
ORIGINAL RESEARCH PAPER

MinGPU: a minimum GPU library for computer vision

Pavel Babenko Æ Mubarak Shah

Received: 3 September 2007 / Accepted: 30 April 2008

� Springer-Verlag 2008

Abstract In the field of computer vision, it is becoming

increasingly popular to implement algorithms, in sections

or in their entirety, on a graphics processing unit (GPU).

This is due to the superior speed GPUs offer compared to

CPUs. In this paper, we present a GPU library, MinGPU,

which contains all of the necessary functions to convert an

existing CPU code to GPU. We have created GPU imple-

mentations of several well known computer vision

algorithms, including the homography transformation

between two 3D views. We provide timing charts and show

that our MinGPU implementation of homography trans-

formations performs approximately 600 times faster than

its C++ CPU implementation.

Keywords GPU � GPGPU � Computer vision �
Homography transformation

1 Introduction

Little research was conducted on general-purpose compu-

tation on GPU before 2000. Since 2002, there has been a

great deal of interest in GPU. A comprehensive list of

articles is available at [5]. In 2001, Rumpf and Strzodka

[24] described a method to implement level sets on GPU.

In 2002, Yang and Welch [27] studied image segmentation

and smoothing on graphics hardware. There were several

articles published in 2003–2004, many of which appeared

in computer graphics conferences rather than computer

vision. For example, in 2003 Moreland and Angel [18]

published an article in SIGGGRAPH conference on how to

implement fast Fourier transform on GPU. Later that year,

Colantoni et al. [4] described color space conversions, PCA

and diffusion filtering on GPU. In 2004, ‘GPU Gems 2’

dedicated a chapter to computer vision on GPU [8]. It

described correcting radial distortions, Canny edge detec-

tor, tracking hands, and image panoramas on GPU. Yang

and Pollefeys [26] published a CVPR paper later that year,

on implementation of real-time stereo on GPU. Ohmer

et al. [22] implemented a face recognition system using

Kernel PCA and SVM. Labatut et al. [16] utilized level set-

based multi-view stereo. The well-known SIFT algorithm

was employed in 2007 by Heymann et al. [14]. In 2006,

another implementation of Fast Fourier transform was done

by Govindaraju et al. [11]. Other methods that were

implemented include [5]: generalized Hough transform,

skeletons, depth estimation in stereo, motion estimation,

3D convolutions, contour tracking, segmentation and fea-

ture tracking, and matching. However, because articles

before 2005 used previous generations of graphics hard-

ware, their contribution is often outdated.

MinGPU is a library which hides all graphics-related

routines from the end user, which is particularly useful for

those who do not have particular skills or desire to delve

into low-level details of GPU programming. MinGPU can

be used as a basic building block for any GPGPU appli-

cation. It can help implement any algorithm on GPU.

Besides MinGPU, there exists another library which is

dedicated to computer vision on GPU. OpenVIDIA [9, 21]

is an open source library which contains many useful

vision algorithms, like edge and corner detection, feature-

based corner, object tracking, and image enhancement/

preprocessing routines. The complete algorithm list can be

found at [21]. OpenVIDIA also maintains a web page

P. Babenko (&) � M. Shah

Computer Vision Lab,

School of Electrical Engineering and Computer Science,

University of Central Florida, Orlando, FL, USA

e-mail: pavelb@cs.ucf.edu

123

J Real-Time Image Proc

DOI 10.1007/s11554-008-0085-x

which lists many recent computer vision related papers [5].

However, this library is not built upon a reusable core.

Another notable effort is the BrookGPU library [2].

BrookGPU was conceived as an extension to the C lan-

guage which supports stream programming and data-

parallel constructs. It includes a compiler and run-time

support libraries. This library has not been updated since

2004. The latest v0.4 release of BrookGPU can be down-

loaded from [3]. Yet another open source GPU library is Sh

[25]. Sh is a GPU metaprogramming library designed in

C++. It defines GPU objects and data types as C++

classes, and also defines operations on these objects in

terms of C++. Control structures are defined as C++

macros. Thus, it is possible to write programs for GPU

using C++ notation. However, the target users for this

library are graphics developers; this library serves as a

substitute for GPU languages like Cg, GLSL, or HLSL.

Both these medium-sized open-source projects feature little

documentation and are complex for users, who do not have

advanced knowledge of graphics processors and C++

programming. RapidMind [23] is a library similar to Sh in

that it wraps GPU constructs into C++ classes. In contrast

to Sh, the target users of RapidMind are multi-core soft-

ware developers. RapidMind is an attempt to provide a

unified high-level development platform for parallel com-

putations; it works with Cell, multi-core CPUs and GPUs.

This commercial library is also somewhat advanced in use

and does not give a direct control over GPU processors.

Our work makes two contributions to computer vision.

First, we have created a C++ class library, MinGPU. This

library can function as an introduction to GPU world for

researchers, who have never used the GPU before. We

intentionally designed the library and interfaces to be as

straightforward as possible. MinGPU provides simple

interfaces, which can be used to load a 2D array into the

GPU and perform operations. All GPU and OpenGL rela-

ted code is encapsulated in the library; therefore users of

this library do not need any prior knowledge of GPU. The

library is configurable for use in a variety of purposes. It is

available online on our web site at [17]. Our MinGPU

library is designed to work on nVidia 7000 series cards as

well as on ATI Radeon cards series R400 (ATI X800) and

later versions. We have designed and tested our library on

nVidia 7300LE card, which is a basic card in 7000 series

and is in widespread use. Some portions may be functional

on nVidia 6000 series cards as well as on former ATI cards.

In performance evaluations we used, unless stated

otherwise, nVidia GeForce 7300LE graphics card (‘GPU’)

installed in DELL XPS 410 desktop, featuring Core 2 Duo

2.4 MHz processor and 2 Gb of memory (‘CPU’).

Second, we have implemented three popular computer

vision methods on GPU, as well as the number of simple

image operations like taking image derivatives, Gaussian

smoothing and image pyramids. In this paper, we have

included implementations of pyramids and homography

transformations on GPU, while the descriptions and listings

of all other methods, including Lukas–Kanade optical flow

and optimized normalized cross-correlation, are included in

an extended technical report which can be downloaded

from our site [17]. For each of these methods, we present

timing and provide a detailed timing comparison of

GPU homography transformation versus its non-GPU

implementations.

GPU programming using OpenGL is not a trivial matter

even for experienced programmers. In summary, MinGPU

is a small, simple library which provides a quick intro-

duction to a programming on GPU. It works on most

graphics cards currently installed in personal computers,

making image processing algorithms portable between

different graphics devices from ATI and nVidia. Most PC

users probably don’t realize that their PC is equipped with

a parallel processor, which they can use with the help of

libraries like MinGPU.

This paper is organized as follows: in Sect. 2, we

present general information on the current state of art and

the evolution of GPUs, their architecture and design. In

Sect. 3, we give a brief introduction of our C++ class

library for the GPU-MinGPU. In Sect. 3 we also show how

to implement few common computer vision algorithms

with MinGPU, image derivatives and image pyramids.

