
bles be given by z,. Using the part numbers given in Fig. 7,
the chain constraints are given by Bz, < 07,1 where,

10 1 0 0 0 0 0]

10 0 0 1 0 0 0

00 0 0 -1 0 1 0
B=|0 0 -1 0 0 1 0 0 (15)

00 0 1 0 -1 -10

01 0 -1 0 0 0 0

00 0 -1 0 0 0 1]

Thus, we have one such set of constraints per detection
where each matrix essentially enforces the condition that
the part below in a detection should only be selected, if the
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Fig. 8. Results of Occlusion Reasoning: Two individuals are shown in (a)
with their bounding boxes for root and deformable parts. (b) After rea-
soning for occlusion, only visible parts are selected, thus resulting in
better localization.

part above is also selected. These constraints are generated
automatically by traversing the human model from top to
bottom. The relationship between parts 4, 6 and 7 is differ-
ent from the rest, that is the part 4 can be selected if either
part 6 or 7 is selected. For all the detections, chain con-
straints are written as diag(B)z < 0¢,x1 where diag operator
constructs a block-diagonal matrix using the argument with
all other entries set to zero. Finally, the last set of constraints
ensure that the output of CoP’ detectors are not violated. We
allow inclusion of new parts immediately below those
selected by a CoP detector, for instance, head and shoulders
detection C; is allowed to become upper-body C,, whereas
the parts further below are hardwired to zero. Although the
problem is NP-hard, exact inference is possible for our prob-
lem size, as z has @n x 1 dimensions, and overlap con-
straints only occur between neighboring detections. We
used IBM CPLEX to solve the BIP problem. Fig. 8 shows the
results where initial bounding boxes of human and parts
are shown in Fig. 8a while results of occlusion reasoning are
shown in Fig. 8b.

4 EXPERIMENTS

We performed experiments on a challenging set of 108
crowd images, downloaded from Flickr. The images cover a
variety of scenes and crowd densities, as some are sparse
while other are dense. Some of the images depict marathons
containing humans in standing poses, while other images
are of parks and exhibit more difficult poses. Similarly,
severity of occlusion also varies, as in some images, full
body detection is possible, while in others, only heads are
visible. We manually annotated the images for both heads
and visible parts of humans. In total, there are ~ 35,000
bounding boxes for head and human each, making UCF-
HDDC' one of the largest and challenging dataset for
Human Detection in Dense Crowds. There are two reasons
for annotating heads separately from humans: 1) head
bounding boxes can be converted to dotted annotations
which mark presence of a human, and thus makes the anno-
tations useful for counting in dense crowds. 2) In dense
crowds, heads offer a much better estimate of detection
accuracy as evaluation on human bounding boxes quantifies
the quality of bounding boxes produced as well. The actual
number of human annotations for each image are shown in
Fig. 9. This dataset differs from the counting dataset in [25]
which only has dotted annotations instead of bounding
boxes since the goal in [25] was counting and not detection.

1. http://crev.ucf.edu/data/UCF_HDDC.php
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Fig. 9. Statistics on the proposed UCF-HDDC dataset: On x-axis is the
image id, while y-axis shows the number of human annotations in the
image. The four green bars at the end have counts of 1,276, 1,852,
2,816 and 2, 845, respectively.

We trained the human detector on INRIA person dataset
[8], and used it directly on the proposed dataset. The biases
bc for CoP detectors were also computed on INRIA. For
experiments, we used 100 images for testing and eight for
validation. The parameters « = 0.4, =225 and ¢ = 300
were set on the validation set while overlap ratio was arbi-
trarily defined to w = 0.1. We used the same value of o for
quantitative evaluation as well, i.e., using 10 percent over-
lap. The method is robust to changes in MRF and Influence
Function parameters, with 50 percent change resulting in 1
percent drop in precision at 40 percent recall. However,
25 percent change in « and S results in almost 4 percent
drop in average precision.

