
In this article, we
present Knight, an
automated
surveillance system
deployed in a variety
of real-world
scenarios ranging
from railway security
to law enforcement.
We also discuss the
challenges of
developing
surveillance systems,
present some
solutions
implemented in
Knight that
overcome these
challenges, and
evaluate Knight’s
performance in
unconstrained
environments.

30 1070-986X/07/$25.00 © 2007 IEEE Published by the IEEE Computer Society

Feature Article

U
sing video cameras for monitoring
and surveillance is common in
both federal agencies and private
firms. Most current video surveil-

lance systems share one feature: they need a
human operator to constantly monitor them.
Their effectiveness and response is largely deter-
mined not by the technological capabilities but
by the vigilance of the person monitoring the
camera system.

Furthermore, the number of cameras and the
area under surveillance are limited by the per-
sonnel available. To overcome these limitations
of traditional surveillance methods, a major
effort is under way in the computer vision and
artificial intelligence community to develop
automated systems for the real-time monitoring
of people, vehicles, and other objects.1-3 For a
breakdown of the tasks and problems involved,
see the sidebar “Surveillance System Tasks and
Related Technical Challenges.” These systems
can create a description of the events happening
within their area and generate warnings if they
detect a suspicious person or unusual activity. 

In this article, we introduce the key logical
components of a general automated surveillance

system, noting important technical challenges in
the real-world deployment of such a system. We
specifically discuss Knight, a monitoring system
that we’ve developed and used in a number of
surveillance-related scenarios. For an overview of
other work in the field, see the “Brief Literature
Review” sidebar (page 34).

Knight
Knight is a fully automated, multiple camera

surveillance and monitoring system that we
developed at the University of Central Florida’s
Computer Vision Laboratory, which is being
used for projects funded by the Florida
Department of Transportation, Orlando Police
Department, DARPA Small Business Technology
Transfer (STTR) program, and Lockheed Martin
Corporation. Knight is a commercial, off-the-
shelf surveillance system that detects, categorizes,
and tracks moving objects in the scene using
state-of-the-art computer vision techniques. It
also flags significant events and presents a sum-
mary in terms of keyframes and a textual descrip-
tion of observed activities to a human operator
for final analysis and response decision. Figure 1
shows (page 35) the block diagram of the infor-
mation flow in Knight. In the following sections,
we detail each of Knight’s modules. 

Object detection
An image sequence’s color properties change

greatly when illumination varies in the scene,
while the gradients are relatively less sensitive to
illumination changes. These color and gradient
features can be combined effectively and effi-
ciently to perform a quasi-illumination invariant
background subtraction. 

The object detection algorithm in Knight4 per-
forms subtraction at multiple levels. At the pixel
level, Knight separately uses statistical models of
gradients and color to classify each pixel as
belonging to the background or foreground.  

In the second level, it groups foreground pix-
els obtained from the color-based subtraction5

into regions. Each region is tested for the pres-
ence of foreground gradients at its boundaries. If
the region boundary doesn’t overlap with detect-
ed foreground gradients, such regions are removed.
The pixel-based models are updated based on deci-
sions made at the region level.

The intuition behind this approach is that
interesting objects have well-defined boundaries
that cause high gradient changes at the object’s
perimeter with respect to the background model.

Automated
Visual
Surveillance 
in Realistic
Scenarios

Mubarak Shah
University of Central Florida

Omar Javed and Khurram Shafique
Object Video



31

We can break down the general problem of an automated
surveillance system into a series of subproblems. In general, a sur-
veillance system must be able to detect the presence of objects
moving in its field of view, track these objects over time, classify
them into various categories, and detect some of their activities.
It should also be capable of generating a description of the events
happening within its field of view (FOV). Each of these tasks poses
its own challenges and hurdles for the system designers.