Sect. 4 contains the MinGPU implementation of a more

complex computer vision method—the homography

transformation between two 3D views, as well as speed

comparisons and discussions. The MinGPU class structure

can be found in Appendix 1. The Appendix 2 contains code

listings of all programs mentioned in Sects. 2, 3, 4.

2 Current trends in GPU

2.1 Graphics processors

Most of today’s graphics cards from the largest GPU

makers, nVidia, and ATI, contain two processors, the

vertex processor and the fragment processor.

2.1.1 Vertex processor

All graphics cards operate on 3D polygons. Every polygon

is defined by (x, y, z) coordinates of its vertices. For

example, every triangle is defined by three vertices. The

camera vertex is usually set to be at (0, 0, 0). When the

camera moves, the coordinates of all polygon points must

be re-computed to reflect a change in the camera position.

This operation is performed by the vertex processor. Vertex

processors are specially designed to perform this operation

J Real-Time Image Proc

123

and therefore, are able to optimize the speed of coordinate

transformations. After the coordinates are recomputed, the

vertex processor determines which polygons are visible

from the current viewpoint.

2.1.2 Fragment processor

After the vertex processor re-computes all the vertex

coordinates, the fragment processor covers the visible por-

tions of the polygons with textures. The fragment processor

does this with a help of the ‘shader’ programs. Originally, in

the computer graphics world, the purpose of the ‘shader’

program was to add graphic effects to textures like shade

(hence comes the name), but now this feature is being

inherited by general-purpose GPU users. Up until a few

years ago, all shader programs were written in the assembly

language. However, as graphics hardware evolved and

became capable of executing much larger shader programs

a need for a specially designed language became evident.

Many contemporary shader programs are C-like programs

written in Cg, ‘C for graphics’ language. Cg language was

created by nVidia. nVidia supplies manuals and examples

on Cg, which can be found in the Cg Toolkit [7].

The most important difference between contemporary

CPUs and GPUs is that GPUs run programs concurrently

and are SIMD-type processors. The programs are executed

for every output texture pixel independently. Therefore, if

the GPU has 8 instruction pipelines in the fragment pro-

cessor, it is able to execute the same program on up to 8

texture pixels simultaneously. Contemporary fragment

processors have 4–128 instruction pipelines.

While both the vertex and fragment processors are

programmable, we are more interested in the fragment

processor because it is specifically designed to work with

textures which, in our case, can be viewed as 2D data

arrays. Therefore, all algorithms in this paper are designed

to work on a fragment processor. On the other hand, vertex

processor is optimized to work with pixels.

At the time of writing, the typical upscale desktop

computer is equipped with Intel Core 2 Duo processor

working at 2.4 GHz. Let’s roughly compare a productivity

of this processor to a productivity of nVidia 7300LE (light

edition) GPU, which is a commonplace graphics card

installed in the same desktop. We assume single-core CPUs

and no SIMD CPU operations are used. The clock rate of

7000 series nVidia GPUs lies in 400–700 MHz range. The

7300LE runs at 450 MHz. There are 4–24 pipelines in

fragment processor in the currently popular 7000 series.

The 7300LE contains 4 pipelines. We also take into

account that nVidia GPU pipelines can typically process

two pixels in one clock cycle and they process each of the

pixel’s 4 color channels simultaneously. Each pixel is

represented as a 4-float number (RGBA). Therefore, if we

set up our array so that each of RGBA float assumes a data

value (see Sect. 2), we gain an additional four times the

speed. After we multiply all the increases in speed, nVidia

7300LE works as a processor with a virtual 14.4 Ghz rate,

due to parallelism; this rate is already six times higher than

that of latest Intel Core 2 Duo 2.4 GHz CPU. The Table 1

illustrates trends in GPU developments in recent years.

Consequently, we find that the modest GPU card

installed in our computer has a performance about six times

higher than the latest CPU. If we install the latest nVidia

8800 GPU (1.5 GHz, 128 pipelines) it could yield a theo-

retical speedup of 106 times compared with the state-of-

the-art CPU.

It is hard to make an exact performance comparison of

current CPUs to GPUs for many reasons. Modern processors

are also equipped with technology which allows simulta-

neous processing of multiple data by the same instruction.

Starting with Pentium II, all Intel processors are equipped

with the MMX technology which allows sequential pro-

cessing of 4 integers. All Intel and AMD processors newer

than Pentium III include SSE—similar technology with

processing ability of 2 to 4 floating point numbers simulta-

neously. We also have to mention a recent trend to include

more than one processing core on chip. For example, recent

Pentium processors feature 2–4 cores which share the same

on-chip cache. Every core can be viewed as separate pro-

cessor. Nevertheless, the productivity of current graphics

processors significantly exceeds the productivity of CPUs

and this trend will continue.

Table 1 The trends in GPU evolution in recent years

Graphics card Year Shader unit clock

rate (MHz)

Shader

units

Texture fill

rate (billion/s)

Memory bandwidth

(GB/s)

Memory

max (MB)

GeForce 8800 Ultra May 2007 1500 128 39.2 103.7 768

GeForce 8800 GTX Nov 2006 1350 128 33.6 86.4 768

GeForce 7900 GTX Mar 2006 650 24 15.6 51.2 512

GeForce 7800 GT May 2005 550 16 9.6 32.0 256

GeForce FX 6800 Jun 2004 400 16 6.4 35.2 256

GeForce FX 5800 Jan 2003 400 4 4.0 12.8 256

J Real-Time Image Proc

123

On the other hand, due to physical constraints it is

impossible to run a transistor-based conventional processor

at a significantly higher speed than what is already attained

by the industry. Theoretically the only way to circumvent

this limit lies in the use of different base technologies, like

quantum technology. At the time of writing such technol-

ogy was many years down the line. Researchers in

computer vision are aware that many vision algorithms are

not currently able to run in real-time due to their high

computational complexity. We feel that the one way to

make this possible in observable future is the use of parallel

technology, such as those present in graphics processors.

2.2 GPU limitations

All GPUs suffer from two drastic design limitations. The

first limitation is, ironically, the fact that GPU computations

are done in parallel. The algorithm must be ready to work in

multi-thread mode in order to operate on the GPU, which is

not a feature of many algorithms. In the GPU, every pixel in

the 2D texture is processed independently. It may not be

possible to know the sequence in which pixels are processed;

therefore it is not possible to pass any data between pixels

while they are being processed. For example, let’s consider a

popular connected components algorithm which is used in

many vision algorithms today, the Canny edge detector.

