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Abstract—In this paper, we address the issue of tracking moving objects in an

environment covered by multiple uncalibrated cameras with overlapping fields of

view, typical of most surveillance setups. In such a scenario, it is essential to

establish correspondence between tracks of the same object, seen in different

cameras, to recover complete information about the object. We call this the

problem of consistent labeling of objects when seen in multiple cameras. We

employ a novel approach of finding the limits of field of view (FOV) of each camera

as visible in the other cameras. We show that, if the FOV lines are known, it is

possible to disambiguate between multiple possibilities for correspondence. We

present a method to automatically recover these lines by observing motion in the

environment. Furthermore, once these lines are initialized, the homography

between the views can also be recovered. We present results on indoor and

outdoor sequences containing persons and vehicles.

Index Terms—Tracking, multiple cameras, multiperspective video, surveillance,

camera handoff, sensor fusion.
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1 INTRODUCTION

TRACKING moving objects is a key problem in computer vision. It is
important in a wide variety of applications, like surveillance,
human motion analysis, traffic monitoring, and man machine
interfaces. Tracking is essentially a correspondence problem;
correspondence needs to be established between entities (objects,
tokens) seen in the current image and those in the previous image.
Single-camera-multiple-object tracking [13], [15] is a problem that
has received considerable attention in computer vision literature.
Constraints are added to disambiguate cases in which objects are
in close proximity to each other. Such constraints exploit some
property of the objects before and after the ambiguous event
assuming that this property will be invariant; for example,
constant velocity assumptions, motion uniformity constraints,
object shape models, and color features.

Single camera tracking is limited in scope of its applications.
While suited for certain applications like kiosks and local environ-
ments, even simple surveillance applications demand the use of
multiple cameras. Multiple-camera-multiple-object tracking is used
in indoor and outdoor surveillance. Typical scenarios in wide use
include banks, convenience stores, airports, toll-plazas, and parking
lots. Even the simplest of these setups requires multiple cameras, for
two reasons: First, it is not possible for one camera to provide
adequate coverage of the environment because of limited field of
view (FOV). Second, it is desirable to have multiple cameras
observing critical areas, to provide robustness against occlusion.

Multiple-camera multiple-object tracking [8], [5] has not
received much attention in computer vision until very recently.
Most current surveillance applications still treat multiple cameras
as a set of single cameras; that is, there is no additional information
gained from multiple cameras. However, multiple cameras

provide us with a more complete history of a person’s actions in
an environment. To take advantage of additional cameras, it is
necessary to establish correspondence between different views.
Thus, we see a parallel between the traditional tracking problem in
a single camera and that in multiple cameras: Tracking in a single
camera is essentially a correspondence problem from frame to
frame over time. Tracking in multiple cameras, on the other hand,
is a correspondence problem between tracks of objects seen from
different viewpoints at the same time instant. We call this the
consistent-labeling in multiple cameras problem, i.e., all views of the
same object should be given the same label.

1.1 Related Work

Multiple camera tracking is a relatively new problem in computer
vision, but one that has gained increasing interest recently. The
papers on this topic can be organized by what types of features are
used, what is the matching strategy, and whether cameras are
calibrated or not. The recent papers addressing this problem can be
organized into three loose categories.

1.1.1 Feature Matching Approaches

The simplest scheme to establish consistent labeling may be to
match color or other features of objects being tracked in each
camera, to generate correspondence constraints. This matching
may be performed statistically in a Kalman Filter framework [16]
or using a Bayesian Network approach, as in [4]. In both cases, the
authors do not restrict themselves to a single type of features but
use a number of different features within the same framework.
They also use camera calibration information, to learn more about
the camera geometry and derive additional constraints. For
example, in [4], the features used are grouped into geometry-
based modalities and recognition-based modalities; the former
including epipolar geometry, homography, and landmark mod-
alities, the latter comprising of apparent height and color
modalities. In [2], only relative calibration between cameras is
used and the correspondence is established using a set of feature
points in a Bayesian probability framework. The intensity features
used are taken from the centerline of the upper body in each
projection to reduce the difference between perspectives. Geo-
metric features such as the height of the person are also used.