Object detection

The first step toward automated activity monitoring is
detecting interesting objects in the camera’s FOV. While the
definition of an interesting object is context dependent, for a
general automated system any independently moving object—
such as a person, vehicle, or animal—is deemed interesting. We
can achieve object detection by building a representation of the
scene called the background model and then finding deviations
from the model for each incoming frame. Any significant
change in an image region from the background model signi-
fies a moving object. The pixels undergoing change are marked
for further processing. We use the term background subtraction
to denote this process. Background subtraction is used as a
focus-of-attention method—for example, further processing for
tracking and activity recognition is limited to the regions of the
image consisting of foreground pixels only. Figure A shows an
example of the background subtraction output.

The detection methods based on background subtraction
face several problems in accurately detecting objects in realis-
tic environments:

❚ Illumination changes. In outdoor systems, the change in illu-
mination with the time of day alters the appearance of the
scene and causes deviation from the background model. This
results in a drastic increase in the number of falsely detected
foreground regions. This shortcoming makes automated sur-
veillance unreliable under changing illumination conditions.

❚ Camouflage. If an object is similar to the background then it
might not be possible to distinguish between the two.

❚ Uninteresting moving objects. Every moving object might not be
of interest for monitoring—for example, waving flags, flowing
water, or moving leaves of a tree. Classification of such regions
as interesting objects can result in false alarms.

❚ Shadows. Objects cast shadows that might also be classified
as foreground because of the illumination change in the
shadow region.

For a survey of recent developments in the area of background
subtraction, see Radke et al.1

Surveillance System Tasks and Related Technical Challenges

Figure A. (1) Images from a parking lot camera. (2) Output of the background subtraction module.

continued on p. 32
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On the other hand, foreground regions generated
due to local illumination changes or shadows
have diffused boundaries resulting in minor vari-
ation in the boundary gradients relative to the
background. Thus, errors in the color-based sub-
traction can be removed by using the gradient
information at the region boundaries.

This method has the ability to deal with some
of the common problems not addressed by most
background subtraction algorithms such as quick
illumination changes because of adverse weath-
er conditions, the repositioning of static back-
ground objects, and initializating the background
model with moving objects present in the scene.

Tracking
The output of the background subtraction

method (object detection module) for each frame
is a binary image composed of foreground
regions. Each region is a set of connected pixels

in the binary image. Note that there’s not neces-
sarily a one-to-one correspondence between fore-
ground regions and actual objects in the scene.
In case of occlusion, multiple objects can merge
into the same region. Also, similarity in color
between an object and the background can result
in splitting that object’s silhouette into multiple
regions. Therefore, this requires an object model
that can tolerate these split-and-merge cases.

Knight models an object using a combination
of its color, shape, and motion models.6 A Gaussian
distribution represents the spatial model. The color
model is a probability density function (PDF) that
a normalized histogram approximates. 

Each pixel in the foreground region votes for
an object’s label, for which the product of color
and spatial probability is the highest. Each region
in the current frame is assigned an object’s label
if the number of votes from the region’s pixels for
the object is a significant percentage—say Tp—of
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Tracking
Once the system detects the interesting objects, it’s useful

to have a record of their movement over time. We can define
tracking as the problem of estimating the trajectory of an object
as the object moves around a scene. Simply stated, we want to
know where the object is in the image at each instant in time. If
the object is continuously observable and its shape, size, or
motion doesn’t vary over time, then tracking isn’t difficult.
However, in realistic environments, like a busy street of a shop-
ping mall, none of these assumptions hold true. Objects—espe-
cially people—undergo a change in shape while moving. In
addition, their motion isn’t constant.