There exist two versions of a connected components algo-

rithm: recursive and non-recursive. A recursive version

cannot be implemented on the parallel processor, because

being ‘‘recursive’’ implies the knowledge of the order in

which pixels are being processed which is not present in a

parallel processor. A non-recursive version of the connected

components algorithm uses a running variable, which con-

tains the largest region label currently assigned. It is not

possible, as it was stated above, to maintain this counter on

the parallel processor. There exist some parallel versions of

connected components [13]; however, those versions use

binary structures like graphs and trees, which are hard to

implement on the GPU. Currently, we do not know of any

successful implementation. In the GPU, when one processes

a pixel at (x, y) location one can only write the result into (x,

y) location of the output texture. There may be more than one

output texture (as many as 4–24 for 7000 series and up to 48

in 8000 series). We must also consider that every pixel is

comprised of 4 floats (RGBA value). For the 7300LE card,

one can write 16 values for every pixel processed, but they

cannot be written into any other than (x, y) location in the

output textures. This is the second limitation of graphics

hardware. Only the latest CUDA-technology based graphics

cards from nVidia allow scatter operations in addition to

gather operations.

For example, let’s consider building a color histogram

of a grayscale image. Every pixel in the input image may

take values in the range of 0–255, which means there are

256 bins in the color histogram. For every pixel pro-

cessed, we must increment one of 256 bins, which due to

the above limitation is not possible on the GPU. This is a

very simple algorithm, yet it is not possible to implement

it on the GPU. One source [21] devised an approach

which computes approximate color histogram on small set

of input values.

Many other researchers agree that the most promising

algorithms to implement on the GPU are filter-like algo-

rithms, which process every pixel independently of the

others. Examples of this include Gaussian smoothing,

convolutions, image pyramids, geometric transformations,

image de-noising, cross-correlation as well as many other

algorithms.

Contemporary computer architecture features one

impasse with respect to the GPU which we cannot avoid

mentioning, which is the transfer rate between main (CPU)

memory and GPU memory. The latest computers are

equipped with PCI Express memory bus, which is the

fastest expansion bus to date in desktop computers. This

memory bus has a full duplex transfer rate of 250 MB/s for

every lane (500 MB/s for PCI Express 2.0 released in

January 2007). There may be up to 32 serial lines, however

many commodity computers are equipped with less than

that. We measured main memory to GPU memory bus

transfer rate on our new DELL XPS 410 desktop to be

approximately 860 MB/s. At this speed it would take

approximately 4–5 ms to transfer an array of 1 million 32-

bit floating point numbers (1 k 9 1 k image) from the CPU

to GPU. Simple operations (addition, for example) over the

same array in the CPU (Core 2 Duo 2.4 MHz) would take

about 4 ms. Therefore, the time required to complete

simple array operations time such as transfering an array

from CPU to GPU is comparable to the time required for

applying an operation in the CPU. An example of this

backlog is given in the beginning of Sect. 3; we would like

to point out that some older GPU cards feature slower GPU

to CPU transfer rate than CPU to GPU. An interesting

recent trend in computer design is the appearance of

expansion connectors for HyperTransport buses, the front-

side buses used in many today’s computers as a fast link

between processor and a main memory. The HyperTrans-

port protocol supports 41.6 GB/s bandwidth in two

directions making it much faster than PCI Express.

Recently, plug-in cards, such as fast speed coprocessors,

have appeared and can access the HyperTransport bus.

3 MinGPU library

In the area of computer vision, we often encounter situ-

ations in which we need to process every point of a 2D

J Real-Time Image Proc

123

array (for example, in an image). It is done in a double

for loop as shown in the ‘Hello, World!’ example in

Sect. 3.1. Any 2D array can be represented as a GPU

texture. If we do not need to carry over any information

between the points of this array, we can implement the

inner part of this double loop as a shader (Cg) program.

The array is uploaded into the GPU as texture. Then, the

shader program is run and the output texture downloaded

back into main memory.

In this section we introduce the smallest possible library,

MinGPU, which can implement the above mentioned code

on a GPU. We attempted to convert the CPU code into

GPU in a straightforward manner. In Sect. 3.1, we present

an implementation of this double loop in MinGPU. The rest

of the section is dedicated to few more MinGPU examples

based on simple vision algorithms.

This section uses a learn-by-example technique. We

progress from simple, for instance taking image derivatives

and computing image pyramids to more elaborate exam-

ples, such as an implementation of a homography

transformation on GPU. In the following section we pres-

ent an elaborate GPU example, an implementation of a

homography transformation on GPU.

MinGPU is a C++ class library. Due to the incapsula-

tion paradigm, users do not need any knowledge of its inner

structure; therefore they do not need any knowledge of the

details of how the fragment processor or OpenGL drivers

operate. MinGPU contains only two classes: Array and

Program. The Array Class defines a 2D array in the GPU

memory, while the Program class defines a Cg program in

the GPU memory. All class methods are listed in Appendix

A. In a straightforward scenario, the user prepares the data

array and uploads it to the GPU using the methods from the

Array class. The Cg program is then loaded and compiled.

Program parameters can be set using the method from

Program class. The Cg program is then run and the results

are generated in the GPU memory, which are then down-

loaded to CPU memory by another call to a method from

the Array class. The ‘Hello, World’ example illustrates

this.

3.1 ‘Hello, World!’ example

We are going to convert this simple CPU code into GPU:

All code listings are given in the Appendix 2. The code

which implements ‘Hello, World’ on MinGPU is given in

Listing 1. This, as well as the most other listings, contains

two pieces: a C++ program and a Cg program. Let’s first

look at C++ program. It matches the idea we discussed

above in a straightforward way: we create both array and

Cg programs, copy the array to a GPU, set program

parameters and run it.

As for Cg program, we won’t be able to cover the entire

Cg language here (which you can find in a Cg user manual

[6]), but we can highlight some key points. First, our ori-

ginal program contains just one function, main, which is its

entry point. There are two input parameters to this function,

a parameter coords of type float2 and a parameter texture

of type samplerRECT. The parameter coords is bound to

pre-defined name TEXCOORD0, which contains (x, y)

coordinates of the currently processed pixel. Pre-defined

names are set automatically by the hardware, so we do

not need to provide values for these. Subsequently, the

parameter texture is a regular parameter which we must

initialize with a call to the SetParameter function. It is our

input array, which we want to increment by 1. The standard

Cg function texRECT fetches a value of texture array at

coords coordinates. In this simplified example, we used

the same Cg texture as both an input and an output array.

We store the intermediate value in the result variable, a

standard 4-float RGBA type. The assignment string

result = y + 1 increments each of four float values in

result by 1. In this way, every float in result will contain the

same value.

Cg functions return one 4-float RGBA value which is

the generated value for the current (x, y) texture pixel.

When we download this value to the CPU in luminance

mode (which is discussed in the following subsection),

OpenGL drivers take a mean of the 4 RGBA floats to

produce a single luminance value for each texture pixel. In

color mode, all 4 RGBA channels are returned. All Cg

programs run on every point in an output, not an input,

array. These two arrays can have different sizes.

3.2 MinGPU operating modes

The ‘Hello, World’ code has some implicit features which

we need to clarify. First, we always assume that MinGPU

input arrays contain grayscale values in the 0–255 integer

range. This array format is common in computer vision.