4.1 Qualitative Results

Before we present quantitative results, we visualize the
improvements obtained by the three ideas presented in this
paper in Fig. 10. In this figure, green bounding boxes repre-
sent false negatives, black boxes show false positives, while
the colored (red to yellow) bounding boxes represent true
positives, where brighter colors signify greater overlap with
ground truth annotations. The first row shows the gain in
performance obtained using the proposed CoP detectors,
shown in Fig. 10b, over the full-body human detector,
shown in Fig. 10a. Results in both images are shown at
80 percent precision, thus, a higher recall means better per-
formance. The additional humans that were detected are
highlighted with yellow arrows. The second row shows the
improvement by using scale and confidence priors in addi-
tion to CoP detection. The bounding boxes corresponding
to heads are shown for clearer visualization. These images
also depict results at 80 percent precision, new detections
being highlighted by yellow arrows. The third row presents
some results of improvement using Global Occlusion Rea-
soning in addition to CoP detectors and priors. The bound-
ing boxes in the Fig. 10f have much less overlap with each
other than those in Fig. 10e. Again, the yellow arrows high-
light the improvements—the locations where the occlusion
reasoning improved the quality of bounding boxes, the
yellow-in-red arrows show the false positives which were
removed as a result of reasoning, while red arrows shows a
failure case where bounding box became worse. Still, the
improvements outnumber the deteriorations, and thus lead-
ing to an overall increase in accuracy as suggested by quan-
titative analysis presented in the next section. Final results
on three complete images are shown in Fig. 13.
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Fig. 10. This figure visualizes the improvements using the three aspects of the proposed approach. Green boxes show false alarms, black represent
false positives, while colors in the red to yellow range represent correct detections. In the first row, we show the improvement obtained by using
combinations-of-parts detection. Results in both images are shown at the same precision, thus, a higher recall means better performance (shown
with yellow arrows). The second row shows gain in performance obtained by using priors in addition to CoP detection. For clarity, only bounding
boxes for heads are drawn. Similarly, the last row shows the results of Global Occlusion Reasoning. Yellow arrows indicate improved boxes, yellow-
in-red arrows highlight false positives that were removed, while red arrow shows a box that worsened after GOR.

4.2 Quantitative Results

Fig. 11 shows quantitative results of the proposed method
evaluated with human bounding boxes using Precision vs.
Recall, Miss Rate vs. false positives per image (FPPI), and
Multiple Object Detection Precision or MODP. For the first
two, we used an overlap of 10 percent, whereas MODP has
overlap threshold as the x-axis obtained at 35 percent recall.
The first two graphs show that on average, each module of
proposed approach improves the performance, with scale
and confidence priors and CoP detectors being equally cru-
cial to increase in performance. On the other hand, MODP
measures the quality of bounding boxes irrespective of false
positives and negatives. The improvement from LatSVMv4
to CoP detectors in terms of MODP is obvious as it is able to
pick up occluded humans while incurring fewer false posi-
tives. The improvement from CoP detectors to priors is due
to change in proportion of true positives to false positives.
Since priors reduce the hypotheses space, it reduces the rel-
ative number of false positives, which typically occur at ran-
dom scales and may overlap with annotations. Similarly,

since we used exactly the same bounding boxes for occlu-
sion reasoning as were made available after priors,
improved MODP suggests that occlusion reasoning results
in better localization of detections.

4.3 Density-Based Analysis

To test the robustness and contributions of the three
aspects of our method with respect to size of crowd, we
performed a density-based analysis in Fig. 12. Here, we
simplify the notion of density which refers to the number
of humans per image rather than number of people per
unit area in real world which is difficult to ascertain.
Thus, we sorted the images according to number of anno-
tations, and divided them into four groups: low, medium,
high and extreme. In Fig. 12, the first row shows repre-
sentative images with median counts for each density
group. The number of images and some statistics on the
number of humans in each group is presented below the
median images. Finally, the precision-recall curves are
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Fig. 11. These graphs show the quantitative results highlighting the contributions of the three different aspects of the proposed approach. Curves in
violet-blue show the results of LatSVMv4 [18] (baseline), blue represents CoP detection, orange depicts improvements from priors, whereas red

highlights the improvements from Global Occlusion Reasoning.

shown at the bottom of the figure. The curves offer
important observations with respect to the three modules.
The performance of CoP detection improves with increas-
ing density, simply because humans in high-density
undergo more occlusions. The scale and confidence priors
give consistent improvement upon CoP detectors across
all densities, which is around 15 percent. This means that
scale and context is important at all densities. However,
occlusion reasoning does not improve at extreme densi-
ties, which may be due to the bias of CoP detectors
towards combinations with fewer parts for this density.
Occlusion reasoning for this group only results in tighter
boxes, not affecting the overlap with the predominantly
small boxes in annotation, and thus, is not likely to show
a noticeable improvement in precision.

