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Abstract The main goal of Nanotechnology is to
analyze and understand the properties of matter at the
atomic and molecular level. Computer vision is rapidly
expanding into this new and exciting field of applica-
tion, and considerable research efforts are currently
being spent on developing new image-based character-
ization techniques to analyze nanoscale images. Nano-
scale characterization requires algorithms to perform
image analysis under extremely challenging conditions
such as low signal-to-noise ratio and low resolution. To
achieve this, nanotechnology researchers require imag-
ing tools that are able to enhance images, detect
objects and features, reconstruct 3D geometry, and track-
ing. This paper reviews current advances in computer
vision and related areas applied to imaging nanoscale
objects. We categorize the algorithms, describe their rep-
resentative methods, and conclude with several promis-
ing directions of future investigation.

1 Introduction

In this paper, we review the state-of-the-art of com-
puter vision and related areas applied to imaging appli-
cations at the nano scale. Nanotechnology allows us to
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understand unique properties of matter at atomic and
molecular level spanning a wide range of applications
in areas such as medicine, micro-processor manufactur-
ing, material sciences, and environmental technologies.
The use of image-based characterization techniques are
essential to nanoscale research, and the role of image
analysis has considerably expanded over the past few
years. Visual inspection of defects, particle selection,
and analysis of three-dimensional (3D) structure are few
examples of tasks performed with the help of images in
nanoscale sciences. We believe that nanoscale image-
based characterization represents a novel and rich field
of application for both computer vision and image pro-
cessing technologies. Current development in computer
vision algorithms in object recognition, 3D reconstruc-
tion, filtering, and tracking represent a small sample
of the many potential applications of computer vision
research that can be applied to nanoscale imagery.

Traditional computer vision algorithms analyze im-
ages generated by the interaction of visible light with
the observed scene. In nanoscale characterization, im-
ages are mostly created by measuring the response of
electrons on the material’s surface as they interact with
emitted electron beams and atomic size probes. This
non-conventional acquisition process poses several chal-
lenges to traditional computer vision methods. Most of
these challenges are due to the type of imaging instru-
mentation required to analyze objects at such a small
scale. In the following sections, we summarize some of
these main challenging factors:

• Extremely low signal-to-noise ratio (SNR). Nano-
scale images usually have extremely low signal to
noise ratio even when generated by highly sophis-
ticated imaging devices such as the Transmission
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Electron Microscope (TEM) and Scanning Electron
Microscope (SEM). The high level of noise in these
images can be considered the major complicating
factor for computer vision algorithms.

• Transparent appearance of specimens. Nanoscale ob-
jects may have transparent appearance (e.g., crystals
and biological structures). This transparency creates
an extra challenge to algorithms for vision applica-
tions such as feature detection, recognition, and 3D
reconstruction algorithms.

• Limited number of images per observation. The
destructive nature of some imaging procedures as
well as lengthly image acquisition procedures reduce
the number of images that one may use for analysis
and training. As a result, computer vision methods
will need to train and work on very reduced data sets
that will pose further challenges to the algorithms.

• Complex image formation geometry. Traditional
model (perspective) of imaging formation does not
always constitute a reasonable model for nanoscale
imaging devices. Orthographic and affine projections
are usually considered as reasonable approximations
of the imaging geometry of electron microscopy.
However, more extensive work is still to be done
on modeling the electron image formation process
from the computer vision standpoint.

The amount of research on nanoscale imaging analysis
has increased considerably in the past 10 years. Recent
advances by both computer vision and image processing
communities combined with the availability of afford-
able high-performance computer hardware are making
image-based nanoscale characterization an important
research field. In this paper, we aim to provide a review
of computer vision and image analysis techniques used
for nanoscale characterization.

A large amount of the current work in the literature
deals with the problem of particle detection. Automatic
particle detection is a required step before another main
task in nanoscale imaging, the 3D reconstruction of par-
ticles, can be performed. These two tasks are closely
related as the process of reconstructing the 3D geom-
etry of individual particles requires a large number of
images taken from varying angles. In some applications,
the required number of particles to produce reasonable
3D models can be as large as tens of thousands. 3D
modeling of nanoscale objects is another active area of
research. Finally, image enhancement and virtual reality
applications are other popular topics.

