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a b s t r a c t

Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology,

and these abnormalities are often analyzed non-invasively through high resolution computed tomography

(CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary

diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challeng-

ing. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed

to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual seg-

mentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree

segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation

method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover,

outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such

as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i)

a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially con-

strained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to

estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison

with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly avail-

able data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate

and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms iden-

tified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full

width at half maximum and phase congruency.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Airways are the air-conducting structures (bronchi and bronchi-

les) bringing air into and out of the lungs from sites of gas exchange

alveoli). These airways comprise a complex and highly variable set

f bifurcating structures having a tree-like configuration in the lungs.

irways are pathologically involved in various lung diseases. As ex-

mples, bronchiectasis is the dilation of airways (enlarged lumen), of-

en resulting from chronic infection (Bagci et al., 2012a), obstruction,

nd inflammation. Airway wall thickening can be associated with air-

ay narrowing, such as asthma and bronchitis. Tumors on airway

alls can also form obstructions (Hansell et al., 2008).

CT imaging provides in-vivo anatomical information of lung struc-

ures in a non-invasive manner, which enables a quantitative investi-
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ation of airway pathologies. In conventional clinical settings, assess-

ent of the airways is performed on CT slices at limited locations.

ue to the inherent complexity of airway structures and the resolu-

ion limitations of CT, manually tracing and analyzing airways is an

xtremely challenging task, taking more than 7 h of intensive work

er image (Sonka et al., 1996). Moreover, manual analysis suffers from

arge variability and low reproducibility especially for higher order

ranches. A precise method for segmentation of airways and an ac-

urate estimation of airway walls may facilitate better quantification

f airway pathologies, further enhancing the understanding of the

echanisms of disease progression.

Prior work: Many airway lumen segmentation approaches have

een proposed and subsequently investigated in the literature,

ncluding rule-based (Sonka et al., 1996), morphology-based (Aykac

t al., 2003), classification-based (Lo et al., 2010), etc. Among these

ethods, region growing (RG) is a widely used technique for identifi-

ation of the airways. However, a simple intensity based RG strategy

sually leaks into lung parenchyma often through blurred/broken

http://dx.doi.org/10.1016/j.media.2015.05.003
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boundaries at small airways. RG can be considered reliable when ana-

lyzing large airway branches, including trachea and principal bronchi,

however, the incorporation of higher level information is needed

to identify smaller airways without leakage. Many studies have

taken this approach recently. Alternatively, gray-scale morphological

reconstruction (Aykac et al., 2003) has been shown to be effective for

accurately identifying candidate airways on 2-D CT slices, but apart

from being limited to 2-D cross sections, it does not yield high sensi-

tivity when the airway is not perpendicular to the slice plane. Another

approach for a better airway identification strategy is based on the

enhancement of the tubular structures (i.e., vesselness filter) (Frangi

et al., 1998). Although this process can further help identify small

airway locations, it also yields unavoidable false positives over the

lung area. Most of the previous methods made use of single enhance-

ment only due to the challenge of combining the strength of different

enhancement strategies. A detailed review on those methods with

single enhancement as well as other computerized methods for

identification and analysis of airways can be found in (Pu et al., 2012).

Although comparison of the available methods in image segmenta-

tion literature is a challenging and subjective issue, recent attempts

for direct comparison of several methods using the same image sets

and reference standards make the direct comparison possible. Re-

garding airway extraction from CT scans, in particular, EXACT’09 (Lo

et al., 2012) airway extraction challenge provides an objective plat-

form for comparing airway extraction algorithms using a common

dataset and performance evaluation method. In our study, we also

use EXACT’09 challenge data for comparing our method with others.

Accurate measurement of airway wall dimensions has remained

a challenge in particular because the outer wall characterization is

often compromised by surrounding parenchyma and vessels. There

have been many attempts in the literature to accurately measure

airway structures and walls, we only explain the two most widely

applied techniques herein, full width at half maximum (FWHM)

(Amirav et al., 1993) and phase congruency (Estepar et al., 2006).

FWHM defines the wall boundary at the location where the intensity

is half the peak value. However, as shown in Reinhardt et al. (1997),

the measurement can be biased due to partial volume effect and CT

reconstruction algorithm. Furthermore, with the presence of adjacent

vessels, the FWHM criterion may leak to surrounding structures. Al-

gorithms have been proposed to improve the performance of FWHM,

such as modeling the point spread function (Reinhardt et al., 1997)

and applying elliptical correction (Saba et al., 2003). Phase congru-

ency (Estepar et al., 2006), on the other hand, was conceived as a

model-free alternative with edge locations identified by maximal lo-

cal phase coherency. This method is shown to be robust; however, it

is computationally intensive and accuracy for detection of small air-

ways is limited by resolution. Recently, an increasing number of algo-

rithms have begun to focus on 3-D methods that are potentially more

efficient and perform better in complex branching areas. For instance,

graph-based methods (Liu et al., 2013; Petersen et al., 2011) make

use of new voxel re-sampling techniques to extract non-intersecting

columns that are suitable for airway wall geometry. A 3-D active sur-

face evolution approach (Gu et al., 2013; Ortner et al., 2011) is uti-

lized to initialize a 3-D deformable model inside the airway, which

further evolves under predefined external and internal forces auto-

matically to reach the wall location. To assess the performance of the

wall segmentation methods, phantoms with known diameters were

often used. However, such phantoms usually fail to simulate the ap-

pearance of airways in a realistic manner with complex surroundings

of blood vessels and lung parenchyma. Alternatively, as a common

practice for segmentation evaluation, the performance of the wall

segmentation methods can be assessed with regard to the manual

references and compared with the basic FWHM method. In this paper,

not only we used publicly available EXACT’09 challenge data but we

also used reference standards which were manually obtained from

expert radiologists for evaluating our methods.
Fig. 1 illustrates the flowchart of our proposed scheme. First, we

egment the lumen area (Fig. 1B) of the airway from CT scans (Fig. 1A)

sing a novel multi-scale hybrid approach based on fuzzy connect-

dness (FC) (Udupa and Samarasekera, 1996) image segmentation.