Objects also undergo occlusion—that is, the view of one
object is blocked by another object or structure. Occlusion leads
to discontinuity in the observation of objects, and it’s one of the
major issues that a tracking algorithm must solve. Tracking
objects under occlusion is difficult because we can’t determine
the accurate position and velocity of an occluded object. Two
major cases of occlusion can be described as follows:

❚ Interobject occlusion occurs when one object blocks the
view of other objects in the camera’s FOV. The background
subtraction method outputs a single region for occluding
objects. If two initially nonoccluding objects cause occlusion
then this condition can be easily detected. However, if
objects enter the scene while occluding each other then it’s
difficult to determine if interobject occlusion is occurring.
The problem is identifying that the foreground region con-

tains multiple objects and to determine the location of each
object in the region. Because people usually move in groups,
resulting in frequent interobject occlusion, detecting and
resolving this is important for surveillance applications.

❚ Occlusion of objects due to scene structures causes an object
to disappear for a certain amount of time, leaving no fore-
ground region to represent the object during the occlusion.
For example, a person walks behind a building, or a person
enters a car. A decision must be made to either wait for the
object’s reappearance, or to conclude that the object has
exited the scene.

In addition to the imperfection of input data, tracking meth-
ods also have to deal with imperfections in the output of detec-
tion methods. Detection methods aren’t perfect and are
susceptible to miss the detection of interesting objects or to
detect uninteresting objects. All these difficulties make tracking
in realistic scenarios a difficult problem for automated surveil-
lance systems. See elsewhere2 for a review on algorithms for
human motion tracking.

Object categorization

To make an intelligent analysis of the scene and to recog-
nize various activities, surveillance systems need to perform a
variety of object categorization tasks. In urban monitoring sys-
tems, this task can involve labeling the detected object as a
person, a group of persons, a vehicle, an animal, a bicycle, and
so on.

continued from p. 31
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all the pixels belonging to that object in the last
frame. If two or more objects receive votes greater
than Tp from a region, we can assume that multi-
ple objects are undergoing occlusion. 

The position of a partially occluded object is
computed by the mean and variance of pixels
that voted for that particular object. In case of
complete occlusion, a linear velocity predictor is
used to update the occluded object’s position.
This method takes care of both a single object
splitting into multiple regions and multiple
objects merging into a single region. The spatial
and color models are updated for objects that
aren’t undergoing occlusion. Figure 2 (page 35)
shows the result of tracking under occlusion.

Object categorization
Knight classifies objects into three classes: peo-

ple, groups of people, and vehicles. Instead of
relying on the objects’ spatial primitives, it uses a

motion-based approach and exploits the fact that
people undergo a repeated change in shape while
walking, whereas vehicles are rigid bodies and
don’t exhibit repeating change in shape while
moving. The solution is based on temporal tem-
plates that are called recurrent motion images
(RMIs)7 and are used to represent the repeated
motion of objects. 

An RMI is a template that has high values at
the pixels where motion occurs repeatedly and
low values at pixels where there’s little or no
recurring motion. The RMI is computed by align-
ing and accumulating the foreground regions
obtained by the object detection module.
Therefore, it’s not affected by small changes in
lighting or background clutter. One major advan-
tage of using RMIs is that the system doesn’t have
to explicitly store the history of previous obser-
vations, making the computation both fast and
memory efficient.
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In military scenarios this task may be more refined, such as
identifying which type of vehicle is detected (for example,
whether it’s a tank or a Humvee). Ideally, we can attempt object
classification by using shape information from a single image.
However, the work on object recognition in the past 30 years
has demonstrated that object recognition or categorization
from a single image is a highly complex task. The requirement
to classify objects in real time makes the categorization task
even more difficult.

Tracking across cameras

In general, surveillance systems are required to observe large
areas like airport perimeters, naval ports, or shopping malls. In
these scenarios, it isn’t possible for a single camera to observe
the complete area of interest because sensor resolution is finite
and structures in the scene limit the visible areas. Therefore, sur-
veillance of wide areas requires a system with the ability to track
objects while observing them through multiple cameras (see
Figure B). 