4.4 Comparison

We compared the output of the proposed method to several
other human detectors. We used the available pre-trained
codes provided by the authors. Many work reasonably well
in low to high density, but their performance deteriorates

on extremely dense images due to severe occlusion. The
comparison is shown in Fig. 14 which also shows the Mean
Average Precisions along with abbreviated titles.

We used LatSVMv4 [18] as our underlying detection
module trained on INRIA person dataset. There are several
methods which outperform [18] on this dataset, but still, the
proposed approach is able to perform better than all of the
other methods. From Fig. 14, we see that at 35 percent recall,
the difference between the precisions of proposed and state-
of-the-art methods is almost 15 percent. We believe using
CN-HOG [26], which is also based on LatSVM, as underly-
ing detection module will further improve the performance
of our approach.

Furthermore, it is important to realize that the recall of
proposed method is upper-bounded by that of CoP detec-
tion, which in turn is dependent on the underlying human
detector (LatSVMv4 in our case). It is simply not possible to
obtain more detections through the priors or occlusion rea-
soning than the underlying detection mechanism employed.
For this dataset, recall curve hits the asymptote at around
50 percent which is low. Although this is due to the challeng-
ing nature of this dataset, we believe in order to obtain better
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Fig. 12. Density-based analysis: The evaluation on four different densities - low, medium, high and extreme. This figure shows the median image
from each density, some statistics on the number of humans, followed by precision-recall curves for LatSVMv4 (baseline), CoP detection, scale and
confidence priors and global occlusion reasoning. The addition in # images differentiates images in test and validation set.
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Fig. 13. In this figure, white bounding boxes signify true detections (TP), black boxes indicate false alarms (FP), while green represents miss-
detections (FN). In (a), the crowd is sparse with humans inclined at an angle due to camera position. In (b), the humans appear in varied poses,
whereas (c) is characterized by severe occlusions. The proposed approach gives excellent results for all three scenarios.

performance for human detection in dense crowds, future
research must be directed at improving CoP detectors.

4.5 Failure Cases

Due to crowded and challenging nature of the dataset, there
are several failure cases. First, we highlight two cases where
human or CoP detection is difficult. The first is related to

low resolution. Fig. 15a shows a small patch which is
1/400th the size of original image. Humans in this region
become extremely blurred resulting in weak edges and
deteriorated HOG-based detection, however the patches are
still annotatable by humans. The human size also becomes
small, causing issues for DPM as it has a lower limit on
detectable part size at 23 x 23 pixels. The camera position

Method AP
Cq 13.08
CHNFTRS 21.86
CN-HOG 33.62

o Y CTF 6.92
:% = FFLD 31.47
g 2 FPDW 21.6
R = HIKSVM 26.69
= el HOGLBP 14.42

| ? E';Fm MPD 32.1

i LatSVMyy ]DN 2571
| L Propoced LatSVMvy4 31.04

0.05 01 015 0.2 0.25 0.3 035 0.4 Proposed 37.2

Recall

Fig. 14. This figure shows the comparison of proposed method (red) with several other human detection methods. The methods (training dataset)
include C4 (INRIA) [47], CHNFTRS (INRIA) [13], CN-HOG (PASCAL VOC 07,09 & Cartoon) [26], CTF (INRIA, PASCAL VOC 07) [35], FFLD
(PASCAL VOC 07) [16], FPDW (INRIA) [12], HIKSVM (INRIA, Daimler-Chrysler) [29], HOGLBP (INRIA) [43], MPD (Extended INRIA) [33], JDN
(Caltech, ETH) [32] in addition to LatSVMv4 (INRIA) [18]. The proposed method (INRIA) outperforms all methods on both measures despite using
an underlying detector [18] with lower performance than comparison methods.
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Fig. 15. Failure Cases: (a) Blurring due to large distance from the camera
in addition to small size due to perspective effects. (b) Camera position
relative to humans in the scene may result in large number of occlusions
where even the heads are partially occluded. (c) Hypersensitivity
introduced due to priors caused by large number of high confidence
detections in a low density region. (d) High-confidence false positives at
the boundary of crowd may results in incorrect initialization of priors. In (c)
and (d), true positives are shown with white, while false positives are
shown in black.

relative to human height is also important, for instance, in
Fig. 15b, even the heads are partially occluded resulting in
poor initial detections by the CoP detectors. The solution is
to have detectors that are robust to even partial occlusions
of parts. Figs. 15c, and 15d show failure cases specific to
scale and confidence priors. When we have high-confidence
detections in first iteration of prior discovery in a region
that has fewer humans per unit area, it sometimes makes
the method hypersensitive to detection hypotheses occur-
ring at the desired scale in neighboring areas. This is shown
with red arrows in Fig. 15c. Similarly, high confidence non-
human detections at early iterations also degrade the scale
prior by providing incorrect scale information, thereby
resulting in more miss-detections in their surroundings, as
can be seen with the balloons in Fig. 15d.