he proposed method designs the FC machinery with a predefined

uzzy affinity relationship. This relationship is very versatile and con-

enient for combining multiple strategies to restrict the segmenta-

ion procedure to only airway regions and achieves high sensitivity

ith lower leakage. Once airway lumen is segmented, we extract

he tree skeleton from the binary image using a thinning algorithm

Ibanez et al., 2005) and refine the resulting skeleton using a graph-

ased dynamic programming method (Fig. 1C). Next, we apply two

ethods for airway wall estimation: a 3-D method based on con-

trained relative fuzzy connectedness (RFC) (Saha and Udupa, 2001)

hat is more efficient and better handles branching geometry, and a

-D method based on constrained random walk (RW) that suits better

ith current clinical practice. For RFC, a 3-D seeding scheme that de-

nes three surfaces: (i) inside lumen, (ii) within wall, and (iii) outside

all, is first applied for constraining 3-D RFC computation (Fig. 1D1).

hen RFC is performed using the three seed sets to determine the

irway wall region (Fig. 1E1). For RW, 2-D orthogonal samples are

rst generated along every branch of the airway skeleton (Fig. 1D2).

n the 2-D orthogonal images (Fig. 1E2), FWHM is first performed

o roughly identify the range of the lumen, the airway wall, and the

arenchyma (Fig. 1F2); an ellipse fitting process is then added to im-

rove estimation (Fig. 1G2). Seeds (Fig. 1H2) for the lumen, airway

all, and parenchyma are determined automatically to initiate ran-

om walk segmentation (Fig. 1I2).

Preliminary versions of the proposed methods were presented

t MICCAI 2013 (Xu et al., 2013a) and ISBI 2013 (Xu et al., 2013b).

o summarize our contributions, we have developed a framework

or accurate, robust, and fast airway quantification which includes

all thickness estimation as well as airway tree extraction (lumen).

or airway lumen segmentation, we combined the two enhance-

ent methods, i.e., gray-scale morphological reconstruction and

ulti-scale vesselness, for their effective intensity and object scale

odeling under the FC segmentation framework. We showed that

C is a remarkably suitable platform for combining strengths of

uch techniques, as also its effectiveness is verified through the

xperimental results. For airway wall segmentation, we provided

spatially constrained RW solution for pseudo 3-D analysis, and a

FC method in 3-D analysis, that successfully avoided leakages into

eighboring structures. In the next section, we present our proposed

ramework in detail.

. Methods

.1. Airway lumen segmentation

We design a novel fuzzy affinity relationship to tailor the FC seg-

entation (Udupa and Samarasekera, 1996) to airway regions by us-

ng multiple strategies in order to achieve high sensitivity and low

eakage. Fig. 2 illustrates the flowchart representation of the pro-

osed method of airway lumen segmentation. First, a seed is iden-

ified in the trachea automatically by 2-D Hough transform, then,

wo tubular structure enhancement techniques are performed on the

T images simultaneously: a gray-scale morphological reconstruction

Aykac et al., 2003) operation, and a vesselness (Frangi et al., 1998)

omputation. The two enhanced images are further passed together

ith the seed to the FC computation of the airway lumen. Our motiva-

ion for this combination within the FC framework is to help identify

he airway structures and provide continuity of the lumen boundary.

.1.1. Gray-scale morphological reconstruction

In pulmonary CT images, the airway can be regarded as the local

inima of intensity in a 2-D slice I that can be enhanced by applying
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Fig. 1. Flowchart of the airway lumen segmentation and wall estimation algorithms with (1) 3-D relative fuzzy connectedness and (2) 2-D random walk.
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Fig. 2. Flowchart of the airway lumen segmentation algorithm.
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gray-scale morphological reconstruction. Airways of different diame-

ters are handled using a range of morphological structuring elements

(SE) by successive dilation on the basis of SE as

Bn = B0 ⊕ B0 ⊕ · · · ⊕ B0, (1)

where B0 is the smallest four neighborhood binary SE, Bn is the n

times dilation result of B0, and ⊕ is the dilation operator.

A “marker image” (Aykac et al., 2003) is then constructed from the

original image slice I and SE Bn by a gray-scale closing operation • as

Jn
1 = I • Bn � (I ⊕ Bn) � Bn, (2)

where � is the erosion operator. Further, a recursive process is per-

formed on Jn
1

as Jn
k+1

= max(Jn
k

� B0, I) until no changes occur within

an iteration which results in the final gray-scale reconstructed image

Jn∞ for SE Bn.

In Jn∞, the local minima smaller than Bn are filled in with a value

proportional to the difference between max and min values within

the neighborhood Bn. Therefore, the difference image D = Jn∞ − I iden-

tifies potential airway locations and the process is completed by com-

bining maximum responses from different SEs.

2.1.2. Multi-scale vesselness enhancement

Vessel enhancement algorithms are often employed to improve

vascular structure identification and delineation. As shown (Frangi

et al., 1998), analyzing the second-order information (Hessian) of a

Gaussian convolved image provides local information of the struc-

ture. Specifically, eigenvalue decomposition is performed over the

Hessian matrix and the resulting ordered eigenvalues, i.e., (|λ1| ≤ |λ2|

≤ |λ3|), are examined. For voxels within vessels in particular, it is ex-

pected that λ is small, while the other two are large and of equal
1
ign that indicates whether the vessel is brighter or darker than back-

round. Explicitly, the vesselness can be formulated as

σ =
{

0, if λ2 > 0 or λ3 > 0;
(1 − e

− R2
A

2α2 )e
− R2

B
2β2 (1 − e

− S2

2γ 2 ), otherwise,
(3)

or a bright vessel on dark background, and RA = |λ2|/|λ3|, RB =
λ1|/|λ2λ3| and S =

√
λ2

1
+ λ2

2
+ λ2

3
. The vesselness measure above

s calculated at different scales (σ ), and the maximum response is

chieved at a scale that matches the size of the vessel. Therefore, by

sing a multi-scale approach which covers a range of vessel widths

nd finding the maximum value V = max (Vσ ), σ min ≤ σ ≤ σ max , we

et the vesselness measure as well as the approximate local vascular

tructure scale for each voxel in the image.