It’s better if the tracking approach doesn’t require camera
calibration or complete site modeling, since the luxury of cali-
brated cameras or site models isn’t available in most situations.
Also, maintaining calibration between a large network of sen-
sors is a daunting task, since a slight change in the position of a
sensor will require the calibration process to be repeated. Thus,
it’s better if the system can learn the intercamera geometry and
the scene model directly from the environment. In addition, the
system should be adaptive to small changes in the geometry or
scene so that they don’t have a detrimental effect on its per-

formance. For the system to be effective in realistic scenarios, it
should also be easy to deploy without extensive manual work.
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Tracking across cameras 
Knight is capable of seamlessly tracking objects

across multiple cameras.8 It doesn’t require the
cameras to be calibrated nor does it require scene
geometry as input. Rather, it uses the observa-
tions of people through the system of cameras to
discover relationships between the cameras. We
observe that people or vehicles tend to follow the
same paths in most cases, such as roads, walk-
ways, and corridors. Our tracking algorithm uses
this conformity in traversed paths to establish
correspondence.

For example, consider the scenario of Figure
3b (page 36) and suppose people moving along
one direction of the walkway initially observed
in camera 2 are also observed entering camera 3’s

field of view (FOV) after a certain time interval.
The people can take many paths across cameras
2 and 3. However, because of physical and prac-
tical constraints, some of the paths will be more
likely to be taken by people than others. 

For example, it’s more likely for a person exit-
ing camera 2’s FOV from point A to enter camera
3’s FOV at point B rather than entering camera
3’s FOV at point D. Thus, we can use the usual
locations of exits and entrances between cam-
eras, the direction of movement, and average
time taken to reach one camera from another, to
constrain correspondences. Knight exploits these
space and time cues to learn the intercamera rela-
tionships. These relationships are learned in the
form of PDFs. We use the Parzen window9 tech-

Here, we present a brief review of some of the automated
surveillance systems proposed in recent years. Interested read-
ers are referred elsewhere1-4 for detailed surveys. 

Among the earlier automated monitoring systems, Pfinder5

is perhaps the most well known. It tracks the full body of a per-
son in the scene that contains only one unoccluded person in
the upright posture. It uses a unimodal background model to
locate the moving person. 

In Rehg et al.,6 a smart kiosk is proposed that can detect and
track moving people in front of a kiosk by using face detection,
color, and stereo. Stauffer and Grimson7 used an adaptive mul-
timodal background subtraction method for object detection
that can deal with slow changes in illumination, repeated
motion from background clutter, and long-term scene changes.
They also proposed detection of unusual activities by statisti-
cally learning the common patterns of activities over time. They
tracked detected objects using a multiple hypothesis tracker. 

Ricquebourg and Bouthemy8 proposed tracking people by
exploiting spatiotemporal slices. Their detection scheme
involves the combined use of intensity, temporal differences
between three successive images, and comparing the current
image to a background reference image, which is reconstruct-
ed and updated online. Boult et al. presented a system for mon-
itoring uncooperative and camouflaged targets.9

The W410 uses dynamic appearance models to track people.
Single persons and groups are distinguished using projection
histograms, and each person in a group is tracked by tracking
the head of that person. Lipton et al.11 developed a system to
detect and track multiple people and vehicles in a cluttered
scene and monitor activities over a large area and extended
periods of time. Their system could also classify objects as a per-
son, group of persons, vehicles, and so on, using shape and
color information.
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nique to estimate the space and time between
each pair of cameras. Formally, suppose we have
a sample S consisting of n, d dimensional, data
points x1, x2, ..., xn from a multivariate distribu-
tion p(x), then we can calculate an estimate 
of the density at x using

(1)

where the d variate kernel �(x) is a bounded func-
tion satisfying integral , and H is the
symmetric d � d bandwidth matrix. The posi-
tion–time feature vector x—used for learning the
space–time PDFs from camera Ci to Cj— consists
of the exit location and entry locations in cam-
eras, indices of entry and exit cameras, exit
velocities, and the time interval between exit
and entry events. The system uses the
space–time PDFs to obtain an object’s probabil-
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ity of entering a certain camera at a certain time
given the location, time, and velocity of its exit
from other cameras. 