Color feature correspondence in multiple cameras is highly
unreliable and, therefore, researchers have attempted, in these
approaches, to make it more robust by statistical sampling and
through augmentation by other features, such as apparent height.
However, when the disparity is large, both in location and
orientation, feature matches are not reliable. After all, a person
may be wearing a shirt that has different colors on front and back.
The reliability of feature matching decreases with increasing
disparity and it is not uncommon, in fact, it is desirable, to have
surveillance cameras looking at an area from opposing directions.
Moreover, different cameras can have different intrinsic para-
meters as well as photometric properties like contrast, color-
balance, etc. Lighting variations also contribute to the same object
being seen with different colors in different cameras.

1.1.2 Approaches Based on 3D Information

If camera calibration and the 3D environment model are known,
consistent labeling can be established by projecting the location of
each 3D object in the world coordinate system, and establishing
equivalence between objects that project to the same location. This is
the approach taken in [9], where each camera is calibrated, and the
world is a known ground plane. Therefore, the location of any object
bounding-box in any camera can be found in 3D coordinates in the
world. Equivalence between views is established by linking views
that have similar projected 3D location. Ground plane homography
recovered from camera calibration is also used in [1], [14].

While this approach may be of benefit in controlled environ-
ments, like football stadiums for which it was developed, it is
difficult to have calibrated cameras and accurate environment maps
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in the general surveillance scenario. Moreover, it is desirable to have
a system that can be set up without expert intervention. We contend
that camera calibration is not necessary, and is indeed an “overkill”
for the consistent labeling problem. Most of the information needed
can be extracted by observing motion over a period of time.

1.1.3 Alignment Approaches

Alignment-based approaches rely on recovering the geometric
transformation between the cameras. Here, the correspondence
between tracks is not explicitly resolved, but, if the transformation
is recovered accurately, the tracks of the same object will overlap
each other when aligned by the computed transformation.

Recently, the authors in [3] have considered the problem from a
frame alignment point of view, extending the spatial image
alignment methods to incorporate time information also. The
result is complete alignment of camera sequences both, in time and
space, so that the same object in different cameras will map to the
same location. Of course, as is the case with spatial alignment, this
can only be done when disparity between cameras is small. In our
case, where the preferred camera arrangement is the one with large
disparity, such a scheme is unlikely to work.

A different approach is described in [11] that uses trajectory
information for alignment. The motion trajectories in different
cameras are randomly matched against one another and plane
homographies computed for each match. The correct homography
is the one that is statistically most frequent. Finer alignment is
achieved through global frame alignment. The method of trajectory
alignment, though, is expensive, for a large number of possible
alignments need to be computed. Nonetheless, this approach is
closest in terms of its input/output relationship to our work.

On a different note, [10], [12], [17] describe approaches that try
to establish time correspondences between nonoverlapping FOVs.
The idea there is not to completely cover the area of interest, but to
use the motion of the object, and the time taken by the object to
move from one camera to another to to establish correspondence.
Typical applications are cameras installed at intervals along a
corridor [10] or on a freeway [12]. Javed et al. [17] use the
observations of people or vehicles moving through nonoverlap-
ping cameras and jointly models object velocities, intercamera
travel times and locations, in a Parzen windows frame work to
automatically learn the intercamera correspondence probabilities.
A MAP approach is used to establish correspondence.

1.2 Our Approach

The luxury of calibrated cameras or environment models is not
available in most situations. We therefore tend to prefer approaches
that can discover a sufficient amount of information about the
environment to solve the consistent labeling problem. The approach
described in this paper does not need calibrated cameras. Since
tracks of objects are available in each camera using low-level
tracking (in single cameras), it is only necessary to establish just one
correspondence between the tracks of the same object. The ideal
place to establish this correspondence will be the instant when a new
view is seen because, then, all subsequent points in that trajectory
are automatically corresponded. Our system computes what we call
the Field of View Lines (FOV lines). These are essentially the edges
of the footprint of a camera as seen in other cameras. It is the
computation of these lines that helps us establish correspondence
between trajectories. It also allows us to compute, for each new view,
the set of cameras in which that object will be visible.