In this paper, we focus mainly on the application of
computer vision to images of objects at a typical scale
of less than 100 nm. Images of objects of such a small
scale are produced by electron microscopy such as the

scanning electron microscope and the transmission elec-
tron microscope. However, some of the approaches dis-
cussed in this paper can also be applied to larger-scale
objects. For instance, optical and fluorescence micros-
copy represent two other fields with plenty of applica-
tions for computer vision algorithms. However, these
methods will not be discussed in this paper, as the res-
olution of fluorescent microscope is the same as their
optical counterparts. Fluorescent microcopy allows for
the characterization of in-vivo biological specimens that
can be processed [77], reconstructed in 3D [69], and
tracked [7,9].

The remainder of this paper is organized as follows.
Section 2 reviews the most common imaging instruments
used for characterization of nanoscale objects. Section 3
provides a taxonomy of the methods. We conclude in
Sect. 4 by summarizing a few directions for future com-
puter vision research in this new and exciting field of
application. As in any new area of research, there is a
large number of problems to be addressed.

2 Nanoscale imaging devices

In this section, we provide a brief description of the most
commonly used nanoscale imaging devices. In order to
develop effective image-analysis algorithms it is impor-
tant to understand the basic principles behind the image
formation for each instrument. A more detailed descrip-
tion of the optics and physical principles used in elec-
tron microscopy can be found in [29,32,87]. Nanoscale
images are often obtained by measuring the level of
energy produced by the interaction of electrons on the
specimen’s surface with a beam of electrons emitted
by the microscope. This is the basic essence of imaging
devices such as scanning electron microscopy (SEM)
and transmission electron microscopy (TEM). Images
at the nanoscale are also obtained by measuring the
reactive force resulting from the interaction of a nano-
scale mechanical stylus-like probe with the specimen’s
surface. Atomic force microscopy (AFM) is an example
of such a technique. In Fig. 1 we illustrate the visualiza-
tion range for the currently available major microscopes
along with examples of structures that are visualized at
those scales. For comparison purposes, the figure also
includes examples of the resolution range achieved by
light microscopy.

In this paper, we focus on images produced by elec-
tron microscopy (i.e., TEM[87], AFM [50] and SEM[29,
87]), as they are the main visualization devices used
in current nanotechnology characterization. Figure 2
shows examples of images taken using the three types
of microscopes. Below we briefly describe each of them.



Computer vision for nanoscale imaging 149

Fig. 1 Visualization scale of nanoscale imaging devices and examples visualized at specific scales (Adapted from [25])

Fig. 2 Electron microscope images. a SEM image of a pollen grain. b TEM image of a nanotube. c AFM image of the surface of living
cell (Image from [34])

Scanning electron microscopy Scanning electron mi-
croscopies construct an image of an object by detecting
electrons resulting from the interaction of a scanning
focused-electron beam with the surface of the object
operating in high vacuum. The samples of the analyzed
material are required to be conductive, as insulated sam-
ples will produce distorted images. As a result, samples
are often coated with a thin layer of metal (e.g., gold
coating). The resolution limit depends mainly on the
beam spot size and it can be as small as 1 nm. A com-
mon imaging problem in SEM is the possible reaction of
the gas with the beam spot due to possible residuals from
diluted gas that remains in suspension inside the SEM
chamber. This reaction considerably limits the imaging
time for true nanoscale objects and often causes a SEM
imaging section to produce only a single noisy image of
the observed object. Figure 2a shows an example of a
SEM image from a pollen grain. SEM images are 2D
projections of the 3D imaged specimens. The resulting
pixel intensity approximately obeys the inverse of Lam-
bert’s law [52], which states that the flux per unit solid
angle leaving a surface in any direction is proportional
to the cosine of the angle between that direction and the
normal to the surface [41].

Transmission electron microscopy Transmission elec-
tron microscopy can be considered the most powerful
and truly atomic resolution imaging method currently
available. It differs from SEM by its sophisticated optics
and a very small high-energy power beam of electrons
that passes through the sample. Transmittance though
samples is required so that the microscope can achieve
visualization at the atomic level. When compared with
conventional optical scale images, transmission micros-
copy images can have considerably low contrast and
extremely low signal-to-noise ratios (SNR). These are
the main problems for surface characterization of true
nanoscale specimens. The imaging process can be time
consuming, and tedious manual tuning results in a lim-
ited number of images of each specimen. In Fig. 2b, a
carbon nanotube is imaged using TEM along with a few
individual particles.