With this in mind, we used some of the fol-
lowing key observations when we modeled the
Knight system:

❚ dependence of the intercamera travel time on
the magnitude and direction of the object’s
motion;

❚ dependence of the intercamera travel time
interval on the location of the exit from one
camera and location of entrance in the other;
and

❚ correlation among the locations of exits and
entrances in cameras.

The reason for using the Parzen window
approach for estimation is that, rather than
imposing assumptions, the nonparametric tech-
nique lets us directly approximate the d dimen-
sional density describing the intercamera
relationships. We can use these space–time prob-
abilities together with object appearance his-
tograms to track objects across cameras.

Knight in action
Knight has been actively used in several sur-

veillance-related projects funded by different gov-
ernment and private agencies. We implemented
Knight in Visual C�� and it’s capable of running
on both PCs and laptops. The single-camera sys-
tem operates at 15 Hz on a Pentium 2.0-GHz
machine with 512 Mbytes of RAM and takes video
input from any video camera capable of trans-
mitting video through an IEEE 1394 FireWire
cable. In the case of multiple camera networks,

we can also use a server machine to maintain the
consistent identities of objects over the network
and to handle the hand-off between cameras.

Knight is currently being deployed for a pro-
ject funded by the Florida Department of
Transportation (FDOT) to monitor the railroad
grade crossings, prevent accidents involving
trains, and automatically inform the authorities
of any potential hazard10—for example, the pres-
ence of a person or a vehicle on tracks while a
train is approaching. Approximately 261,000
highway-rail and pedestrian crossings exist in the
United States according to the studies by the
National Highway Traffic Safety Administration
and Federal Railroad Administration (FRA).
According to the FRA’s Railroad Safety report (see
http://safetydata.fra.dot.gov/officeofsafety), from
1998 to 2004 there were 21,952 highway-rail
crossing incidents involving motor vehicles—
averaging 3,136 incidents a year. In Florida
alone, there were 650 highway-rail grade cross-
ing incidents, resulting in 98 fatalities during
this period. Thus, there is a significant need for
innovative technologies that can monitor rail-
road grade crossings.

In addition to the standard functionality of a
surveillance system, the system deployed for
FDOT lets users crop a zone (shown by the yel-
low bounding boxes in Figure 3) in the image
corresponding to a specific location in the scene.
This zone (called the danger zone) is usually the
area in the scene of interest, where the presence
of a person or vehicle can be hazardous in case a
train is approaching. 

The system receives two inputs—one from the
traffic signal (triggered when a train approaches)
and the other from the detection module giving
the position of pedestrians and vehicles with
respect to the danger zone. A simple rule-based

(a) (b)

Cam 3
Cam 4

Cam 2

Cam 1
Cam 1

Cam 2

Cam 3

A
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D
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Figure 3. (a) An

overhead view of the

fields of view (FOV) of

the cameras installed

in downtown Orlando

for a real-world

evaluation of our

proposed algorithms.

(b) A multiple-camera

setup at the University

of Central Florida (top

view) showing expected

paths of people through

the multicamera

system. We can use

these paths to find

relationships between

the cameras’ FOV.
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algorithm recognizes activities based on the
object detection and track patterns. At the onset
of an undesirable event, such as the presence of
a person or vehicle on or near the tracks while a
train is approaching, the system generates an
audio alert and an email is sent to an authorized
individual through a wireless network. The sys-
tem also has the ability to detect the presence of
a train in the video using the motion informa-
tion in a designated area.

We evaluated the performance of different
system modules (detection, tracking, and classi-
fication) by manually determining the ground
truth from 6 hours of videos and comparing the
ground truth to the results of the automated sys-
tem. We set up the Knight system at two differ-
ent highway railroad crossings in central Florida
and collected a total of five videos from different
views and in different conditions—for example,
time of day, lighting, wind, camera focus, and
traffic density. The collection of videos under dif-
ferent weather conditions—such as sunny, over-
cast, and partly cloudy—ensured that the system
was tested under different as well as constantly
changing illumination conditions.