.1.3. Affinity relations and hybrid modeling of FC

Our motivation to incorporate vesselness filtering (Frangi et al.,

998) and gray-scale morphological reconstruction (Aykac et al.,

003) within the FC framework was to help identify the airway

tructures and provide information for keeping the continuity of

he airway boundary. See Fig. 3 for an example image of airway en-

ancement. Note that a simple intensity based affinity relation may

ause leakage due to blurred and soft boundaries (Fig. 3A); gray-scale

orphological reconstruction enhances the airway lumen, but due

o its 2-D nature, it is inhomogeneous along 3-D structure (Fig. 3B),

nd vesselness computation results in false positives over the image

Fig. 3C). Herein, we combine complementary strengths of these

easures within the FC framework as FC has the ability to combine

ifferent features within the same formulation. Next, we explain this

ormulation briefly.
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Fig. 3. Airway lumen enhancement (A) original image, (B) gray-scale morphological reconstruction result, and (C) vesselness computation result.
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In the FC framework, a fuzzy topological construct characterizes

ow voxels of an image hang together to form an object through a

redefined function called affinity (Saha and Udupa, 2001). Assuming

⊂ Z
3 denotes a 3-D cubic grid representing the image space, where

ach element of V is called a voxel, a topology on an image is given in

erms of an adjacency relation (μα) such that the adjacency relation is

binary relation on the image and it determines which pairs of voxels

re close enough to be considered connected: μα : V × V → {0, 1}.

heoretically, if p and q are α-adjacent to each other, then μα(p, q)

1, ‘0’ otherwise. In practice, we set α = 26 for adjacency in 3-D

nalysis. While affinity is intended to be a local relation, a global fuzzy

elation called fuzzy connectedness is induced on the image domain

y the affinity functions. This is done by considering all possible paths

etween any two voxels p and q in the image domain, and assigning

he strength of fuzzy connectedness to each path. The level of the

uzzy connectedness between any two voxels p and q is considered to

e the maximum of the strengths of all paths between p and q.

An affinity relation κ is the most fundamental measure of local

anging togetherness of nearby voxels. For a path π , which is a se-

uence of voxels 〈p1, p2, . . . , pl〉 with every two successive voxels be-

ng adjacent, given fuzzy affinity function μκ (pi, pi + 1), the strength of

he path is defined as the minimum affinity along the path:

N (π ) = min
1≤i<l

μκ(pi, pi+1). (4)

hen, the strength of connectedness μK(p, q) between any two vox-

ls p and q is the strength of the strongest path between them as

K(p, q) = max
π∈P(p,q)

μN (π ), (5)

here P(p, q) denotes the set of all paths between p and q. Therefore,

fuzzy connected object O in an image can be defined for a predeter-

ined set of seeds S. Since the level of FC between any two voxels p

nd q is considered to be the maximum of the strengths of all paths

etween them, for multiple seeds, the fuzzy object membership func-

ion for O or the strength of connectedness of O is defined as follows:

O(p) = max
s∈S

μK(p, s). (6)

n efficient computational solution is presented (Udupa and Sama-

asekera, 1996) for computing μO(p), given κ and S and an image.

Effectiveness of the FC algorithm depends on the choice of the

ffinity function. The most prominent affinities used so far are a com-

ination of: (i) adjacency-based μα , (ii) homogeneity-based μψ , and

iii) object feature-based μφ such that fuzzy affinity is defined as

κ (p, q) =
{

1, if p = q;

μα(p, q)
√

μψ(p, q)μφ(p, q), otherwise,
(7)

here μψ (p, q) captures the homogeneity between p and q, with a

igher value for pairs with similar intensity. For object feature-based
ffinity, μφ(p, q) defines the hanging-togetherness of p and q in the

arget object based on the nearness of their feature values to the ex-

ected feature distribution of the target object. The affinity function

an be formulated differently depending on the specific objective. Be-

ides the common adjacency term, one can choose to use homogene-

ty, or object feature, or both. When using both, the square root is

aken to ensure the same value range with other settings. The general

orm of μψ (p, q) and μφ(p, q) are

ψ (p, q) = e
− | f (p)− f (q)|2

2σ2
ψ , (8)

φ(p, q) = min

(
e

− | f (p)−m|2
2σ2

φ , e
− | f (q)−m|2

2σ2
φ

)
, (9)

here σψ and σφ are two different standard deviation parameters

sed for homogeneity and object feature distribution, m is the mean

bject feature value, and f denotes image intensity function: f : V →
⊂ Z. For intensity, m can be obtained directly from the standard HU

alue for different tissue/subject types, such as − 1000 for air. More

recisely and for the two enhancements, m can be estimated using

ser-defined ROI for target object. Regarding the influence of seed lo-

ations and amount, FC is known for its robustness under different

eed parameters compared to other seed based segmentation algo-

ithms.

For the algorithm discussed here, three features are available to

escribe a given voxel x: intensity I(x), gray-scale morphological re-

onstructed result D(x), and vesselness measurement V(x) such that

(x) = (I(x), D(x), V(x)). Moreover, the local scale information, ls(x),

rovided by the multi-scale vesselness computation, gives additional

ontrol over the design of the affinity function since sole intensity in-

ormation is not highly reliable for small airway identification; the

ther two features yield support. Therefore, affinities μI
ψ/φ

, μD
ψ/φ

,

nd μV
ψ/φ

corresponding to I(x), D(x) and V(x) can be combined

hrough the local scale measure as:

FC
ψ/φ =

{
μI

ψ/φ
, if ls > lsmax;

kμI
ψ/φ

+ (1 − k)
√

μD
ψ/φ

μV
ψ/φ

, otherwise,
(10)

here lsmax is the threshold for determining large airways, for which

ntensity is reliable, and k is a weighing parameter, k ∈ [0, 1]. For our

xperiment, we have used the widely accepted 2 mm as the thresh-

ld for small airways. Since intensity plays a less important role for

ner structures, k may be formulated as k = ls/lsmax . In other words,
FC
ψ/φ

is a piecewise function which controls selection of both large

nd small airways.

Briefly, in order to obtain a binary segmentation of the lumen with

he presented affinities, we employ the following steps. First, one or

ore seeds at trachea are identified with Hough transform. Second,

airwise FC of all other voxels with regard to the seeds are computed
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Fig. 4. (A) Segmented lumen (green) and its centerline (red). (B) Redundant structures over centerlines are seen prior to pruning-thinning process. (C) Thinning removes the

redundant structures and each branch is labeled. (D) Orthogonal plane at a skeleton point. (E) Slice plane that may not be perpendicular to local tangent vector. (F) Orthogonal

resampling. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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following Eqs. (4)–(6), where affinity is formulated as in Eq. (7) with

combined information as in Eq. (10). Each component in Eq. (10) is

calculated from Eqs. (8) and (9). Third, the resulting FC map describes

the strength of the connection between every voxel to the seeds, so a

binary segmentation can be extracted by thresholding the FC map.