Atomic force microscopy This microscope follows
the principle of traditional stylus-based mechanical profi-
lometers [50]. It uses a sharp-tipped micro cantilever
mounted on a probe tip of the microscope. The probe
tip scans the surface of the sample object and a laser
beam measures the probe’s deflections. AFM images are
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Table 1 Nanoscale imaging
instruments Instrument Data type Typical resolution Key points

SEM 2D 3–7 nm Non-metalic samples require metalic sputtering
Inverse Lambertian reflectance

TEM 2D 0.10–1 nm Demanding sample preparation
Damaging to biological samples
Low signal-to-noise-ratio

AFM 3D 1–100 nm Spatial resolution limited by size and shape of probe tip

Table 2 Categorization of
computer vision methods for
nanoscale imagery

Approach Representative Work

Image enhancement and noise removal Anisotropic diffusion [8,76,77]
Structured illumination for super-resolution [31,73]

Particle detection Template correlation [63]
Detecting edges [37,92,94,95]
Gray level intensity statistics [79,91]
Appearance-based recognition [58,96]
Neural networks [65]

3D reconstruction Multiple-view geometry [12,13,42]
Tomographic projection reconstruction
[28,43,60,74,81,85]
Snakes-based stereo reconstruction [44]

Visualization Multi-modal registration for visualization [22,23,78]

similar to range images (i.e., surface depth or topogra-
phy) and resolution is mostly limited by the finite curva-
ture of the tip. Unfortunately, deflection of the probe tip
accounts for the interaction of large number of atoms,
rendering atomic definition unreliable. AFM is capable
of better than 1 nm lateral resolution on ideal samples
and of 0.01 nm resolution in height measurements. The
3D surface generated by this microscope does not pro-
vide information about the 2D texture on the analyzed
surface as does SEM. An example of a surface obtained
using AFM is shown in Fig. 2c.

Other available methods for nanoscale imaging in-
clude Near-field scanning optical microscopy (NSOM)
[68], that uses a sub-wavelength light source as a scanning
probe, and the superconducting quantum interference
device (SQUIDs) that measures magnetic responses at
the nanoscale [30]. New methods for characterization of
nanoscale structures are also being developed [40,71].

In general, the quality and resolution of images pro-
duced by nanoscale characterization devices depend on
various factors, including the nature of the imaged object
and the device characteristics. Table 1 summarizes the
information in this section. Low SNR and reduced num-
ber of images are the main limiting factors for the direct
application of computer vision methods to these images.
In the next section, we describe current applications of
computer vision methods to nanoscale imagery.

3 Computer vision methods for nanoscale images

In this section, we categorize and review existing work
on nanoscale imaging in the computer vision literature.
Current computer vision methods for nanoscale charac-
terization mostly deal with four main applications listed
below:

1. Image enhancement and noise reduction. Low res-
olution images with high levels of noise represent a
major problem in nanoscale characterization. Aniso-
tropic diffusion methods appear to be the most
suitable for filtering noisy nanoscale images. These
methods successfully filter noise while preserving
relevant edge details in an image.

2. Particle detection. Automatic detection is a required
pre-requisite for 3D shape reconstruction of parti-
cles. Accurate modeling requires the identification of
thousands of particles. This application is of primary
importance in Structural Biology.

3. Three-dimensional reconstruction. SEM and TEM
images are inherently 2D projections of 3D samples.
The reconstruction of the observed object is typi-
cally achieved in two main ways: tomographic-like
reconstruction from projections and multiple-view
geometry reconstruction based on epipolar geome-
try constraints.
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Fig. 3 Example of noise removal in TEM images using anisotropic diffusion. Top row original noisy images. Bottom row filtered images

4. Visualization. Methods for visualization and virtual
reality applications at the nanoscale are strongly re-
lated to computer vision techniques such as online
tracking, image fusion, and image-based rendering.
Integration of computer vision and virtual reality
can support several aspects of nanoscale character-
ization.