To solve the multiple-camera tracking problem, the single-
camera tracking problem needs to be solved first. For the purposes
of this paper, we assume that reasonably correct single-camera
tracking results are available through whatever method is preferred
by the user. Indeed, our results are based on low-level tracking done
by at least two different methods, to emphasize the independence of
our approach to single-camera tracking. If there are significant
errors in single-camera tracking, for example, due to occlusion, they
will be reflected in the multiple-camera tracking. However, many of

these errors can be corrected through integration of information
from additional cameras. This is because the errors (say occlusion)
might not happen simultaneously in all cameras viewing the object.

The rest of the paper is organized as follows: We first describe
the notion of FOV lines in the next section and describe how they
can be used to solve the consistent labeling problem. In Section 3,
the main issue of automatically finding the FOV lines is tackled.
We show that these lines can be initialized simply by observing
motion of people in the environment. Finally, we present results of
our experiments on various data sets in Section 4. Our test data sets
consist of indoor and outdoor environments, containing up to
three cameras and several people as well as vehicles.

2 FIELD OF VIEW LINES

We use the term “view-event” to denote an instant in time when an
object enters or leaves the field of view of a camera. Ambiguity in
labeling arises at the entry view-event, i.e., when an object enters
the FOV of a camera. Thus, the boundaries of the FOVs of cameras
are of special interest to us with regards to the consistent labeling
problem. In this section, we will formalize this notion and show
what information can be derived from knowledge about FOV.

We assume that the ground plane is visible in all cameras.1 We
also assume that all our sequences are already time-aligned and that
cameras have overlapping FOVs. That is, it is allowed for two
camera FOVs to not overlap with each other at all, as long as they are
linked with cameras in between. This is not a restrictive assumption;
if a person completely disappears from all the cameras and then
reappears in some camera, she will be treated as a new object.

We denote the image seen in the ith camera asCiðx; yÞ. The field of
view ofCi is a rectangular pyramid in space with its tip at the center
of projection of the camer, and with its four sides passing through the
lines x ¼ 0; x ¼ xmax; y ¼ 0; y ¼ ymax on the image plane. For nota-
tional simplicity, we defineS as the set of four lines defining the sides
of a camera image. We will use lower case s to denote an arbitrary
member of this set. The intersection of each planar side of this
rectangular pyramid with the ground plane marks the boundaries of
the footprint of the image. We call this a 3D FOV line.

A projection of this 3D FOV line marking the limit of the footprint
may be visible in another camera because of overlapping FOVs
(Fig. 1). IfLi;s is an FOV line in 3D, i.e., it marks the viewing limit ofCi

from side s, thenLi;sj is the FOV line (in 2D) of side s ofCi inCj. In this
section, we assume that these lines are known and show how they
can be used to solve the consistent labeling problem.
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1. In reality, the entire ground plane may not be visible, but the portions
of the limits of FOV of other cameras should be unoccluded.

Fig. 1. FOV lines and their projections: Two cameras and their footprints are
shown. The projection of boundaries of the footprint are also shown in the images
that will be observed in the two cameras.



2.1 Computing Visibility of Object in Other Cameras

We denote the kth object seen in Ci as Oi
k at any given time t. This

is the local label of the view of the object, returned by the single-
camera tracking module. Oi denotes the set of all objects visible in
Ci (for example, Oi ¼ fOi

1; O
i
3gmeans there are two objects in Ci at

the current time instant, locally labeled 1 and 3). The location of a
view is approximated by a single point, ðx; yÞ, given by bottom
center of its bounding box, i.e., ðxik; yikÞ ¼ }ðOi

kÞ, where }ð:Þ returns
the single point representing the location of the center of the
bottom of the bounding box of the object. The feet of the person
are chosen as a feature point because they represent the location
such that rays from different cameras passing through this point
will intersect at the same location on the ground plane (assuming
relatively vertical people in images).