2.2. Centerline extraction and orthogonal resampling

Centerline extraction of the lumen is a necessary step for air-

way wall identification and description of 3-D airway geometry. The

tree skeleton is extracted from the segmented lumen using a bi-

nary thinning algorithm (Ibanez et al., 2005) (Fig. 4A). To generate

a systematic description of the airway tree, we divide the 3-D skele-

ton into individual branch segments at every branching point. Since
he tree produced by the thinning algorithm often contains small

alse branches corresponding to local morphological variation, rather

han real branching (Fig. 4B), a graph-based dynamic programming

ethod is employed to optimally prune the resulting tree by remov-

ng the small branches (Fig. 4C), which is similar to the optimization

sed in literature (Xu et al., 2012). Assuming each branch segment is

epresented as a node in the graph, its maximum length L to the leaf

odes is found by dynamic programming. If L and/or the ratio with its

rother node, L/Lbro, is below a preset threshold, then the node and its

hildren are removed from the tree. Finally, smoothing is performed

n each segment to avoid sharp changes in local tangent orientation

long the skeleton. In practice, we have used L = 5 and L/Lbro = 0.1 for

irway tree applications and observed satisfying results. The original

T image is then resampled into 2-D images over a small domain in
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Fig. 5. First row: Airway walls with inside lumen (green), within wall (red), and outside the outer wall (blue) seeds. Second row: Resulting RFC segmentation with lumen (green)

and walls (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

t

t

2

b

s

R

c

t

F

t

w

w

a

e

(

u

t

l

r

t

o

i

s

fi

s

a

s

2

w

i

c

w

a

3

3

o

b

2

s

C

i

b

w

a

s

h

m

w

t

“

n

e

i

w

t

l

w

s

t

a

c

s

w

p

i

a

b

w

o

he orthogonal planes (Fig. 4D and F). Note that resampling is done on

he plane perpendicular to the local tangent vectors (Fig. 4E and F).

.3. Spatially constrained RFC for 3-D airway wall estimation

Absolute FC segmentation is based on computing the FC strength

etween a set of seed points and all other voxels within the image and

et a proper threshold to the resulting FC image. On the other hand,

FC is based on several seed sets Si, i = 1, 2, . . . ,k. FC strength is first

omputed at every voxel for each of the seed sets individually, and

hen the voxel is labeled as belonging the seed set with maximum

C value. In this way, the thresholding step is avoided. Specifically for

he task of airway wall estimation, due to similar intensities of airway

all and nearby structures such as blood vessels, sparse seeding

ill result in fragmented segmentation and leakages. Therefore,

spatially constrained RFC method is developed for airway wall

stimation. Similar to the 3-D active surface evolution approach

Gu et al., 2013; Ortner et al., 2011), three surfaces are first identified

sing the already segmented lumen region: inside the lumen, within

he airway walls, and outside the outer wall. The surface inside the

umen is defined as the surface one voxel inside the segmented lumen

egion which is estimated using morphological erosion. With the ex-

racted centerline, FWHM is first used to roughly identify the extent

f surrounding airway wall at every skeleton point. Such estimation

s further filtered and smoothed to get rid of noise for extracting the

urface within the airway walls. The outer surface is subsequently de-

ned by morphological dilation of the airway wall surfaces. Next, FC

trength is computed using the three seed sets and the airway walls

re identified based on RFC theorem. See Fig. 5 for an example of the

urfaces obtained from seeding and the final segmentation results.

.4. Spatially constrained Markov random walk for 2-D airway

all estimation

Routine clinical assessment of airway walls is based on 2-D exam-

nation of airways at limited locations. Furthermore, there have been

ontroversies on the feasibility of using pseudo 3-D (slice-by-slice,

here each slice is 2-D) and 3-D methods in the literature regarding
irway wall analysis. To address these issues, alternative to the fully

-D RFC based method, we develop a novel fully automatic pseudo

-D (i.e., slice-by-slice) method for quantifying airway walls based

n random walk (RW) image segmentation. The RW algorithm has

een a widely used graph-based image segmentation method (Grady,

006). In RW, the image is considered a graph (G), which is repre-

ented as a pair, G = (V, E), with nodes v ∈ V and edges e ∈ E⊆V × V.

onventionally, a node vi is said to be a neighbor of another node, vj,

f they are connected by an edge eij in G, and each edge is weighted

y wij. Basically, these weights denote the likelihood that a random

alk will cross edges (Bagci et al., 2012b; 2013d). Although RW usu-

lly avoids the noisy or fragmented segmentation, it has been recently

hown (Cheng and Zhang, 2011) that this property does not always

old. Similarly, in airway wall surface segmentation, fragmented seg-

entation can likely occur due to similar intensity profiles of the air-

ay walls and the nearby structures; therefore, one needs to be sure

o place an adequate number of seeds in suitable places. To avoid the

connectedness” problem and provide an accurate estimation of in-

er and outer wall surfaces, in this study we create a computationally

fficient random walk estimation method by automatically identify-

ng foreground and background seeds that spatially constrain random

alkers (Xu et al., 2013a). The algorithm uses FWHM and ellipse fit-

ing methods to roughly identify the foreground and background seed

ocations. FWHM is first applied to locate the double edges for airway

all, then ellipse fitting is used to smooth the result and compen-

ate for missing information caused by adjacent vessel. After these

wo steps, the approximate airway inner and outer wall surfaces S0
1

nd S0
2
, as well as a estimation of overall airway wall thickness dwall,

an be roughly determined. For RW seeding, foreground seeds corre-

ponding to airway wall are distributed halfway between S0
1

and S0
2

;

hile background seeds corresponding to lumen (inside airway) and

aranchyma/vessel (outside airway wall) are located on surfaces S
n1
1

nside S0
1

and S
n2
2

outside S0
2

respectively. Scale parameters n1 and n2

re used to define the location of two surfaces, such that the distance

etween S
n1
1

and S0
1

is d1 = n1 · dwall, and S
n2
2

and S0
2

is d2 = n2 · dwall.

Furthermore, foreground and background seeds are connected

ithin each group so that they form 2-D convex bodies in the vicinity

f outer and inner walls; therefore, hits-and-runs of random walks
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Fig. 6. (A) Airway wall with background (yellow) and foreground (green) seeds, and its zoomed version (B). (C) Background seeds form inner and outer surfaces as constraints for

RW. (D) Resulting RW segmentation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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are restricted to the no “connectedness” issue when it converges to

outer and inner surface locations. Other than the automatically lo-

calized background and foreground seeds and their spatial alignment

within the two ellipses (Fig. 6B), the rest of the combinatorial Drichlet

problem was solved, as indicated (Grady, 2006). Note that although

airway tree as a 3-D object is obviously not convex, the airway can be

approximated as circles at local cross-sections. Hence, we used con-

nected inner and outer seeds. Also, since each segmentation is per-

formed within a small neighborhood around a centerline point, and

every time the seed point are allocated independently, the seeds will

not “conflicting” with each other. Thus the bifurcation is not a prob-

lem for the proposed method.