Second, all numbers a GPU operates on are floats of 8–32

bit length. Therefore, MinGPU converts inputted integer

arrays into floats. MinGPU uses 32-bit (4-byte) long floats.

This is the largest floating point format supported in

graphics cards today.

J Real-Time Image Proc

123

A fragment processor encodes every texture pixel as a

four float RGBA value, a quad. There is one float value for

the red, green, and blue colors and one for the alpha

channel. All operations on a quad are always performed on

all four floats in parallel by hardware. The Cg language

conveniently includes a special vector type definition float4

to define a quad.

While all MinGPU input arrays are invariably greyscale

MinGPU supports two color modes for arrays—a lumi-

nance and a color mode. The reason for this is that GPU

color modes are manufacturer-dependent. Since a lumi-

nance mode is expected for the nVidia family of processors,

it is guaranteed to work in all nVidia cards. However, for all

current ATI cards a color mode is required. nVidia also

fully supports a color mode. For list of color modes sup-

ported by different cards, see tables in [10].

In a luminance mode, every float in the quad holds the

same value of one input array cell. In a color mode,

MinGPU replicates every input value four times, so that

each float in a quad contains the same value. Luminance and

color modes are compatible on the level of a C++ code and

on the level of a Cg program. In MinGPU, a color mode is

specified on per-texture basis. The luminance mode is the

default. Textures can be created in a color mode by setting

bMode to enRGBA in a call to Array::Create.

3.3 MinGPU basic examples

In the following listings, we used a reduced notation. For

brevity, we implied that all required initialization has

already been done and omit array and program initializa-

tion code from C++ program. The example of a simplified

‘Hello, World!’ is given in Listing 2.

3.3.1 Taking image derivatives

Taking image derivatives is arguably the most straight-

forward computer vision algorithm. Image derivatives can

be taken in three different directions – dx, dy, and dt. As a

derivative kernel, we use Prewitt, Sobel or Laplacian 3 by 3

gradient operators.

The C++ code and Cg program for taking image

derivative in the dx direction are given in Listing 3. Texture

contains an input array and Kernel contains a smoothing

kernel. This code contains one more array, Output, than the

‘Hello World’ example. This array accumulates the deriv-

ative results. Initially, the Output array does not contain any

values, so we do not copy this array from a CPU to the GPU;

we create it right in the GPU instead. The array we use in

call to Output.Create receives the results when we down-

load them from the GPU with the CopyFromGPU method.

The programs for completing dy derivations are the

same, except for the kernel. The Cg program for dt

derivations must take two arrays, image 1 and image 2, as

input so it must be different. The chosen kernels K for this

derivative are a 3 9 3 matrix filled with a value of one and

the number one. We included Cg programs for dt deriva-

tions in Listing 4. Array T1 is an image at time t and array

T2 is the same image at time t + 1.

It must be noted that we cannot use the same texture for

both the input and output arrays. This is not possible

because the values of the points in the input array are used

in calculations of more than one output point. Also, the

order of calculations is unknown because all the calcula-

tions are done in parallel.

Listing 3 contains the first Cg program with loops. Of all

video cards which exist today, only the latest cards from

nVidia support loops in hardware; older graphic hardware

does not support hardware loops. This is the reason why the

Cg compiler unfolds some loops during the compilation. A

Cg compiler can only execute trivial loops. Loops with

number of iterations dependent on the input parameters

cannot be executed. This leads to using a fixed number of

iterations in Cg program loops, and consequently multi-

plies the number of Cg functions. For example, we have to

keep a separate derivative 3 9 3 Cg function for 3 9 3

derivative kernel, derivative 5 9 5 Cg function for 5 9 5

derivative kernel and so on.

3.3.2 Computing image pyramids

The pyramid computation is another simple vision algo-

rithm [1]. Pyramids are useful data structures for

representing image regions. The lowest level of the pyra-

mid is the original image. Each subsequent level in the

pyramid is one-fourth of the area of the previous level. The

process of going from higher to lower resolution is called

reduction, while the opposite operation is called expansion.

We have shown only the REDUCE operation, which is

computed according to the following formula:

glði; jÞ ¼
X2

m¼�2

X2

n¼�2

wðm; nÞgl�1ð2iþ m; 2jþ nÞ:

In the above equation, gl is an image at pyramid level l,

matrix w contains the weight mask, and i, and j are the

indices for the image’s columns and rows, respectively. A

C++ code and a Cg program for REDUCE operation are

listed in Listing 5.

In this example, the input and output array sizes do not

match. Because each pyramid reduction effectively reduces

the image size by half in both dimensions, the output array

side is half as long as the input array side. The important

question is how do we determine the values of array ele-

ments outside of the array boundaries? In two previous

examples, we were able to access such elements. In all of

the aforementioned examples, elements located outside of

J Real-Time Image Proc

123

the array are assigned the value of the nearest element in

the array. This behavior is hard-coded by a call to OpenGL

function glTexParameteri during array creation. There are

no other options; therefore if we need to assign a prede-

fined value, such as 0, to elements lying outside of the array

area, we have to fill our array with 0’s.

We would like to clarify here what we stated in Sect. 2.2

on the limitations of GPU limits. This section may have

given the wrong impression that GPU programming is

quite simple. In fact, a majority of algorithms either cannot

be implemented on current GPUs or can only be imple-

mented with significant difficulties. The problems arise due

to two reasons mentioned in Sect. 2.2. First, the fragment

processor does computations for all points in parallel and

therefore, the algorithm must be able to work in parallel.

In particular, it means that the order in which points

are processed is not known. Therefore, there are classes of

algorithms which cannot be implemented on GPU, notably

all recursive algorithms. Also, any global scope variables,

such as counters, cannot exist in a parallel algorithm, only

constants can be used. Another inconvenient and often

problematic limitation is that the current Cg programs can

write only to the location of the element they are currently

processing. Quite often algorithms have to be altered to

account for that limitation.

We began this section with the ‘Hello, World’ code, the

simplest MinGPU program. Unfortunately, that program

does not gain an increase in speed due to the use of the

GPU. While execution of the code took 2 ms on our GPU

compared to 4 ms on a CPU, there is an additional over-

head to transmit the array to and from the GPU, requiring

4 to 7 ms for the 4 MB array. Algorithms which operate

according to a ‘single array load–single use’ scheme will

likely not gain a significant increase in speed by uploading

to the ordinary GPU. In fact, if the computational portion is

small, it can even result in a decrease in speed. To be gain a

significant increase in speed from the use of the GPU, an

algorithm must operate according to the ‘single array load–

multiple use’ scheme. It is also desirable that the compu-

tational portion be large.

In the next section, we demonstrate this thesis by pre-

senting an example of an algorithm which operates

according to the ‘single load–multiple use’ scheme. We

demonstrate that the increase in speed, due to uploading the

algorithms built upon the aforementioned scheme to a

GPU, may be quite significant. Some algorithms which are

sluggish on a CPU can run in real-time on a GPU.