5 CONCLUSION AND FUTURE WORK

In this paper, we showed that context, employed in the form
of locally-consistent scale and the associated confidence pri-
ors, is helpful in improving human detection in dense
crowds. Furthermore, we presented an Integer Program-
ming formulation to the task of occlusion reasoning which
improves localization of detections. And to detect partially
visible humans, we proposed combinations-of-parts detec-
tion using different configurations of parts of a complete
human. We evaluated our approach using a new set of diffi-
cult images, and showed that each aspect is important for
detecting humans in dense crowds. Although modularity
has its own advantages, it would be an interesting direction
to combine all three ideas into one simultaneous solution
that also bypasses any post-processing. But, perhaps the
most important area of improvement is in human detection
itself, where any improvement in the underlying human
detector will translate to better performance in dense
crowds using the proposed approach. Still this is a new and
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challenging direction that will have far-reaching consequen-
ces to all applications of visual crowd analysis especially
safety and surveillance.

ACKNOWLEDGMENTS

This material was based upon work supported in part by,
the U.S. Army Research Laboratory, the U.S. Army Research
Office under contract/grant number W911NF-09-1-0255.
Haroon Idrees is the corresponding author.

REFERENCES

[1] A history of hajj tragedies. (2006). The Guardian [Online]. Avail-
able: http://www.guardian.co.uk/world /2006 /jan/13/
saudiarabia

[2] I Ali and M. N. Dailey, “Head plane estimation improves the
accuracy of pedestrian tracking in dense crowds,” in Proc. 8th Int.
Conf. Control Autom. Robot. Vis., 2010, pp. 2054-2059.

[3] S. Ali and M. Shah, “Floor fields for tracking in high density
crowd scenes,” in Proc. 10th Eur. Conf. Comput. Vis., 2008, pp. 1-14.

[4] C. Arteta, V. Lempitsky, ]. A. Noble, and A. Zisserman, “Learning
to detect partially overlapping instances,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2013, pp. 3230-3237.

[5] T.E.Board. (2013, Apr. 15). Bombs at the marathon. The New York
Times [Online]. Available: http://www.nytimes.com/2013/04/
16/opinion/bombs-at-the-boston-marathon. html?
ref=bostonmarathon

[6] P. Carbonetto, N. Freitas, and K. Barnard, “A statistical model for
general contextual object recognition,” in Proc. 8th Eur. Conf.
Comput. Vis., 2004, pp. 350-362.

[7] A.B. Chan, Z.-S. Liang, and N. Vasconcelos, “Privacy preserving
crowd monitoring: Counting people without people models or
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2008,
pp- 1-7.

[8] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proc. 10th Eur. Conf. Comput. Vis., 2005,
pp- 886-893.

[9] C. Desai, D. Ramanan, and C. Fowlkes, “Discriminative models
for multi-class object layout,” Int. . Comput. Vis., vol. 95, no. 1,
pp- 1-12,2011.

[10] Y. Ding and J. Xiao, “Contextual boost for pedestrian detection,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 2895—
2902.

[11] S. Divvala, D. Hoiem, J. Hays, A. Efros, and M. Hebert, “An
empirical study of context in object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2009, pp. 1271-1278.

[12] P. Dollar, S. Belongie, and P. Perona, “The fastest pedestrian
detector in the west,” in Proc. Brit. Mach. Vis. Conf., 2010, pp. 1-68.

[13] P. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral channel
features,” in Proc. Brit. Mach. Vis. Conf., 2009, pp. 1-91.

[14] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detec-
tion: An evaluation of the state of the art,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 34, no. 4, pp. 743-761, Apr. 2012.

[15] G. Duan, H. Ai, and S. Lao, “A structural filter approach to
human detection,” in Proc. 10th Eur. Conf. Comput. Vis., 2010,
pp- 238-251.

[16] C. Dubout and F. Fleuret, “Exact acceleration of linear object
detectors,” in Proc. 11th Eur. Conf. Comput. Vis., 2012, pp. 238-251.