In conventional RW segmentation, the aim is to classify a large

number of unlabeled voxels with a limited number of labeled voxels;

however, herein, we classify a relatively small number of unlabeled

voxels, with a large number of labeled voxels distributed over two

convex surfaces (Fig. 6A–C). Our proposed framework allows random

walkers to exploit the airway wall structures within two convex sur-

faces (S0
1

and S0
2

) in a robust and computationally efficient way (see

Fig. 6D). Distribution of seed sets and its connection to the soft con-

straint will be given in Section 3.

3. Experiments and results

3.1. Data

In the context of segmentation, the “gold standard” is usually not

available (Bagci et al., 2013b). Instead, manual delineation is often

used as the reference standard. However, for both airway lumen

and wall segmentation, especially in the presence of pulmonary

diseases, it is extremely labor intensive since not only does it take

many hours to segment a single lung CT scan, but it is also necessary

to have a large and diverse dataset that covers images under various

conditions. Here, we used the data set from the “EXACT’09 airway

lumen segmentation challenge” (Lo et al., 2012), including CT studies

from 20 subjects. Lumen segmentation was performed with the

proposed method, and the resulting binary segmentations were sub-

mitted to the organizers who sent the quantitative evaluations back.

Unfortunately, for airway wall segmentation, there is no such open

evaluation platform. Therefore, manual segmentations were used as

references in validation. For this purpose, we selected 300 images

that contained airways of different sizes under different imaging and

anatomical conditions from the orthogonal resampled 2-D images

generated from the EXACT’09 data set. All 2-D resampled images

were first roughly grouped to large, medium, and small according

to their size. Then, within each group, 100 samples were randomly

selected for the test data set. Segmentations of these images were
roduced by two independent experts (i.e., Observers 1 and 2) as

urrogates of the ground truth. The 2-D resampled images were

escaled to 0–255 range using window level at − 450 HU with width

500 HU as suggested in Okazawa et al. (1996) to “window” the

irway anatomy for clinical purpose. In the following sections, all ex-

erimental results reported are based on the entire EXACT dataset for

umen segmentation, and all 300 2-D samples for wall segmentation.

.2. Evaluation of lumen segmentation

To evaluate the performance of lumen segmentation, we submit-

ed the binary results by the proposed method to the EXACT’09 orga-

izers, and received the detailed quantitative measurements. In the

ollowing, we provided two qualitative examples, together with the

verall quantitative results. More details, including 3-D rendering and

valuation measurements of each individual case, were listed in the

ppendix.

Fig. 7 shows qualitative evaluation of our proposed method com-

ared to two of the state-of-the-art methods. Here, we made our

est effort to choose the same rendering scheme and 3-D viewing

ngles as the results provided by EXACT’09 for qualitative observa-

ion, although a minor misalignment may still be unavoidable. For

omparison purposes, we selected the best method in the sense of

ighest tree length detection rate under the restriction of low false

ositive rate (FPR) ( < 1%) which was suggested by the DIKU (Lo et al.,

009) group who hosted the challenge. Also, the result given by the

AVisionLab (Pinho et al., 2009) group was used as another reference

ince the quantitative difference between the UAVisionLab and our

ethod is comparable to the difference between our method and

he DIKU method. In the sense of algorithm complexity, UAVision-

ab designed their method based on basic RG with a leakage control

echanism, while DIKU made use of vessel–airway relationship to

ormulate a more advanced voxel classification approach. The UAVi-

ionLab method (A) detected tree length of 26.1% at an FPR of 1.14%;

he DIKU group (B) detected tree length of 68.7% at an FPR less than

.01%; and our result (C) achieved detected tree length of 48.6% and

PR of 0.19%. From the statistics, we noticed that the difference in de-

ected tree length was about 20% with the difference between FPRs

bout 1 order of magnitude for both (A)–(C) and (B)–(C). However,

s it visually appears, the difference between (B)–(C) is more subtle

han that of (A)–(C). Given the fact that there is currently no consen-

us on the clinical contribution of airway morphometry over disease

nvestigation, both visual and quantitative evaluations reveal partial

nformation regarding the segmentation performance. The ultimate

valuation should include considerations of airway pathology and its

linical significance.
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Fig. 7. 3-D Segmentation results on image CASE22 of EXACT’09 dataset (Lo et al., 2012). (A) Result produced by UAVisionLab with detected tree length 26.1% and false positive rate

1.14%. (B) Result produced by DIKU with detected tree length 68.7% and false positive rate less than 0.01%. (C) Result produced by our hybrid FC method with detected tree length

48.6% and false positive rate 0.19%. The red part in (A) shows the leakage. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

Fig. 8. 3-D Segmentation results on image CASE36 of EXACT’09 dataset (Lo et al., 2012). (A) Result submitted to organizer without parameter tuning with detected tree length

27.9%. (B) Result produced with parameter tuning. (C) Reference result by ARTEMIS-TMSP with detected tree length 62.6%.

Table 1

Results of accuracy analysis of airway segmentation given by EXACT’09. Statistics with respect to methods for comparison (UAVisionLab and

DIKU) are given for overall performance (AVG: mean and STD: standard deviation) as well as an example case of CASE22 as shown in Fig. 7.

Branch Branch Tree Tree length Leakage Leakage False positive

count detected (%) length (cm) detected (%) count volume (mm3) rate (FPR) (%)

AVG 74.2 32.1 51.9 26.9 4.2 430.4 3.63

UAVisionLab STD 29.5 6.9 19.6 6.9 4.4 672.3 4.92

CASE22 132 34.1 86.4 26.1 7 160.0 1.14

AVG 128.68 51.74 94.81 44.52 8.63 121.37 0.85

Proposed STD 60.29 10.84 44.70 9.39 10.74 292.21 1.59

CASE22 210 54.3 160.6 48.6 7 26.5 0.19

AVG 150.4 59.8 118.4 54.0 1.9 18.2 0.11

DIKU STD 85.2 13.6 75.4 13.4 3.9 48.0 0.22

CASE22 276 71.3 227.1 68.7 1 0.2 < 0.01
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For a more in-depth evaluation, Table 1 summarizes the statis-

ics of the results, as compared with the two reference methods with

verall performance and specific case of CASE22 as shown in Fig. 7.

tatistics of each individual cases are listed in the Appendix, and de-

ailed descriptions of individual evaluation parameters are available

n EXACT’09 (Lo et al., 2012). It also worth mentioning that the sub-

itted results were generated using the same parameters and no

arameter-tuning was applied. To further illustrate the capability of

he proposed method, we have optimized the parameter for CASE36,

hich yields the lowest detection rate of 27.9% initially with respect
o the other cases. In Fig. 8, (A) shows the submitted result without

arameter tuning, (B) presents the result with parameter tuning, and

C) shows a reference result from ARTEMIS-TMSP (Fetita et al., 2009),

hich has the highest detected tree length. As can be observed, after

arameter tuning, the proposed method captures similar amount of,

f not more, details as compared with the reference method, which

chieves a detection rate of 62.6%.