4 Further examples of MinGPU implementation

In this section, we present an example of an algorithm

which operates according to the ‘single array load-multiple

use’ scheme. This algorithm uses homography transfor-

mations. We have implemented this algorithm in Matlab,

C++, and MinGPU. We present execution times for both

CPU and GPU, and show that the GPU Cg implementation

operates approximately 600 times faster than CPU C++

implementation.

MRI imagery provides a 3D snapshot of a human body.

Thousands of body slices stacked together gives a snapshot

of the inner human. A similar idea has recently been pro-

posed [15] in the area of computer vision, a method which

involves fusing multi-view silhouettes to reconstruct the

visual hull of the 3D object slice-by-slice in the image-

plane. This method approximates an object by a set of

planes, slices, parallel to q reference plane. These slices

are related by plane homographies in different views. In

this section, we present a GPU implementation of this

algorithm. The algorithm cannot handle concave objects,

however for many other objects, such as human bodies, it

works reasonably well. We provide an outline of the idea

here, while transformation formulas and detailed explana-

tion can be found in [15].

Images of a scene are taken from different viewpoints,

with uncalibrated cameras, with an aim to recover a 3D

representation of the objects in the scene. The ground plane

homographies between different viewpoints are estimated

using SIFT features and RANSAC algorithm. Vanishing

points are computed by detecting the vertical lines in a

scene and then locating their intersection with RANSAC

algorithm. In this way, the geometry of the scene is

discovered.

To create a stack of object slices, the fact that warping

the silhouettes of an object from the image plane to the

plane in the scene using a planar homography is equivalent

to projecting a visual hull of the object on the plane is

utilized. Foreground silhouettes from different views are

warped to a reference view using the homographic trans-

formation. Figure 1c contains an example of what the

transformed silhouette of an image may look like. After the

transformations are applied, visual hull intersections are

found by overlapping transformed silhouettes. This opera-

tion is repeated for every slice because each slice resides on

different parallel planes; therefore different transforma-

tions are required between images and slice planes.

The following two examples illustrate this method. In the

first example, we have a single camera and a single object

on a rotating pad (Fig. 1a, b). The pad rotates at a constant

speed and the camera captures views at equal intervals of

time, which gives us views of the same figure from every 6�,

resulting in a total of 60 views. We create 100 slices of this

figure. For every slice and every view, we apply a homo-

graphy transformation to the slice plane (Fig. 1c), and then

we overlap (or fuse) the transformation results. Results for

slices 0, 35, 75, 99 are given in Fig. 1d–g.

J Real-Time Image Proc

123

The second example contains a view of an outside scene

(Fig. 1h, i). There are four cameras in the scene, and their

relative positions are unknown. People are present in the

scene and we have captured pictures of them from all four

cameras. We find the scene geometry using the method

described above. Then, by applying the homography

transformations, we construct a 3D sliced representation of

the people (Fig. 1j). The results are coarser than ones in the

first example, because here we are using just four views

compared to 60 in the first example. The more views we

have, the better the outline of the resulting slice.

We input multiple views of the same scene plus all

required planar transformation matrices (of 3 by 3 size) into

our algorithm. All input views contain binary values, 0 for

background pixels and 1 for foreground pixels. The desired

number of slices is 100. For every slice, each view will have

a separate transformation matrix to a ground plane.

We preload all views into the GPU. Then, for every

slice, we apply a homography transformation to every view

and integrate the results in the accumulator array. After all

views are processed the accumulator array contains the

‘sliced’ image (Fig. 1d–g, j), which is transferred back to

the CPU. Then, the accumulator array is zeroed and we

proceed to the next slice. Therefore, this method clearly

belongs to the ‘single image load–multiple use’ category.

When we apply the homography transformation to a

view, the resulting image becomes approximately ten times

larger than the original view and the points become too

sparse. To overcome this problem, we have chosen to use

inverse transformations. For every point in the resulting

image, we apply an inverse transformation and find its

value in the original view through bilinear interpolation.

We also crop and rescale the resulting image. We take a

region that is 200 9 180 points which are centered at the

coordinate origin. When filling this region, we consider

every 5th point in both the x and y directions. The C++

code and Cg program are included in Listing 6 with inline

comments.

Fig. 1 The results of implementation of visual hull intersection

method for reconstructing object model using plane homographies

implemented on GPU. a, b Solid figure on a rotating pad, c the

homography transformation, d–g resulting slices: feet, legs, lower

torso, upper torso, h, i two views, j slice of h and i at feet level

J Real-Time Image Proc

123

We implemented and ran the homography transforma-

tions algorithm on both the CPU and GPU. The CPU

version was implemented in C++. For evaluation, we used

60 views of the same object and generated 100 slices. A

speed comparison gives a better understanding of the rel-

ative performance of CPU and GPU processors. Execution

times are listed in Table 2. From this table we see that the

GPU implementation operates approximately 600 times

faster than the CPU implementation. In Sect. 2, we have

mentioned that the hardware advantage in speed of our

GPU over our CPU is approximately six times, so the

increase in speed we obtained in practice requires some

explanation.

We should note here that neither nVidia nor AMD dis-

close details about the inner structure of their processors.

So, there is some inherent bias in C++ CPU to Cg GPU

time comparisons. However, we can make some hypo-

thesises about the reason why this particular algorithm

worked much faster than expected.

In today’s computers, the onboard installed memory

(DRAM) tends to be hundreds of times slower than

memory installed on both CPU caches. Therefore, program

execution time heavily depends on the cache hit rate, which

is typically about 90–98% for the modern computers. If we

make a rough estimate of a marginal case when GPU cache

hit rate for both reads and writes is equal to 100%, we find

that the GPU with 100% cache hit rate will work up to a

hundred times faster than the CPU with 90% cache hit rate.

There are two reasons to believe that GPU’s cache hit

rate is higher than the corresponding CPU’s. We already

stated that when the fragment processor processes texture,

it cannot write into a position other than the position of a

current pixel. Therefore for current pixel (x, y), the shader

program can write an output only to a position (x, y) in the

output texture. This is a limitation of current GPUs.

However, there is a flip side to this limitation—it is

excellent for the cache write optimization, because the

memory write address is always known. Therefore, it is

possible to attain 100% cache write hit rate for GPU.

Second, because the same program is run for every pixel

in the texture, it often results in a predictable pattern of

memory reads. Unless you are using the conditional

statements in your GPU program, memory reads have a

predictable pattern. Therefore, it is natural to expect that

cache read hit rate will be higher for the GPUs than for

CPUs. The paper by Govindaraju et al. [12] gives some

further insight into cache-effective memory models for

scientific processing on GPU.

We would like also to mention here an observed speed

improvement of 7,750 times over similar Matlab code. This

means that while Matlab takes about 3 h to compute a single

transformation, MinGPU does the same in less than 2 s! The

time to load input images from a hard drive was not inclu-

ded; it is usually an additional 1–5 s, depending on the hard

drive model, operating system state and other parameters.