The overall consistent labeling task is to establish equivalences of
the formOi

m $ Oj
n. If the FOV lines are known, each line,Li;sj , divides

the image into two parts, the one which is inside the projected FOV
and the other which is outside. The functionLi;sj ðx; yÞ returns greater
than 0 if the point ðx; yÞ lies on the side ofLi;sj that should visible inCi,
less than 0 if it should not be visible inCi, and equal to zero if it is on
the line.

Given this definition, we can determine whether the current
object, Oi

k, in Ci will be visible in another camera or not. Note that
all four FOV lines of each camera may not be visible in this camera;
in such cases, we will be constrained to only the set of lines of Cj

that are visible in Ci. Also, for shallow mounted cameras, it may be
reasonable to consider only two FOV lines. The set of cameras C in
which the current new view will be visible is given by

CiðkÞ ¼ fjjLj;si }ðOi
kÞ

ÿ �
> 0 8 fxjLj;xi 9 Cigg: ð1Þ

In case C ¼ � (empty set), the view at ðx0; y0Þ in Ci is that of a
new object that is not currently seen in any other camera. In cases
where C is not empty, at least one of the existing views must
correspond to the current view. The camera in which the
corresponding object will be found is a member of C.

2.2 Establishing Consistent Labeling: Finding the
Corresponding View

Once we know the set of cameras C in which the current object
should be visible, we can search for the correct match among the
objects seen in those cameras. This process is essentially of applying
the FOV constraint to all the objects:

FOV Constraint. If a new view of an object is seen in Ci such that it
has entered the image along side s, then the corresponding view
of the same object will be visible on the line Li;sj in Cj, provided
j 2 C. Moreover, the direction of motion of this corresponding
view will be such that the function Li;sj ðx0; y0Þ changes from
negative to positive.

Based on this constraint, we can make a short list of the
candidates for possible correspondence. In most situations, this
constraint is enough to disambiguate between possible matches and
to find the corresponding view of the same object. In that case, the
new view in Ci is given the same label as the corresponding view in
Cj. Practically, we implement this constraint as a minimum
distance measure between the possible candidate views Cj; j 2 S
and the line Li;sj .

Oi
m $ Oj0

n if arg min
p;j

DðLi;sj ; Oi
pÞ 8j 2 CiðmÞ; ð2Þ

where p is the label of objects in Cj and DðL;OÞ returns the
distance of an object O from a line L.

Fig. 2 clarifies the above discussion. In Fig. 2a, a person is
entering the scene but he is visible in only one of the three cameras.
In this case, the arrangement of FOV lines in the camera is such
that we will obtain jCj ¼ 1, where jCj is the cardinality of set C,
according to (1). This indicates that the current view is that of an
object not seen before and, therefore, will be given a unique label.
Figs. 2b, 2c, and 2d show another view-event in which a person

entering a camera (C2) along y ¼ 0 line. In this case, C ¼ f1; 3g. We
therefore label this person to have the same label as the person at
the minimum distance from L2;y¼0

1 and L2;y¼0
3 ((2)).

Until now, we have only considered view-events, which are not
“actual” entry/exits from the environment, but represent only
entry/exit in and out of the FOV of a camera. In contrast, there are
“real” entry/exit events, which will occur when an object comes into
the scene not from one of the sides of the FOV, but from somewhere
in the middle of the FOV. This might be so due to several reasons. A
person might appear from a door or from behind an object. Or an
existing group of objects might split to generate separate trajectories
(for example, a person emerging after parking a car). Such cases will
not be used in the initialization phase, where FOV lines are being
generated. However, during tracking, we need to not only identify
this situation, but also establish correspondence of this new
trajectory with existing trajectories in other cameras.

Once equivalences of the form Oi
m $ Oj

n between views of the
same object have been established using FOV lines, this one
correspondence essentially establishes a correspondence between
the entire tracks in the two views. To assimilate information from
different views, we find the transformation between the ground
plane in one camera to the other. This transformation can be easily
computed after a sufficient number of equivalent tracks are known
through the use of FOV lines. In our experiments, a simple affine
transformation was used, but a higher order transformation, such as
projective, can easily be substituted. For this work, only an
approximate transformation is needed, and we found affine to be
sufficient.