[17] M. Enzweiler, A. Eigenstetter, B. Schiele, and D. Gavrila, “Multi-
cue pedestrian classification with partial occlusion handling,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2010, pp. 990—
997.

[18] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based mod-
els,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627-
1645, Sep. 2010.

[19] P. Felzenszwalb and D. Huttenlocher, “Efficient belief propaga-
tion for early vision,” Int. |. Comput. Vis., vol. 70, no. 1, pp. 41-54,
2006.

[20] M. Fink and P. Perona, “Mutual boosting for contextual
inference,” in Proc. Adv. Neural Inf. Process. Syst., 2003, pp. 1515
1522.

[21] W. Ge and R. Collins, “Crowd detection with a multiview
sampler,” in Proc. 11th Eur. Conf. Comput. Vis., 2010, pp. 324-337.



1998

[22] D. Geronimo, A. Lopez, A. Sappa, and T. Graf, “Survey of pedes-
trian detection for advanced driver assistance systems,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 32, no. 7, pp. 1239-1258,
Jul. 2010.

D. Helbing and P. Mukerji, “Crowd disasters as systemic failures:
Analysis of the love parade disaster,” EP] Data Sci., vol. 1, no. 1,
pp. 140, 2012.

D. Hoiem, A. Efros, and M. Hebert, “Putting objects in
perspective,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2006, pp. 2137-2144.

H. Idrees, I. Saleemi, C. Seibert, and M. Shah, “Multi-source multi-
scale counting in extremely dense crowd images,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2013, pp. 2547-2554.

F. Khan, R. Anwer, J. Weijer, A. Bagdanov, M. Vanrell, and A.
Lopez, “Color attributes for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2012, pp. 3306-3313.

D. Kong, D. Gray, and H. Tao, “A viewpoint invariant approach
for crowd counting,” in Proc. 18th IEEE Int. Conf. Pattern Recog.,
2006, pp- 1187-1190.

L. Kratz and K. Nishino, “Tracking pedestrians using local spatio-
temporal motion patterns in extremely crowded scenes,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 5, pp. 987-1002, May.
2012.

S. Maji, A. Berg, and J. Malik, “Classification using intersection
kernel support vector machines is efficient,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2008, pp. 1-8.

K. Mikolajczyk, C. Schmid, and A. Zisserman, “Human detection
based on a probabilistic assembly of robust part detectors,”
in Proc. 8th Eur. Conf. Comput. Vis., 2004, pp. 69-81.

W. Ouyang and X. Wang, “A discriminative deep model for
pedestrian detection with occlusion handling,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2012, pp. 3258-3265.

W. Ouyang and X. Wang, “Joint deep learning for pedestrian
detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 2056—
2063.

W. Ouyang and X. Wang, “Single-pedestrian detection aided by
multi-pedestrian detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2013, pp. 3198-3205.

D. Park, D. Ramanan, and C. Fowlkes, “Multiresolution models
for object detection,” in Proc. 11th Eur. Conf. Comput. Vis., 2010,
pp. 241-254.

M. Pedersoli, A. Vedaldi, and ]J. Gonzalez, “A coarse-to-fine
approach for fast deformable object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2011, pp. 1353-1360.

D. Ramanan, “Using segmentation to verify object hypotheses,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2007, pp. 1-8.

M. Rodriguez, S. Ali, and T. Kanade, “Tracking in unstructured
crowded scenes,” in Proc. IEEE Int. Conf. Comput. Vis., 2009,
pp- 1389-1396.

M. Rodriguez, I. Laptev, ]. Sivic, and J. Audibert, “Density-aware
person detection and tracking in crowds,” in Proc. IEEE Int. Conf.
Comput. Vis., 2011, pp. 2423-2430.

M. Rodriguez, J. Sivic, I. Laptev, and J. Audibert, “Data-driven
crowd analysis in videos,” in Proc. IEEE Int. Conf. Comput. Vis.,
2011, pp. 1235-1242.

W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis, “Human
detection using partial least squares analysis,” in Proc. 12th IEEE
Int. Conf. Comput. Vis., 2009, pp. 24-31.

J. Silveira, J. Junior, S. Musse, and C. Jung, “Crowd analysis using
computer vision techniques,” IEEE Signal Process. Mag., vol. 27,
no. 5, pp. 6677, Sep. 2010.