If we increase or decrease the number of views or slices,

the execution time increases or decreases likewise, this

means that the execution time is dependent on the number

of views and slices. However, tests have shown that the

execution time increases exponentially if the image size

exceeds a certain threshold. This threshold seems to vary

depending on the video card used; therefore it is a hardware

threshold. For our nVidia 7300LE graphics card, we found

it at approximately 6 MB (Fig. 2). This threshold roughly

corresponds to the size of the installed GPU memory cache.

If the total amount of data accessed by Cg program exceeds

this threshold, processing time grows according to expo-

nential law (Fig. 2).

We can infer from this section that the algorithms that

utilize homography transformations are particularly good

for implementation on the GPU.

We have also acquired the latest nVidia GeForce 8800

Ultra video card and performed our experiments with the

homography transformation algorithm on the same input

data set. GeForce 8800 video card was installed into the

same desktop computer. We have found that homographies

GPU code completes in about 0.35 s on the 8800 card,

which is less than a speed increase we predicted in Sect. 2.

We have to note that there are many factors which con-

tribute to the speed, such as the time required for executing

C++ code on CPU, time to initialize graphics libraries,

Table 2 Comparative execution times for homography trans-

formations

Time per

slice

Total time

MATLAB (for loops) 10.5 min Hours

MATLAB (built-in functions) 2 min 35 s Hours

C++ CPU 12 s About 25 min

GPU 0.02 s 3.5 s (including

1.5 s file read) Fig. 2 Time versus image size for visual hull intersection using

homography transformations

J Real-Time Image Proc

123

time slice taken by operating system and others. We have

discovered that C++ code compiled in debug rather than

release mode takes three to five times more time to execute.

So, such speed comparisons are subjective.

We would like to mention here the interesting feature

coming with those new cards—the CUDA technology [20].

CUDA works only with the latest 8800 series nVidia cards

[19] and Tesla, which makes it the blend of software and

hardware technology. CUDA allows to define shader pro-

grams (‘kernels’) in terms of the C code rather than in terms

of shader languages like Cg, GLSL, or Sh. The CUDA

toolkit contains a pre-compiler which compiles such C

kernels directly into the device binary code. This code can

then be linked to a C++ compilation by a host compiler like

Visual Studio or sent to an 8800 video driver. Thus, users

who have an access to 8800 cards are not constrained to a

use of shader languages. However, these cards are now the

most expensive graphics cards on market whose costs

routinely exceed the costs of a desktop computer. This

makes CUDA unavailable for many applications.

The other interesting features of 8800 series graphics

cards are that some hardware limitations are lifted. The

cards now support data scatter operations in addition to

gather operations. Also, the neighboring threads are

assembled into warps (currently collections of 32 threads),

which can use the shared memory and synchronization

services. While neither CUDA nor 8800 cards are typically

capable of performing the entire computation on the GPU,

and this technology does not prevent the user from

knowing the intrinsic details of the GPUs, those new

developments are promising and allow us to look opti-

mistically into the future.

5 Conclusions

We have created a small library for converting existing

CPU code in GPU, MinGPU, which proved to be an

exceedingly useful tool in our research. Using MinGPU,

we have implemented and tested a number of computer

vision algorithms– homography transformations, Lukas–

Kanade optical flow, correlation filters, pyramids, convo-

lutions, and Gaussian filters on a graphics processor (GPU).

Being a minimal GPU C++ library, MinGPU gives

researches an opportunity to quickly test their algorithms

on GPU. We have found, that using MinGPU the vision

algorithms can be considerably sped up, the homography

transformation algorithms in particular. Not only the GPUs

offer a considerable increase in speed, they also make it

possible for many algorithms to move into the real-time

domain. In our work, we have also highlighted some

inherent problems of contemporary GPU processors. We

are now working on extension of our library to include

other algorithms developed in our laboratory.

Acknowledgments We wish to express our gratitude for all the help

we received in writing of this paper. We would like to thank Andrew

Miller for his useful advice and help on GPU programming. The

dataset and method of homography transformations was provided

courtesy of Saad M. Khan. UAV IR dataset was provided courtesy of

VACE CLEAR evaluation.

Appendix 1: MinGPU library

1. MinGPU class structure

MinGPU class structure is intentionally made as straight-

forward and small as possible. MinGPU contains two

classes, Array and Program. Class Array defines an array, a

texture, in GPU memory, while class Program defines a

program in GPU memory. The library also includes the

MinGPUInit() function, which is implicitly called when

first MinGPU class is instantiated.

2. MinGPU methods. Class array

Class Array has three methods: Create, CopyToGPU, and

CopyFromGPU.

bool Array::Create(float *pData, unsigned int dwCols,

unsigned int dwRows, BYTE bMode)

This method defines a new array in GPU memory. The

Create method is supplied with a pointer to an array as well

as the number of columns and rows in this array. pData

must either point to an allocated space of dwCols by

dwRows size, or be null if the array we define will never be

copied to the GPU memory. If this array is copied from the

GPU memory and pData is null, then an array is created.

The last parameter, bMode, specifies whether the array will

be created in luminance or color mode. Note that array data

from pData is not transferred to GPU in this method; it is

done later, if needed, by the use of CopyToGPU method.

bool Array::CopyToGPU()

This method copies array data from computer memory

to GPU.

bool Array::CopyFromGPU()

This method copies array data from GPU to computer

memory.

3. MinGPU methods. Class program

Class Program has three methods: Create, SetParameter,

and Run.

bool Program::Create(char *szFilename, char

*szEntryPoint)

J Real-Time Image Proc

123

This method creates and, if needed, compiles a new Cg

program. The program is stored in the external file

szFilename. szEntryPoint holds the name of the entry

function in the program. Programs files must be located

either in working directory or in the ‘scripts’ subfolder.

Files with ‘asm’ extension are presumed to contain pre-

compiled binary programs; otherwise the file contains a

source code which needs to be compiled. This function

searches the folder for a binary program corresponding to

the source code. If it is found and it has a timestamp later

than the source file, it is loaded instead. Otherwise, the

source code is compiled and stored as binary code in a file

with ‘asm’ extension in the same folder. This eliminates

the need to recompile a program each time it is loaded,

which eliminates a 300–600 ms delay.

bool Program::SetParameter(int nType, char *szName,

void *pValue)

Most functions in Cg programs have input parameters.

For instance, we have to specify the input parameters for

the entry function before we execute a program. Parameters

can be values, arrays, matrices, or textures. Enumerator

nType specifies the type and number format of the input

parameter, string szName contains its Cg program name

and pValue holds the parameter value.

Besides the parameters we set with the SetParameter

method, functions may have parameters which refer to pre-

defined names [6]. For example, a parameter which refers

to name TEXCOORD0 will automatically receive the row

and column values for the currently processed pixel.

bool Program::Run(Array *output)

This method executes a Cg program on the GPU. Array

output accepts the output of this program; it is filled as a

result of program execution. The program is run separately

for every cell in the array output. A new value is generated

for every cell in this array.