Once the homography is known, we can easily identify “real”
entry/exit events from the middle of the scene using the computed
homography. If a new track is observed which is initiated from the
middle of the scene, we map it into the other cameras in which it
should be visible and find the minimum distance from existing
tracks. If the new track matches one of the existing ones, then it is
given the same label, otherwise it is given a new label.

Thus, we may view this approach as an alternate way to
compute the correspondences and homography between cameras.
This method is simple compared to other approaches of comput-
ing homography, for example, [11]. In fact, it is interesting to note
that the search problem in [11] looks for the statistically most
common homography from random matches between tracks.
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Fig. 2. Example of consistent labeling in 3-camera environment: Two different
scenarios are shown here. The person in (a) has just entered the scene; it can be
seen from the marked lines on the ground plane that he is outside the FOV of all
other cameras. Therefore, he will be given a new label. The person in (b) is
entering C2, but from the marked FOV lines, it can be seen that he should also be
visible in C1 and C3. The images of C1 and C3 at the same time instant are shown
in (c) and (d), respectively. The person crossing the left FOV line of C2 at this
instant is the correct match and his label will be transferred to the new view in C2.
y ¼ 0 denotes the left FOV line and y ¼ ymax denotes the right FOV line.



Here, (assuming time alignment is available as in most real-time
systems), the search is done for statistically best lines and, thus,
over a much reduced space (as explained in the next section). In
case of high traffic during tracking, if more than one possible
match is found along the FOV line, the additional test of
consistency in location using homography will still disambiguate
wrong correspondences.

3 AUTOMATIC DETERMINATION OF FOV LINES

Determination of FOV lines is a trivial exercise if the camera intrinsic
and extrinsic parameters are known, and the equation of the ground
plane is available. The aim of this paper is to show that consistent
labeling can be established even without knowing this information.

Determining each FOV line, Li;sj , requires knowing at least two
correct correspondences between an object inCi along the side s and
the view of the same object inCj (Fig. 3). Therefore, determination of
FOV lines essentially requires solving this multiple-camera corre-
spondence problem. Approximate correspondences can be found
out by observing motion in the environment. Our strategy is to
evaluate every possible correspondence and pick the ones that are
known to be correct. Most consistent labeling scenarios are
ambiguous, but simple nonambiguous situations also occur fre-
quently. It is these unambiguous correspondences that we exploit;
while determining the FOV lines. The system starts with no
information about the lines in the beginning but after observing
activity for a period of time, it is able to discover the locations of
these lines. One way to initialize the system is to have only one
person walk around the environment. In this case, the correspon-
dences are trivially correct and, therefore, the lines can be found
easily. However, in practical situations, we need a realistic scheme
that can initialize the system even in the presence of several people.

When multiple people are in the scene and someone crosses the
FOV line, all persons in other cameras are picked as being candidates
for the projection of FOV line. False candidates are randomly spread
on both sides of the line, whereas the correct candidates are clustered
on a single line. Therefore, the correct correspondences will yield a
line in a single orientation, but the wrong correspondences will yield
lines in scattered orientations. We can then use the Hough transform
to find the best line in this case (Fig. 4).

Some additional details need to be worked out. This idea works
when the FOV line is visible in the other cameras. However, it is easy
to visualize a situation where one of the edges of the current camera
is not visible in some other camera. If this is the case, then all the
correspondences marked will be incorrect because the correct ones
will not even be visible. This may result in a wrong estimate of the
line via the Hough Transform, even though, given enough
observations, the confidence in the line found will be very low.

The problem we are faced with, therefore, is to reduce the
number of false correspondences in our system to generate lines.

Our approach to solve this problem is based on exploiting

additional information from all cameras simultaneously.

