
WHERE WAS THE PICTURE TAKEN: IMAGE LOCALIZATION IN ROUTE PANORAMAS
USING EPIPOLAR GEOMETRY

Saad M. Khan, Fahd Rafi, Mubarak Shah

Department of Computer Science, University of Central Florida, USA

ABSTRACT

Finding the location where a picture was taken is an impor-
tant problem for a variety of applications including survey-
ing, interactive traveling and homeland security among oth-
ers. The task becomes intractable though when the area un-
der investigation reaches city/town size. The amount of data
(pictures/videos) required to visually map a city, comprehen-
sively, can be exhaustive for most search algorithms. In this
paper we propose a novel method to effectively tackle this
problem. The area is visually mapped as route panoramas
that provide a compact yet comprehensive representation of
the buildings and landmarks in the area. Given a query im-
age taken at an arbitrary location in the area, we show that
we can accurately recover the location of the camera by find-
ing it’s epipole in the route panorama of the scene. To this
end we show that there exists a fundamental matrix between
a route panorama and a perspective image of the same scene.
The fundamental matrix is calculated using feature matches
as correspondences between the query image and the route
panorama.

1. INTRODUCTION

In this paper we address the problem of automatically locating
the spot, in a large area like a city, where a picture was taken.
For example if a person takes a picture with his/her cell phone
in an outdoor setting, using only the image information, we
would like to automatically determine the location where the
picture was taken. The central hypothesis is that every lo-
cation in a large area like a town or a city is distinguished
by its peculiar landmarks and features. This is usually how
people ascertain where a picture was taken by recalling the
landmarks and features of the buildings present in the picture.
Nevertheless it is a tough task for even humans and usually
takes many years of exploring and repetitive viewing to con-
fidently ‘know’ a city.
This problem is of particular interest in the fields of surveying
large areas, interactive traveling and homeland security oper-
ations like analyzing spy photos. The first task is to build a
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comprehensive database of images taken at locations distrib-
uted over the entire area. In the case of areas the size of cities,
the amount of data necessary to visually map is prohibitively
large. There is the added problem of redundancy in the col-
lected data due to overlapping views of the same scene. These
problems compound the difficulties faced in visual recall and
can render the task intractable.
An efficient way of visually mapping large areas is to use
route panoramas [1]. A route panorama is essentially a mo-
saic of the scene, created as the camera moves along a route.
While making route panoramas we keep a track of which
panorama corresponds to which section of the city. Given a
picture taken at any arbitrary spot, visual recall is done by
performing feature matching between the given image and
the database of route panoramas. SIFT features [2] can be
used for this purpose as these are invariant across a substan-
tial range of affine distortion.
To verify the correctness of the matches, and to reliably lo-
calize the position where the query image was taken we in-
troduce a geometrical constraint. We show that there existsa
fundamental matrix between a route panorama and a normal
perspective image of the same scene much like the fundamen-
tal matrix constraint between two stereo perspective images.
Using feature matches as correspondences we calculate the
fundamental matrix that gives us the epipole of the query im-
age in the best matching route panorama. The epipole is the
projection in the route panorama of the query image’s camera
center and provides a reliable estimate of the location where
the query image was taken. On large scales like a city, this
estimate is reasonably precise.
The remainder of this paper is organized as follows. In sec-
tion 2 we describe route panoramas in detail and justify their
selection as a medium ideally suited for our problem. Section
3 discusses our feature matching strategy. In section 4 we de-
rive the fundamental matrix constraint and how the epipole
can be determined. In section 5 we present our algorithm and
in section 6 we analyze the experimental results. The paper is
concluded in section 7.

2. ROUTE PANORAMA

A route panorama is synonymous to an image belt. It is a
single panoramic view of the entire scene along a route. To



Fig. 1. An example route panorama. The ortho-perspective projection means closer objects like cars, trees and poles get
squeezed in, while important landmarks, like buildings that are further away are adequately captured.