All methods in classes Array and Program return true if

successful and false otherwise.

4. Library structure, installation, and required libraries

The MinGPU library consists of four Visual Studio pro-

jects. The first project, MinGPU, contains the MinGPU

library. Computer vision algorithms done on MinGPU

reside in the Vision project. There is also a helper project,

Math, which contains math functions used in the Vision

project. These three projects generate C++ libraries on

compilation. The fourth project, GPUTest, serves as a test

bed for these three libraries. It generates executable code

on compilation. GPUTest contains examples for all com-

puter vision algorithms in the Vision project.

Before using MinGPU, three other libraries must be

downloaded from internet and installed. These are Cg

Toolkit [7], OpenGL Utility Toolkit (GLUT) and Op-

enGL Extensions (GLEW). A description of where to

download those libraries and how they are useful in GPU

computing can be found at [10]. OpenGL 2.0 drivers are

supplied with Windows XP and it is important to install

these also.

Appendix 2: Source listings

Listing 1 (‘Hello, World’):
Array Array;
Program Program;
Array.Create(fpArray, cols, rows, Luminance);
Array.CopyToGPU();
Program.Create(strProgramFile, "main");
Program.SetParameter(enTexture, "texture", (void *) Array.Id());
Program.Run(&Array);
Array.CopyFromGPU();

float4 main (
 float2 coords : TEXCOORD0,
 samplerRECT texture) : COLOR
{
 float4 result;
 float4 val = texRECT(texture, coords);
 result = val + 1;
 return result; {or, equally, return 1 + texRECT(texture, coords);}
}

Listing 2 (‘Hello, World’ reduced):
…
Array.CopyToGPU();
Program.SetParameter(enTexture, "texture", (void *) Array.Id());
Program.Run(&Array);
Array.CopyFromGPU();

J Real-Time Image Proc

123

Listing 4 (image derivative in t direction):
float4 DerivativeT3x3 (
 float2 C : TEXCOORD0,
 samplerRECT T1, samplerRECT T2, uniform float3x3 K) : COLOR
{
 float4 result = 0;
 for (int row = 0; row <= 2; row ++)
 {
 for (int col = 0; col <= 2; col ++)
 {
 float4 p1 = texRECT(T1, C + float2(col - 1, row - 1));
 float4 p2 = texRECT(T2, C + float2(col - 1, row - 1));
 result = result + K[row][col] * p2 - K[row][col] * p1;
 }
 }
 return result;
}

float4 DerivativeT1x1 (
 float2 C : TEXCOORD0,
 samplerRECT T1, samplerRECT T2) : COLOR
{
 return texRECT(T2, C + float2(col, row)) - texRECT(T1, C + float2(col, row));
}

Listing 5 (pyramid REDUCE operation):
…
Array.CopyToGPU();
Mask.CopyToGPU();
Program.SetParameter(enTexture, "T", (void *) Array.Id());
Program.SetParameter(enArrayf, "Mask", (void *) Mask.Id());
Program.Run(&Output);
Output.CopyFromGPU();

float4 ReducePyramid (
 float2 C : TEXCOORD0,
 samplerRECT T, uniform float Mask[5][5]) : COLOR
{
 float4 result = 0;
 for (int row = 0; row <= 4; row ++)
 {
 for (int col = 0; col <= 4; col ++)
 {
 result = result + Mask[row][col] * texRECT(T, float2(2 * C.x + col - 2, 2 * C.y + row - 2));
 }
 }
 return result;
}

Listing 3 (image derivative in x, y direction):
…
Output.Create(NULL, cols, rows, Luminance);
Array.CopyToGPU();
Program.SetParameter(enTexture, "T", (void *) Array.Id());

Program.SetParameter(enMatrixf, "K", (void *) Kernel.Id());
Program.Run(&Output);
Output.CopyFromGPU();

float4 Derivative3x3 (
 float2 C : TEXCOORD0,
 samplerRECT T, uniform float3x3 K) : COLOR
{
 float4 result = 0;
 for (int row = 0; row <= 2; row ++)
 {
 for (int col = 0; col <= 2; col ++)
 {
 result = result + K[row][col] * texRECT(T, C + float2(col - 1, row - 1));
 }
 }
 return result;
}

J Real-Time Image Proc

123

Listing 6 (homography transformation):
{Initialize script. Set script parameters that won’t change later}
Script Script;
Script.Create(strScript_Homography, "main");
Script.Select();
Script.SetParameter(enFloat, "ratio", (void *) &fRatio);
Script.SetParameter(enFloat, "crop_x1", (void *) &crop_x1);
Script.SetParameter(enFloat, "crop_y1", (void *) &crop_y1);

{For every slice}
for (int slice = 1; slice <= SLICES; slice++)
{
 {Create and load empty output texture}
 Texture Accumulator;
 Accumulator.Create(fb uf, crop_x, crop_y);
 Accumulator.CopyToGPU();
 {Bind script to this texture}
 Script.SetParameter(enTexture, "result", (void *) & Accumulator)
 {For every view}
 for (int i = 1; i <= VIEWS; i++)
 {
 {set script parameters - view and homography matrix}
 Script.SetParameter(enTexture , "view", (void *) &View);
 Script.SetParameter(enMat rixf, "H", &HMatrix);
 {run the script}
 Script.Run(&Accumulator);
 }
 {recover results from the script}
 Accumulator.CopyFromGPU();
}

{Cg Script}
float4 main (
 {current coordinates in cropped region}
 float2 coords : TEXCOORD0,
 {3x3 homography transformation matrix}
 uniform float3x3 H,
 {(x, y) gives offset of cropped region in target image}
 uniform float ratio, uniform float x, uniform float y,
 {view refers to input view image, result refers to accumulator image}
 uniform samplerRECT view, uniform samplerRECT result) : COLOR
{
 {Input coordinates, coord, contain coordinates in cropped region, 200x180}
 {To do proper transformation, we have to convert coords to target image}
 float3 C = float3(coords[0] * ratio + x, coords[1] * ratio + y, 1.0);
 {the next three lines do homography transformation}
 float k = H[2][0] * C[0] + H[2][1] * C[1] + H[2][2] * C[2];
 float A = (H[0][0] * C[0] + H[0][1] * C[1] + H[0][2] * C[2]) / k;
 float B = (H[1][0] * C[0] + H[1][1] * C[1] + H[1][2] * C[2]) / k;
 {now take already accumulated value from the result …}
 float4 x = texRECT(result, coords);
 {… and add a new value to it}
 float4 y = texRECT(view, float2(A, B));
 return x + y;
}

J Real-Time Image Proc

123

References

1. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden,

J.M.: Pyramid methods in image processing. RCA Eng. 29(6),

33–41 (1984)

2. Buck, I., Foley, T., Horn, D., et al.: Brook for GPUs: stream

computing on graphics hardware. ACM. Trans. Graph. 23(3),

777–786 (2004)

3. BrookGPU source code: http://brook.sourceforge.net

4. Colantoni, P., Boukala, N., Da Rugna, J.: Fast and accurate color

image processing using 3D Graphics Cards. In: Vision, Modeling

and Visualization Conference (VMV) (2003)

5. Computer Vision on the GPU: http://openvidia.sourceforge.net/

papers.shtml.