3.1 Visibility Constraint

We define the binary invisibility map in Ci with respect to Cj (V i
j ) as

the region of the image in Ci which is not visible in Cj. We can

recover some information about the invisibility map by observing

the motion of objects in the environment. Notice that the full

invisibility map contains essentially the same information as the

FOV lines (because the edges of the invisibility map are FOV lines).

However, complete information about the invisibility map is not

available during the initialization phase, although, based on each

track in the environment, we can recover some information.
As an example, consider a camera pair Ci and Cj such that only

one person is visible in Ci and nothing is visible in Cj. This means

that the location of the person in Ci is such that in the 3D world,

this location is not part of the footprint of Cj. Therefore, this

location is included in the invisibility map of Ci with respect to Cj.

In general, the following constraint needs to be satisfied for

inclusion of a point in the invisibility map V i
j :

Invisibility Map Generation: If jOi
tj ¼ 1 and jOj

t j ¼ 0, then

}ðOi
tÞ 2 V i

j .
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Fig. 3. (a) A person entering the FOV of C2 from the left yields a point on the line L2;y¼0
1 in the image taken from C1. (b) Another such correspondence yields the second

point. The two points are joined to find the line L2;y¼0
1 shown in (c).

Fig. 4. Using Hough transform to find the FOV Line: Two correspondences are
marked at the time instant shown (in white), only one of which is correct.
Combined with previous correspondences (in gray), the best line is computed.



In practice, we do not just add a single point representing the
object to the invisibility map, but we add several points around it in
the map, too.

The visibility constraint progressively reduces the number of
false correspondences that are encountered. The influence of this
constraint increases as more and more cases of sparse traffic within
the environment are observed.

Finally, we consider the issue of where this framework will
break down. If traffic is high and occlusion is frequent, it should
only affect the system in terms of longer time needed for
recovering the FOV lines. However, if the underlying single-
camera tracking system breaks down frequently, that may yield
poor performance of the multiple-camera system. In addition, we
have assumed the world to be planar and the feet to be visible. If
there are significant deviations from this assumption, then the
performance may break down. For example, if the system is being
used indoors in a cluttered environment such that furniture is
present at places where FOV line will pass, then the feet of the
person may not be visible (as the person entering the scene may be
partially occluded by the furniture). This framework will not work
well in such a case because in reality, we will not have the limits of
FOV as lines now, but rather as more complicated curves.

4 RESULTS

We have performed a series of experiments on standard as well as
home-grown sequences to test our approach. Our experiments
consist of indoor and outdoor scenes, containing multiple persons
and vehicles and covered by up to three cameras.

4.1 Indoor Environments with Three Cameras

In this set of experiments, we demonstrate that consistent labeling
can be established if FOV lines are recovered. These experiments
involved three cameras in a room, arranged to cover most of the
floor area. To track persons, we used a simple background
difference tracker. Each image was subtracted from a background
image and the result thresholded, to generate a binary mask of the
foreground objects. We performed noise cleaning heuristically, by
dilating and eroding the mask, eliminating very small components
and merging components likely to belong to the same person. To
deal with occluding cases, we incorporated constant-velocity-based
assumption in our tracker.

FOV lines were recovered by observing the motion of a person in
the environment. The Hough transform method for determining the
FOV lines works well with such sparse traffic as no false
correspondences are observed. All significant edge of field of view
lines were recovered from a short sequence of only about 40 seconds.
To show that FOV lines can be used for multiple camera tracking,
two persons entered the room, walked among the camera FOVs, and
exited. The single-camera tracking module tracked each view of

these persons separately and assigned a unique label to each track in
every camera. Overall, 10 different trajectories of these persons were
seen in the three cameras. Fig. 5a shows all the tracks. These are four
tracks in C1, four in C2, and two in C3. Our algorithm identified
eight view-events, where a new view of an existing person was
observed. In each of these situations, a person was seen entering a
new camera. The distance of all other persons from the FOV line of
that camera is used to find the previous view of the person. The
arrows in Fig. 5 show the equivalence relations determined by our
system. Once the equivalences are marked, the complete tracking
history of the person is recovered by linking all the tracks of the same
person together. The two different shades of gray in Fig. 5a show the
globally consistent labels of the two persons. It can be seen that all
view-events were handled correctly and the global tracking
information was consistent at all times.