A. Torralba, “Contextual priming for object detection,” Int. J.
Comput. Vis., vol. 53, no. 2, pp. 169-191, 2003.

X. Wang, T. Han, and S. Yan, “An hog-lbp human detector with
partial occlusion handling,” in Proc. 12th IEEE Int. Conf. Comput.
Vis., 2009, pp. 32-39.

Y. Wang, D. Tran, and Z. Liao, “Learning hierarchical poselets for
human parsing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2011, pp. 1705-1712.

L. Wolf and S. Bileschi, “A critical view of context,” Int. |. Comput.
Vis., vol. 69, no. 2, pp. 251-261, 2006.

B. Wu and R. Nevatia, “Detection of multiple, partially occluded
humans in a single image by Bayesian combination of edgelet
part detectors,” in Proc. 10th IEEE Int. Conf. Comput. Vis., 2005,
pp- 90-97.

J. Wu, C. Geyer, and J. Rehg, “Real-time human detection using
contour cues,” in Proc. Int. Conf. Robot. Autom., 2011, pp. 860-867.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.10, OCTOBER 2015

[48] J. Yan, Z. Lei, D. Yi, and S. Li, “Multi-pedestrian detection in
crowded scenes: A global view,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2012, pp. 3124-3129.

B. Zhan, D. Monekosso, P. Remagnino, S. Velastin, and L. Xu,
“Crowd analysis: A survey,” Mach. Vis. Appl., vol. 19, nos. 5/6,
pp. 345-357, 2008.

X. Zhao, D. Gong, and G. Medioni, “Tracking using motion pat-
terns for very crowded scenes,” in Proc. 12th Eur. Conf. Comput.

Vis., 2012, pp. 315-328.
Ny
‘ ‘, i ECCV, Journal of Image and Vision Computing,
and /EEE Transactions on Pattern Analysis and
Machine Intelligence. His research interests include crowd analysis,
object detection, visual tracking, multi-camera and airborne surveillance,
and multimedia content analysis. He is a member of the IEEE.

[49]

[50]

Haroon Idrees received the BSc (Honors)
degree in computer engineering from the Lahore
University of Management Sciences, Pakistan, in
2007, and the PhD degree in computer science
from the University of Central Florida in 2014. He
is a postdoctoral associate at the Center for
Research in Computer Vision at the University of
Central Florida. He has published several papers
in conferences and journals such as CVPR,

Khurram Soomro received the BSc (Honors)
and MSc degrees in computer engineering from
the Lahore University of Management Sciences,
Pakistan, in 2007 and 2011, respectively. He
joined the Center for Research in Computer
Vision, University of Central Florida in 2011,
where he is currently working toward the PhD
degree in computer vision. His research interests
include action recognition and localization,
human detection, visual surveillance and track-
ing, and sports analytics. He is a member of the
IEEE and Upsilon Pi Epsilon (UPE) Honor Society.

Mubarak Shah is the trustee chair professor of
computer science and the founding director of the
Center for Research in Computer Vision at the
University of Central Florida (UCF). He is an editor
of an international book series on video comput-
ing, editor-in-chief of Machine Vision and Applica-
tions Journal, and an associate editor of ACM
Computing Surveys Journal. He was the program
cochair of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) in 2008,
an associate editor of the IEEE Transactions on
Pattern Analysis and Machine Intelligence, and a guest editor of the spe-
cial issue of the International Journal of Computer Vision on Video Com-
puting. His research interests include video surveillance, visual tracking,
human activity recognition, visual analysis of crowded scenes, video reg-
istration, UAV video analysis, and so on. He is an ACM distinguished
speaker. He was an IEEE distinguished visitor speaker for 1997-2000
and received the IEEE Outstanding Engineering Educator Award in 1997.
In 2006, he was awarded a Pegasus Professor Award, the highest award
at UCF. He received the Harris Corporation’s Engineering Achievement
Award in 1999, TOKTEN Awards from UNDP in 1995, 1997, and 2000,
Teaching Incentive Program Award in 1995 and 2003, Research Incen-
tive Award in 2003 and 2009, Millionaires Club Awards in 2005 and 2006,
University Distinguished Researcher Award in 2007, Honorable mention
for the ICCV 2005 Where Am 1? Challenge Problem, and was nominated
for the Best Paper Award at the ACM Multimedia Conference in 2005. He
is afellow of the IEEE, AAAS, IAPR, and SPIE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