create a route panorama the first step is to scan scenes con-
tinuously with a camera. For each frame only a vertical pixel
line at a fixed position is considered, the rest is discarded.Fi-
nally by pasting these consecutive slit views together to form
a long, seamless 2D image belt a route panorama is created
[1]. This viewing scheme is an ortho-perspective projection
of scenes: orthogonal toward the camera path and perspective
along the vertical direction. Through the coarse of this paper
the terms route panorama and ortho-perspective image will be
used interchangeably.
Compared with other approaches to model a route using graph-
ics models [3] route panoramas have an advantage in cap-
turing scenes. They don’t require taking discrete images by
manual operation or texture mapping onto geometric mod-
els. A route panorama can be ready after driving in town
for a while with a camera mounted on the vehicle. It yields
a continuous image scroll that with other image stitching or
mosaic approaches, [4] in principle, is impossible to realize
due to changes in depth. A route panorama requires only a
small fraction of data compared to a video sequence. If we
pile a sequence of video frames along the time axis, into a
spatio-temporal volume. The route panorama comprises pixel
lines in consecutive image frames, which correspond to a 2D
data sheet in the spatiotemporal volume. Ideally, if the im-
age frame has a widthw (in pixels), a route panorama only
has 1/w of the data size of the entire video sequence. Route
panoramas neglect redundant scenes in the consecutive video
frames. The missing scenes are objects under occlusion when
exposed to the slit. For an in-depth analysis of these and other
properties of route panoramas the interested reader is directed
to the paper by Zheng et al [1].
The capability of route panoramas to comprehensively repre-
sent large outdoor environments in a compact and continuous
manner, makes them an ideal medium to visually map and
index large areas like a town or a city. While creating route
panoramas we keep a track of which panorama corresponds
to which section of the city. This could be achieved by anno-
tating route panoramas with the street or road names that they
capture or by using GPS data if available. Figure 1 shows an
example route panorama from our experiments. Once a large
area has been mapped with route panoramas the next task is
to visually index the data by its distinguishing features and
landmarks. This process is similar to the human cognitive
process wherein a familiar building or location is recalledby
its peculiar features and markings.

3. FEATURE MATCHING

Scale Invariant Feature Transform (SIFT) features [2] can be
used to perform reliable matching between different views of
an object or scene. The features are invariant to image scale
and rotation, and provide robust matching across a a substan-
tial range of affine distortion, change in 3D viewpoint, ad-
dition of noise, and change in illumination. The features are
highly distinctive, in the sense that a single feature can becor-
rectly matched with high probability against a large database
of features from many images.
For image matching and recognition, SIFT features are ex-
tracted from the query image and the route panorama. Can-
didate matches are found based on the Euclidean distance be-
tween their feature vectors. The descriptors used in SIFT are
highly distinctive, which allows a single feature to find its
correct match with good probability in a large database of fea-
tures. The matches obtained from this step are used as corre-
spondences, to calculate the fundamental matrix that encapsu-
lates the geometrical relationship between a route panorama
and a normal perspective image of the same scene.

4. FUNDAMENTAL MATRIX FOR LOCALIZATION

The problem of determining the relative camera placement
of two or more pinhole cameras and consequent determina-
tion of pinhole cameras has been extensively considered [5,
7]. If {(ui, u

′

i
)} is a set of match points in a stereo pair,F ,

the fundamental matrix is defined by the relationu′T

i
Fui =

0 for all i. A fundamental matrix was shown to exist be-
tween two ortho-perspective cameras (route panoramas)[6].
In this section we show that a similar relation exists between a
ortho-perspective image and a perspective image, i.e between
a route panorama and the image of the same scene taken with
a normal camera. Using this formulation we show that the
epipole of the query (perspective) image can be determined,
which gives a good estimate of where the picture was taken
with respect to the route panorama.
Consider a pointX = (x, y, z)T in space as viewed by an
ortho-perspective camera and perspective camera with cam-
era matricesM andM ′ respectively. Let the images of the
two points beu = (u, v)T andu′ = (u′, v′)T . This gives a
pair of equations:

(u, wv, w) = M(x, y, z, 1)T , (1)



Epipole

Fig. 2. The picture on the left is the query image, the one on the right is the matched route panorama. Features detected and
matched between the two images are marked with circles that are color coded (e.g the blue circle in the query image matches
the blue circle in the route panorama). The fundamental matrix is calculated with these matches. Mapping feature pointsfrom
the query image to the route panorama using the fundamental matrix creates epipolar hyperbolas that intersect at the epipole. It
can be seen that the epipole accurately determines where in the route panorama the query image was taken.

(w′u′, w′v′, w′) = M ′(x, y, z, 1)T . (2)

Note that the form of equation 1 means the camera projection
is perspective in the vertical direction but orthographic in the
horizontal direction. This pair of equations can be writtenin
the following form:
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(3)
The 6x6 matrix in (3) will be denotedA(M, M ′). Considered
as a set of linear equations in the variablesx, y, z, w, andw′

and constant one, this is a set of six homogeneous equations
in six unknowns (imagining one to be an unknown). If this
system is to have a solution, then detA(M, M ′) = 0. This
condition gives rise to an equationp(u, v, u′, v′) = 0, where
the coefficients ofp are determined by the entries ofM and
M ′. The polynomialp is called the fundamental polynomial
corresponding to the two cameras. Because of the particular
form of (3) there are no terms inu2, u′2, v2,, v′2 andu′v′in
the fundamental polynomial. Consequently, there exists a 4x3
matrixF such thatp(u, v, u′, v′) = 0 may be written:

(u, uv, v, 1)F (u′, v′, 1)T = 0. (4)