Our proposed method takes approximately 20 min for each test

mage. In the presented approach, the time for computationally in-

olved gray-scale morphological reconstruction is decreased by using
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Fig. 9. Airway wall estimation result for airways of different sizes and under different anatomical conditions. (A) Original image, (B), (C) two manual segmentation results, and

results from the proposed 2-D RW method (D) and 3-D RFC method (E), the last column illustrates the fused results (F). (For interpretation of the references to color in the text, the

reader is referred to the web version of this article.)

Table 2

Features of 300 samples for testing according to lumen diameter, contrast, SNR, and well-defined wall percentage.

Diameter Percentage Contrast Percentage SNR Percentage Well-defined wall Percentage

Small 43% < 5 20% < 2 9% < 25% 10%

MediumLow 20% 5–10 28% 2–3 48% 25%–50% 16%

MediumHigh 27% 10–20 39% 3–4 32% 50%–75% 43%

Large 10% > 20 13% > 4 11% > 75% 31%
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a multi-scale approach. In addition, our method does not require any

training process, which can be time consuming considering the need

for precise manual segmentations. The computational efficiency can

be further improved by code optimization and multithreaded/parallel

computation. Visually, we found subtle differences while comparing

the top ranked methods, including ours. Indeed, our method exhib-

ited a much higher efficiency (20 min) than the top ranked method

(90 min) in terms of the computational burden.

3.3. Evaluation of airway wall surface estimation

To evaluate the performance of airway wall segmentation against

manual references from 300 2-D samples, Dice similarity coefficients

(DSCs) and Hausdorff distances (HDs) were calculated and accompa-

nied by inter-observer agreement rate as a convention. Fig. 9 provides

4 examples from the test data set, with corresponding two manu-

ally drawn boundaries (red and green) and estimations by the pro-

posed 2-D RW method with n1 = n2 = 1 (cyan) and 3-D RFC method

(yellow). With respect to the two reference drawings by the experts,

DSCs were found to be 73.1% and 81.3% with HDs of 1.77 mm and

1.62 mm for the RW method; 74.7% and 81.8% with HDs of 1.86 mm

and 1.79 mm for the RFC method; and inter-observer agreement was

found to be 77.6% and 1.74 mm. Based on the segmentation result,

we extracted the distribution of diameter, contrast, signal-to-noise-

ratio (SNR), and strong boundary ratio for the 300 images as listed

in Table 2. For diameter, small airways are defined as airways with

diameter < 2 mm, which is commonly accepted, medium airways

are separated to two groups: medium low as 2–2.5 mm defined in
urgel (2011) and medium high 2.5–5 mm defined in Hashimoto et al.

2005), and large airways are airways with diameter > 5 mm. Con-

rast is defined as the ratio between mean intensity within lumen

rea and that within wall. SNR is computed as the ratio between the

ean and the standard deviation of the wall intensity. Furthermore,

o check the percentage of the weakly defined wall boundary caused

y adjacent vessel, we first dilate the segmented airway wall by three

ixels, and within the dilated area, the percentage of the dark pixels

s computed given that lung parenchyma is dark and vessel is bright

nd of similar intensity as airway wall. As shown, the test set covers

ifferent cases that can be encountered in the initial data.

In addition to region-based evaluation of airway wall surface es-

imations, we also compared the shape-based accuracy of the esti-

ations using isoperimetric inequality (IPI) measures. Airways are

nherently a circular structure, thus local segmentation appearance

s expected to favor circular shape rather than spiculated, which pro-

ides information for segmentation quality or localized abnormality.

ence, we used IPI as a complementary measure to DSC. IPI is de-

ned as |4πAi − (Li)
2|, i = 1, 2, for inner (i = 1) and outer (i = 2)

urface estimation, respectively, where Ai denotes the area enclosed

y the boundary Si, and Li represents the boundary length of the cor-

esponding Ai (for a perfect circle, IPI = 0; larger values indicate de-

iation from circularity). As a complementary measure to DSC, IPI is

geometric inequality that measures how a closed boundary devi-

tes from a perfect circle, given its enclosed area and the circumfer-

nce. IPI may also have a role in the CAD systems for quantification of

irway thickening or enlargement, once the IPI range for the normal

natomy is defined. In Fig. 10, estimated inner and outer boundaries
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Fig. 10. First four rows show Bland–Altman plots for IPIinner and IPIouter measurements across observers and the proposed methods. The last two rows demonstrate the agreement

curve of airway wall area measurements by the proposed methods and the two expert observers.
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Table 3

Quantitative results for airway wall segmentation.

FWHM FWHMwithEllipse PhaseCongruency RW RFC

DSCtoObserver1 57.5% 58.6% 63.3% 73.1% 74.7%

DSCtoObserver2 64.5% 65.2% 70.4% 81.3% 81.8%

HDtoObserver1 3.56 mm 2.44 mm 2.26 mm 1.77 mm 1.86 mm

HDtoObserver2 3.35 mm 2.25 mm 2.03 mm 1.62 mm 1.79 mm

Fig. 11. (A) Original image; (B) binary segmentation for RFC method; (C) probability map for RW method; (D) binary segmentation for RW method; (E) edge locations for FWHM

method; (F) binary segmentation for FWHM method; (G) edge strength map for phase congruency method; (H) binary segmentation for phase congruency method.
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of the airway walls were compared to surrogate truths, provided by

Observer 1 and Observer 2, through Bland–Altman plots in columns

1 and 2, respectively. As can be seen, high correlations were obtained

when we compared our proposed method to observer evaluations.

The third column in the figure indicates the inter-observer agreement

for inner and outer wall boundary localization based on IPI measure-

ment (the rate was found to be 75.27%). In the last row, estimated

wall areas for all selected slices were compared to surrogate truths,

and resulting values were plotted in ascending order. Note that the

airway wall areas estimated by the proposed method are highly cor-

related with observers’ evaluations (correlations values of adjusted

R2 = 0.924 and R2 = 0.931 were obtained respectively).