Note that the system only works during the
day and turns off automatically when the illu-
mination is below a certain predefined level;
hence, we only performed testing during the day.
The system also doesn’t perform during rain and
storms, so these weather conditions weren’t con-
sidered during testing. 

We measured the accuracy of Knight’s object
detection as the ratio of the number of correct
detections and the total number of objects. The
system correctly detected 706 objects out of 725
and it generated 23 false positives during this
period. This amounts to 97.4 percent recall and
96.8 percent detection precision. 

We defined the accuracy of tracking as the
ratio of the number of completely correct tracks
and the number of correct detections. We found
that it tracked 96.7 percent of the objects accu-
rately over the complete period of their presence
in the FOV. 

Similarly, we measured the classification accu-
racy as the ratio of the number of correct classi-
fications and the number of correct detections,
which we found to be 88 percent. Figure 4 graph-
ically depicts the performance of each module.
The system’s performance under different sce-
narios justifies our claims that the system is
robust to changes in environmental conditions.

Most of the object detection errors were

caused by interobject occlusion or objects having
a similar color to the background. The tracking
errors were caused by multiple people with simi-
larly colored clothes walking close to each other.
In such cases, our statistical models of object
appearance and location weren’t able to distin-
guish between the different objects. Note that
even if the objects were assigned incorrect labels
because of a tracking error, the trespass warning
was still correctly generated if these objects were
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detected successfully in the danger zone by the
background subtraction module. 

We also tested the performance of the pro-
posed intrusion detection algorithm. We
achieved this by first defining a danger zone in
the image (shown as a yellow bounding box in
Figure 5) and by letting the system run over a
period of seven days (only during the day). Figure
5 shows two different testing sites in central
Florida, along with persons, vehicles, and a train
detected by the system. A red bounding box
around an object signifies that the object is in the
danger zone. The danger zone is marked by a yel-
low polygon. Overall, the system detected a
number of trespassing violations over its running
period. When compared to the ground truth
(obtained manually by browsing through the
archived videos), the system produced no errors
during this extended period of time.

We’re also using the Knight system in a num-
ber of other surveillance-related projects. Recently,
we augmented Knight to help the Orlando police
department with automated surveillance and
installed it at four locations in the downtown
Orlando area. 

We designed the system to provide automatic
notification to a monitoring officer in case of
unusual activities, such as a person falling, one or
more people running, and unattended objects.
Figure 6 shows the cameras at downtown Orlando
and the FOVs of all four cameras. The capabilities
of Knight were enhanced with a correlation-based
automatic target recognition algorithm to classify

the objects into finer categories for a project fund-
ed by Lockheed Martin Corporation.11 A modified
version of Knight is also the workhorse for a joint
project with Perceptek on nighttime surveillance
(using infrared cameras), funded by DARPA.

Conclusions and future work
We’ve shown that Knight can detect and clas-

sify targets and seamlessly track them across mul-
tiple cameras. It also generates a summary in
terms of keyframes and the textual description of
trajectories to a monitoring officer for final analy-
sis and response decision. This level of interpre-
tation was the goal of our research effort, and we
believe that it’s a significant step forward in the
development of intelligent systems that can deal
with the complexities of real-world scenarios.

Current system limitations include the inabil-
ity to detect camouflaged objects, handling large
crowds, and operating in rain and extreme
weather conditions. For the latest results and
information on Knight, visit http://www.cs.ucf.
edu/~vision/projects/Knight/Knight.html. MM
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Figure 6. (a) The first

row shows the cameras

installed in downtown

Orlando. (b) The

second row shows the

fields of view of all four

cameras. The objects

that are being detected,

tracked, and classified

are shown in bounding

boxes.