We performed another experiment involving three persons in a
different environment. Fig. 5b shows the recovered relationships
between the 10 tracks seen in three cameras. In this case, our system
correctly identified that these 10 tracks actually represented three
different persons, with Person 1 entering in Camera 1, then moving to
Cameras 2 and 3 before exiting the room while seen by Camera 1, etc.

4.2 Experiments on Outdoor Sequences with Two
Cameras

To test the initialization process in a more complicated scenario, we
used sequences from a standard data set in our experiments (Data
set 1 from the PETS 2001 data sets). Here, we present the results for
an outdoor environment, with two cameras and multiple persons
and cars going through the environment. This data set consists of a
Training Sequence and a Testing Sequence for each camera. The
images were JPEG compressed and contained significant noise. We
reduced the size of image by half along each dimension and
convolved it with a low pass filter to reduce noise. Moving objects
were detected using a background subtraction method [7] that was
robust to local and global intensity changes. Detected objects were
tracked in single cameras using the algorithm described in [18]. The
algorithm was run on both sequences with the same parameters. The
trajectories obtained by establishing correspondences were pruned
to remove trajectories that did not move significantly throughout
their existence. These trajectories were obtained due to uncovered
background or due to motion of trees.

To run multiple camera tracking on the Test Sequence, we used
the Training Sequence to generate the FOV lines. Because of the short
length of the sequence, we removed additional false correspon-
dences by employing object classification constraint, where a vehicle
in one camera is not matched to a person in another. We did this
categorization manually for the Training Sequence. Some standard
method, for example [6], may be utilized here. There are 31 “key-
frames” in the Training sequence indicating a view-event. We used
the bounding boxes in these frames for the generation of the lines.

Due to the setup, only one FOV line of C1 (left) should be visible
in C2, and three FOV lines of C2 (left, right, and bottom) should be
visible in C1. However, out of the latter three lines, no interaction
actually happens on the right line of C2 in the Training Sequence
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Fig. 5. Results of consistent labeling: Tracks seen in each camera are linked to
each other through the consistent labeling approach. (a) and (b) show results on
two different sequences. Tracks of the same color denote the same object. There
are two objects with 10 tracks in (a) and three objects with 10 tracks in (b).

Fig. 6. FOV lines in PETS sequence: Two lines are found in C1 (left) and one in C2.
The third line in C1, marked in white is not recovered because of no view-events
along that line. The shaded areas show the regions that are outside the FOV of the
other camera.



and there is only one exit event of a group of people in Testing
Sequence. Since at least two correct correspondences are required
to establish a line, our system does not find this line; however, this
does not result in any degradation of results. The lines generated
are shown in Fig. 6. It should be noted that the lines are accurate
where correspondences take place. For example, the line in C2 is
correct along the road where all the interactions took place during
the experiments but deviates as we go away from this location. If
more traffic is observed at a different location later, the estimate
would automatically be improved.

Finally, to test different camera configurations, we tested the

initialization phase of our algorithm with another two camera

sequence (Fig. 7). In this case, there is a significant difference

between the obliquity and the zoom factor of the cameras. One

camera is looking at the environment from far above, while the other

is near the path of movement of people. In this case, all necessary

FOV lines were recovered from a sequence of 1,300 frames in which

several people passed through the environment.

5 CONCLUSION

We have described a framework to solve the consistent labeling

problem using uncalibrated cameras. We have presented a system

based on FOV lines of cameras to establish equivalences between

views of the same object as seen in different cameras. The process to

automatically find the FOV lines was outlined. These lines are used to

resolve the ambiguity between multiple tracks. This approach does

not require feature matching, which is difficult in widely separated

cameras. The whole approach is simple and fast. Results of

experiments with both indoor and outdoor sequences were

presented.
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Fig. 7. Two camera data set with widely separated views which are different in
obliquity and nearness to objects. Top row shows a typical image pair from the
scene. Bottom row shows the lines recovered.
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