3.4. Comparison to widely applied methods

We compared our proposed method with the FWHM and phase

congruency methods. The quantitative results are shown in Table 3.

As initialization, FWHM method yields DSCs of 57.5% and 64.5% with

HDs of 3.56 mm and 3.35 mm, with respect to the surrogate truths;

and ellipse fitting promotes the result to 58.6% and 65.2% with HDs

of 2.44 mm and 2.25 mm. Phase congruency has better performance

at DSCs of 63.3% and 70.4% with HDs of 2.26 mm and 2.03 mm. Inter-

observer agreement was 77.6% and 1.74 mm. Fig. 11 shows the wall

estimation for an airway (A) for different methods. As shown, FWHM

method (E and F) creates false edges, phase congruency (G and H)

leaks to neighboring structures due to intensity variation within the

walls, while our proposed method of RFC (B) and RW (C and D) suc-

cessfully avoided leakage and false positives.
.5. Spatially constrained RW method’s sensitivity analysis with respect

o the seeds

Because FWHM and ellipse fitting methods were used to roughly

dentify the foreground and background seed locations, it was in

ur interest to find the sensitivity of the spatially constrained RW

ethod, with respect to changes in the scale parameters n1 and n2,

hich we used to define the new location of the convex surfaces by

ultiplying the estimated wall thickness with scale parameters n1

nd n2 . The robustness of the proposed method, with regard to seed

election, can be evaluated using different values for n1 and n2.

All experimental results were performed on the entire dataset. As

tated in the previous section, we have used n1 = n2 = 1 for our test.

uch parameter is a default setting and intuitive (one thickness in-

ide and one thickness outside), hence the selection is not tuned for

pecific data. Here, during our seed sensitivity test, we have found the

best” results for our dataset when n2 = 0.3. This can be considered as

arameter tuning for the candidate dataset. One explanation is that

natomical structures outside the airway walls are complex, so closer

o the wall boundary is preferred for the outer seeds. On the other

and, the lumen has a high contrast against neighboring structures,

o the inner seeds can be placed further from wall boundary. Accord-

ng to our findings, in the following, we present the results at n2 ≥ 0.3

or test under varying inner seeds (on S
n1
1

), and n1 ≥ 1.5 for test under

arying outer seeds (on S
n2
2

).

DSCs were computed for each case, and the result is shown

n Fig. 12. As expected, changing the location of inner seeds does

ot significantly influence the segmentation result (Fig. 12A); while
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Fig. 12. (A) Dice similarity coefficient with changing inner seeds; (B) Dice similarity coefficient with changing outer seeds; (C), (E) seed locations with two different sets of outer

seeds for a specific slice; (D), (F) corresponding segmentation result for the two seed locations.

Fig. 13. (A) When spatially constrained RW was used, soft constraints did not change the segmentation results considerably even for large ε change (n1 = 1.5, n2 = 0.3). (B) When

outer surface is relaxed (n1 = 1.5, n2 = 1.5), segmentation DSC started to change considerably for ε ≥ 0.1. Marked points are from the corresponding values in Fig. 12.
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lacing the outer background seeds away from the airway wall can

ecrease the DSC of segmentation (Fig. 12B) since adjacent structures

an be falsely included. However, such change is not as dramatic as

eakage into neighboring structures. The segmentation result is still

onstrained within a reasonable margin, when n2 is large, as shown

n Fig. 12C–F.

.6. Soft constraints in random walks

In this section, we analyze how random walks can be constrained

o converge to correct boundaries if spatial constraints are not strict.

nalysis of softening spatial constraints and its relation to random

alk probabilities in a steady state can show the advantages of

sing strict spatial constraints in airway wall surface estimations.

onsider a set of nodes F ⊂ V labeled as foreground, a set of nodes

1⊂V labeled as background (on inner surface), and a set of nodes

2⊂V labeled as background (on outer surface) such that F ∩ S1 = ∅,

∩ S2 = ∅. For any v ∈ F , P(v) = 1, and for any v ∈ S1 or v ∈ S2,

(v) = 0. For any of the remaining nodes v ∈ V \ (F ∪ S1 ∪ S2),

(v) = ∑
ei j∈E wi jP(v j). Conventionally, nodes with probability val-

es greater than 0.5 (hard constraint) are classified as foreground.

ow, assuming a node is imposed a soft constraint instead of a hard
onstraint, the difference between a probability of a node and 0.5 is

ithin a small prescribed range [ − ε, ε]. Then, |P(v) − 0.5| ≤ ε for

∈ V \ (F ∪ S1 ∪ S2). By imposing soft constraints, the RW can be

onsidered as a minimization problem,

in
∑
ei j∈E

wi j|P(vi) − P(v j)|2 +
∑

vi∈V\(F∪S1∪S2)

λi|P(vi) − 0.5|2 (11)

uch that |P(v) − 0.5| ≤ ε for v ∈ V \ (F ∪ S1 ∪ S2), and P(v) = 0 for

∈ S1 or v ∈ S2, and λ controls the weight of the nodes with soft

onstraints. Detailed solution of this quadratic problem is outside

he scope of this paper. However, by varying the ε value in the same

egmentation settings, one can analyze the effect of the spatial

onstraints on the RW. Fig. 13 shows DSC values of the proposed

ethod with respect to the different threshold values for the RW (i.e.,

oft constraints). As can be seen from Fig. 13A, large changes in ε do

ot affect the performance of the proposed segmentation algorithm

f spatial constraints are provided (n1 = 1.5, n2 = 0.3). If the outer

urface S2 is relaxed (n1 = 1.5, n2 = 1.5), then ε ≤ 0.1 (i.e., P(v) down

o 0.4 threshold value) yields reasonably good DSC values (Fig. 13B).

ote that relaxing S1 does not affect the segmentation results due

o high contrast difference between lumen and airway inner wall, as

entioned in the previous subsection. These findings indicate that



14 Z. Xu et al. / Medical Image Analysis 24 (2015) 1–17

Table 4

Evaluation measures for the 20 cases in the test set.