The matrixF will be called the fundamental matrix corre-
sponding to the ortho-perspective camera and the perspective
camera pairM, M ′. Matrix F is just a convenient way to dis-
play the coefficients of the fundamental polynomial. Since
the entries ofF depend only on the two camera matrices,
M andM ′, (4) must be satisfied by any pair of correspond-
ing image points(u, v) and (u′, v′). The same basic proof
method used above was used to prove the existence of the
fundamental matrix between two ortho-perspective cameras
[6] and for pinhole cameras [7]. It is seen that if eitherM

or M ′ is replaced by an equivalent matrix by multiplying the
last two rows by a constantc, then the effect is to multiply
detA(M, M ′), and hence the fundamental polynomialp and

matrix F by the same constantc. Consequently, the funda-
mental matrix is defined only upto a constant scale factor and
contains no more than 11 degrees of freedom. Given a set of
11 or more image-to-image correspondences obtained from
feature matching, a linear least squares solution to the matrix
F can be determined.
Outliers can now be removed by checking for agreement be-
tween each image feature and the model. If fewer than 11
points remain after discarding outliers, then the match is re-
jected. As outliers are discarded, the least-squares solution
is re-solved with the remaining points, and the process iter-
ated till convergence. The fundamental matrix obtained deter-
mine’s the epipole of the query image, which is the projection
of the query image’s camera center in the route panorama.
If we plug in values ofu′, v′ (from a match in the perspective
image) and the fundamental matrixF in equation 4 we obtain
the following form:

(u, uv, v, 1).(a, b, c, d)T = 0. (5)

This is an equation for a bilinear function with coefficients
a, b, c andd that is satisfied by coordinatesu, v. The plot of
this function is an hyperbola in the route panorama that passes
through the pixel(u, v). We call this theepipolar hyperbola.
The geometric interpretation of this process is to project aray
through the pixel(u′, v′) in the perspective image, the image
of this ray in the route panorama corresponds to the epipolar
hyperbola. A line moving in depth is projected as a hyperbola
in an ortho-perspective projection [1]. Taking several of these
hyperbolas corresponding to different matches in the query
image, we can find their point of intersection. This point is
where the rays are emanating i.e the epipole of the query im-
age. Figure 2 shows an example of the epipole formed by the
intersection of epipolar hyperbolas.
Assuming that the query images are not taken at locations far
off in depth from the path of the route panorama, the epipole
is a good approximate of the query image’s camera location
relative to the route panorama. Since we already know which
section of the city is mapped by the selected route panorama,
we can now tell where on a particular road or street the query
image was taken. On large scales like a city this is a reason-



ably precise solution.

5. ALGORITHM

As input to our algorithm we supply the database of route
panoramas and the query image.

Require: Route panorama images for city stored
for all Panorama imagesdo

Calculate feature matches of query image with panorama
image

end for
Select best matching panorama image and set of matches
M with the query image
while Convergence inM is not reacheddo

if |M | < 11 then
Discard matches and Exit

end if
Calculate least square solution for Fundamental Matrix
F using matches as correspondences u, v, u’ and v’ in
equation 4.
for all matchesi ∈ M do

Residue = mag([ui vi uivi 1] · F · [u′

i
v′

i
1]T )

if Residue > Threshold then
Prune out matchi And updateM

end if
end for

end while
Calculate Epipole pixel location usingF And Return

6. EXPERIMENTAL ANALYSIS

In order to evaluate the effectiveness of our method we com-
pared the accuracy of our results with ground truth data. For
each query image used in the evaluation we calculate its epi-
pole in the best matching panorama using our algorithm. The
ground truth projection of the query image’s camera center in
the route panorama is recorded while taking the picture and
making the route panorama. Recall that a route panorama
is an orthographic projection in the horizontal direction.If
we annotate route panoramas with distance information by
recording the distance from the start to the end of the route.
Then the horizontal distance (in pixels) between any two points
on a route panorama can be transformed into the world dis-
tance.
The error between the epipole and the ground truth projec-
tion of the camera center is transformed into world distance.
Figure 3 shows a plot of the error in epipole for query im-
ages taken at various distances from the route of the route
panorama. For distances between 2 and 80 meters the error
in epipole varies between 2 and 14 meters. There are several
sources of this error, including inaccuracies in feature match-
ing and camera perturbation in route panorama. However,
errors are within reasonable limits and on large scales likea
city, the results are accurate and precise enough.
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Fig. 3. A plot of error in the calculated query image location
at various distances from the path of the route panorama.

7. CONCLUSIONS

In this paper we have proposed a method of automatically
finding the location in a city where a picture is taken. We have
exploited the potential of route panoramas to create a compre-
hensive visual repositories of large areas. To find the location
of the spot where a query image is taken, we showed that there
exists a fundamental matrix that uniquely determines it’s epi-
pole in the route panorama of the same scene. The epipole of
the query image is a good estimate of it’s camera center loca-
tion with respect to the route panorama. If the route panora-
mas are annotated with data that links them to the appropriate
sections of the city, using the epipole we can reliably state
where the query image was taken. The applicability of our
method makes it useful for a wide range of applications from
surveillance to image based search.
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