6. Cg Toolkit User’s Manual. (2005)

7. Cg Toolkit: http://developer.nvidia.com/object/cg_toolkit.html

8. Fung, J.: GPU Gems 2, chapter Computer Vision on the GPU.

Addison Wesley, pp. 649–666 (2005)

9. Fung, J., Mann, S., Aimone, C.: OpenVidia: parallel GPU com-

puter vision. Proceedings of ACM Multimedia, pp. 849–852

(2005)

10. Göddeke, D.: Online tutorial on GPGPU. http://www.

mathematik.uni-dortmund.de/*goeddeke/gpgpu/tutorial.html

11. Govindaraju, N.K., Manocha, D.: Cache-efficient numerical

algorithms using graphics hardware. UNC Technical Report

(2007)

12. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A memory

model for scientific algorithms on graphics processors. UNC

Technical Report (2006)

13. Han, Y., Wagner, R.A.: An efficient and fast parallel-connected

component algorithm. J. ACM. 37 (3), 626–642 (1990)

14. Heymann, S., Müller, K., Smolic, A., Fröhlich, B., Wiegand, T.:

SIFT implementation and optimization for general-purpose GPU.

In: International Conference on Computer Graphics, Visualiza-

tion and Computer Vision (WSCG) (2007)

15. Khan, S.M., Yan, P., Shah, M.: A homographic framework for the

fusion of multi-view Silhouettes. In: International Conference on

Computer Vision, Rio de Janeiro, Brazil (2007)

16. Labatut, P., Keriven, R., Pons, J-P.: Fast level set multi-view

stereo on graphics hardware. In: 3rd International Symposium on

3D Data Processing, Visualization and Transmission (3DPVT),

pp. 774–781 (2006)

17. MinGPU source and technical report (case-sensitive): www.cs.

ucf.edu*vision\MinGPU

18. Moreland, K., Angel, E.: The FFT on GPU. SIGGRAPH, pp.

112–119 (2003)

19. NVIDIA GeForce 8800 GPU Architecture Overview. nVidia

Technical brief (2006). www.nvidia.com/object/IO_37100.html

20. NVIDIA CUDA Programming Guide 1.1. http://www.nvidia.

com/object/cuda_home.html.

21. OpenVIDIA GPU computer vision library. http://openvidia.

sourceforge.net

22. Ohmer, J., Maire, F., Brown, R.: Implementation of Kernel

methods on the GPU. In: Proceedings 8th International Confer-

ence on Digital Image Computing: Techniques and Applications

(DICTA). pp. 543–550 (2005)

23. RapidMind development platform and documentation, http://

www.rapidmind.net/.

24. Rumpf, M., Strzodka, R.: Level set segmentation in graphics

hardware. In: Proc. IEEE Int. Conf. Image Process. 3, 1103–1106

(2001)

25. Sh GPU metaprogramming library: http://www.libsh.org/

26. Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on

commodity graphics hardware. IEEE Comp. Vis. Pattern Recog.

211–218 (2003)

27. Yang, R., Welch, G.: Fast image segmentation and smoothing

using commodity graphics hardware. J. Graph. Tools 7(4), 91–

100 (2002)

Author Biographies

Pavel Babenko received his BS degree in Computer Science from

Belarussian State University of Informatics and Radioelectronics,

Minsk, Belarus, in 1998 and his MS degree in Computer Science from

University of Central Florida in 2006. From 1998 to 2004 he has

worked in information technology industry. Currently, he is working

toward the Ph.D. degree at the Computer Vision Laboratory at the

University of Central Florida. His current research interests include

general-purpose computations on GPU, multiple view geometry,

statistical pattern recognition and application of computer vision

methods to bioinformatics. He is a student member of the IEEE.

Mubarak Shah received the B.E. degree in electronics from Dawood

College of Engineering and Technology, Karachi, Pakistan, in 1979.

He completed the E.D.E. diploma at Philips International Institute of

Technology, Eindhoven, The Netherlands, in 1980, and received the

M.S. and Ph.D. degrees in computer engineering from Wayne State

University, Detroit, MI, in 1982 and 1986, respectively. He is the

Chair Professor of Computer Science and the founding Director of the

Computer Visions Laboratory, University of Central Florida (UCF),

Orlando. He is a Researcher in a number of computer vision areas. He

is a Guest Editor of the special issue of International Journal of

Computer Vision on Video Computing. He is an Editor of the

international book series on Video Computing, the Editor-in-Chief of

the Machine Vision and Applications Journal, and an Associate Editor

of the Association for Computer Machinery (ACM) Computing

Surveys Journal. He was an IEEE Distinguished Visitor Speaker from

1997 to 2000. Dr. Shah is the recipient of the IEEE Outstanding

Engineering Educator Award in 1997. He also received the Harris

Corporation’s Engineering Achievement Award in 1999, the Transfer

of Knowledge Through Expatriate Nationals (TOKTEN) Awards

from the United Nations Development Programme (UNDP) in 1995,

1997, and 2000, the Teaching Incentive Program Awards in 1995 and

2003, the Research Incentive Award in 2003, Millionaires’ Club

Awards in 2005 and 2006, the University Distinguished Researcher

Award in 2007, Honorable Mention for the International Conference

on Computer Vision (ICCV) 2005, and was also nominated for the

Best Paper Award in the ACM Multimedia Conference in 2005. In

2006, he was awarded the Pegasus Professor Award, the highest

award at the UCF. He was an Associate Editor of the IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI).

J Real-Time Image Proc

123

http://brook.sourceforge.net
http://openvidia.sourceforge.net/papers.shtml
http://openvidia.sourceforge.net/papers.shtml
http://developer.nvidia.com/object/cg_toolkit.html
http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html
http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html
http://www.cs.ucf.edu\~vision\MinGPU
http://www.cs.ucf.edu\~vision\MinGPU
http://www.nvidia.com/object/IO_37100.html
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://openvidia.sourceforge.net
http://openvidia.sourceforge.net
http://www.rapidmind.net/
http://www.rapidmind.net/
http://www.libsh.org/

	MinGPU: a minimum GPU library for computer vision
	Abstract
	Introduction
	Current trends in GPU
	Graphics processors
	Vertex processor
	Fragment processor

	GPU limitations

	MinGPU library
	‘Hello, World!’ example
	MinGPU operating modes
	MinGPU basic examples
	Taking image derivatives
	Computing image pyramids

	Further examples of MinGPU implementation
	Conclusions
	Acknowledgments
	Appendix 1: MinGPU library
	1. MinGPU class structure
	2. MinGPU methods. Class array
	3. MinGPU methods. Class program
	4. Library structure, installation, and required libraries

	Appendix 2: Source listings
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