Branch Branch Tree Tree length Leakage Leakage False

count detected length detected count volume positive

(%) (cm) (%) (mm3) rate (%)

CASE21 98 49.2 54.8 49.6 6 18.9 0.28

CASE22 210 54.3 160.6 48.6 7 26.5 0.19

CASE23 189 66.5 134.2 51.6 8 8.9 0.07

CASE24 113 60.8 88.3 54.3 27 66.7 0.45

CASE25 122 52.1 96.2 38.2 4 21.1 0.15

CASE26 31 38.8 20.7 31.5 17 4717.9 119.59

CASE27 71 70.3 50.3 62.1 32 368.3 4.20

CASE28 72 58.5 49.3 44.9 0 0.0 0.00

CASE29 104 56.5 70.7 51.2 5 14.8 0.19

CASE30 98 50.3 67.7 44.3 1 4.3 0.06

CASE31 113 52.8 76.5 43.6 4 261.8 2.55

CASE32 106 45.5 85.5 39.2 4 130.0 1.15

CASE33 107 63.7 80.4 54.7 1 3.2 0.06

CASE34 280 61.1 188.8 52.8 13 42.8 0.21

CASE35 138 40.1 88.0 28.4 4 1.8 0.01

CASE36 114 31.3 115.1 27.9 0 0.0 0.00

CASE37 72 38.9 57.4 32.3 1 0.4 < 0.01

CASE38 40 40.8 29.6 44.6 2 10.1 0.17

CASE39 184 35.4 137.8 33.7 10 68.3 0.63

CASE40 214 55.0 170.0 43.9 35 1258.1 5.71

Mean 128.7 51.7 94.8 44.5 8.6 121.3 0.85

Std. dev. 60.3 10.8 44.7 9.4 10.7 292.2 1.59

Min 40 31.3 29.6 27.9 0 0.0 0.00

1st quartile 98 43.15 62.55 38.7 1.5 3.75 0.06

Median 113 52.5 85.5 44.6 4 18.9 0.19

3rd quartile 161 59.65 124.65 51.4 9 67.5 0.54

Max 280 70.3 188.8 62.1 35 1258.1 5.71

Fig. 14. Airway segmentation for CASE26 by proposed method and reference result from DIKU.
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the spatially constrained RW is a stable and robust method for finding

boundaries of inner and outer surfaces, and sensitivity of the bound-

ary localization is high even when spatial constraints are not strict.

4. Discussion and conclusion

One question that arises is which of the 2-D (pseudo-3D) and 3-D

techniques better suits the task of airway wall estimation. Although

3-D implementation performs better in branching areas and is more

efficient in generating the 3-D tree structure, routine clinical analysis

of airways often requires a pseudo 3-D implementation to measure

airway dimensions in-plane and may be in selected image slices only.

We found no statistically significant difference in segmentation re-

sults of both methods (p = 0.32 and p = 0.42 for RFC and RW based

methods, respectively); however, 3-D RFC is faster compared to the

RW based method.

It may be possible to use the phase congruency method to de-

fine inner and outer surfaces instead of FWHM method, for identi-
ying background and foreground seeds. Comparison of FWHM and

hase congruency methods in the literature reveals that phase con-

ruency may identify inner and outer surfaces of airway walls better,

ence, seeding locations may be more precise; however, an accurate

omparison of these methods, within the spatially constrained RW

ethod, and the computational burden analysis, are left as an exten-

ion of this study.

In the evaluation step, we used EXACT’09 data sets to compare our

esults with the state-of-the-art methods. Although our method is

ikely to be suitable for analyzing all images from the EXACT’09 chal-

enge, we will extend our evaluations with the data sets of different

irway diseases with high and low resolution CT scans as a feasibility

tudy for our ongoing clinical research.

One of the difficulties in proposing a general segmentation ap-

roach for airway and airway walls is reproducibility of the research

ue to unavailability of gold standard results. Although phantom

tudies could provide some insights about the robustness of the
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Fig. 15. Segmentation results for the twenty cases in the test set.
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methods, natural variability of the human anatomy is not reflected

in phantom designs. Regarding this issue, a very recent work of

Kohlberger et al. (2012) showed a generic learning approach based on

a novel space of segmentation features, which can be trained to pre-

dict the overlap error and dice coefficient of arbitrary organ segmen-

tation without knowing “the ground truth delineation”. Arguably, it

may be possible in the near future to evaluate image segmentation al-

gorithms without having a reference truth (Bagci et al., 2013a; 2013c),

thus robustness and reproducibility of the airway and airway wall

segmentation methods.

There may be other alternatives for airway wall segmentation.

Two of them we intend to investigate are Iterative RFC (IRFC), and

synergistically combined IRFC and Graph Cut (GC). Given accurate

seed placement in appropriate background components, IRFC is

known to perform better than RFC in accuracy and speed. Recently

IRFC and GC have been applied alternately have been shown to effec-

tively combine the speed and robustness properties of IRFC with the

boundary smoothness characteristics of GC to yield better segmenta-

tions (Ciesielski et al., 2013).

In conclusion, we designed and developed novel algorithms to

accurately segment lung airways and measure airway wall thickness

as a means to map lung anatomy and identify areas of disease, such

as cancer, infection, and immune disease. Our approach was based

on the fuzzy connectedness theory for precise segmentation of the

airway lumen, and a spatially constrained Markov random walk and

relative fuzzy connectedness methods to estimate the airway wall

surfaces. For lumen segmentation, the proposed method combines

vesselness and gray-scale morphological reconstruction with FC

facilitating robust and reliable region growth along thin airway

structures. By incorporating multiple features to identify airway tree

at different levels of scales, the algorithm adapts and governs the

fuzzy segmentation process and captures airways under different

pathological and imaging conditions more robustly in the presence of

noise and other artifacts. The proposed methods are fully automated

with automatic seed identification algorithms and the performance

of the methods has been qualitatively and quantitatively evaluated

on human pulmonary CT images from diverse subjects. Optimization

techniques have been employed to extract the skeletons of airways

and then an automatic seeding procedure based on FWHM and

ellipse fitting was designed in order to spatially constrain Markov

random walk. In the meantime, three surfaces for airway wall estima-

tion were first roughly estimated, and they were used as seed sets for

relative fuzzy connectedness computation. Both 2-D and 3-D meth-

ods performed similarly with high accuracy. Results demonstrated

that our airway analysis platform gave a better identification of the

inner and outer airway surfaces than the widely applied methods.
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Appendix A

Table 4 lists the quantitative results we received from the EX-

ACT’09 organizer for twenty cases in the test set. Note that for

CASE26, due to an uploading error, a huge amount of false positive of

119.59% is reported. Hence, we identified it as an error of calculation

from the organizer’s side and excluded it from the final result. For ref-

erence, Fig. 14 illustrates the binary airway segmentation of CASE26

from the proposed method and reference DIKU method. It can be

observed that the two methods have relatively similar performance

(even more detection rate in airway tree), and DIKU method have

50% tree length detected and 0.0% false positive rate. Furthermore,
or completeness of the paper, all the 20 cases’ segmentation results

re presented in Fig. 15.
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