Table 2 summarizes algorithms and lists representa-
tive papers on the application of computer vision tech-
niques

3.1 Image enhancement and noise removal

One of the major challenges in analyzing images of
nanoscale objects is the extremely low SNR present
in the images even when highly sophisticated imaging
devices are used. Addressing this noise problem is a
complex task as traditional filtering algorithms work
by attenuating high-frequency content and may cause
blurring of relevant details in the image [10]. Ideally,

we would like to preserve relevant image-edge informa-
tion while removing undesirable noise. Techniques such
as anisotropic diffusion [67,88] are ideal candidates to
handle this type of problem. Anisotropic diffusion al-
lows for the inclusion of an edge-stopping function that
controls the level of smoothing across relevant image
details. The classic filtering equation as proposed by
Perona and Malik [67] can be defined by the following
partial differential equation:

∂I(x, y, t)
∂t

= div[g(‖∇I‖)∇I], (1)

where ‖∇I‖ is the gradient magnitude of the image
and g(‖∇I‖) is an edge-stopping function that slows the
diffusion across edges. An example of an edge-stopping
function is g(x) = 1/(1 + x2/K2) for a positive K [67]. In
Fig. 3, we display results using this method [67] on two
TEM images. The top row shows three noisy images of
nanoparticles. The bottom row shows the filtered ver-
sions of each image after performing diffusion-based
noise cleaning. The edges are preserved while the noise
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Fig. 4 Empirical distributions. a High-quality image (ground truth). b Low-quality image. Log distribution of intensity
differences (fi − gi). c Log distribution of horizontal edges of the high-quality image. d Log distribution of the high-quality image.
(All images from [75])

content is removed. This is a very important feature
for noise cleaning algorithms in nanoscale imaging as
the accuracy of edge location and particles shapes are
essential.

Recently published work demonstrates the potential
of these techniques on images of nanoscale objects [8,
76]. The most representative work on filtering nano-
scale images is the work of Scharr et al. [76,75], that de-
scribes a diffusion-based method for enhancing silicon
device images. Diffusion-based methods are well suited
for noise removal in low-quality nanoscale images. One
of the main advantages of this technique is that parame-
ters of robust image statistics can be learned from exam-
ples. Anisotropic diffusion and its relationship to robust
statistics is described in [8].

The method proposed by Scharr et al. [75,76] works
by creating a statistical model of the noise characteris-
tics and using this model as prior knowledge for reduc-
ing noise in low quality images of silicon devices. The
idea is to create prior distribution models for both noise
and desired features (edges). The parameters of these
distributions are estimated by comparing image statis-
tics from samples of both low and high quality images
of a given imaging device (e.g., SEM, TEM) and the
observed material (e.g., silicon device). Their method
is based on the statistical interpretation of anisotropic
diffusion [8], as it allows for a mechanism to automat-
ically determine what features should be considered as
outliers during the filtering process. Additionally and
most importantly, the robust statistics framework allows
forthe inclusion of spatial and noise statistics as con-

straints which can be used to improve continuity of edges
and other important features in the images.

As we mention earlier in this text, the process re-
quired to acquire high-quality images of nanoscale ob-
jects can be both time consuming and destructive. As a
result, it is usually preferable to work with lower-quality
images. Thus, noise cleaning algorithms are essential for
this type of data. Scharr et al. [75] assumes an additive
generative model for the pixels in the noisy image such
that fi = gi + η, where fi is the intensity of a pixel in
the low-quality image, gi is the intensity of a pixel in
the ground truth image, and η is the noise value origi-
nated from an unknown distribution. It turns out that an
empirical estimation of the distribution can be obtained
from the difference between the high- and the low-qual-
ity ones. Figure 4a,b show an example of a high-quality
and a low-quality image of a silicon circuit board. Fig-
ure 4c,d shows the distributions of gray level intensity
differences between two images (a) and (b), and the
log distribution of the horizontal edges (a) and vertical
edges (b), respectively.

The next step is to fit known distribution models to
the estimated empirical distributions. Scharr et al. [75]
use an adapted version of a recently-proposed model for
computing the statistics of images of man-made scenes
[53]. Recent work on modeling the statistics of both
natural and man-made images is likely to play an impor-
tant role on the development of new methods for
enhancing the quality of nanoscale images [33,39,53].
Following [53], Scharr et al. [75] propose the use of
t-distribution perturbed by Gaussian noise.The image
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is represented by a mixture model [61] in which the first
term captures the image edge statistics and the second
term captures the image noise:

p(X = x) = w
Z

(
1 + x2

σ 2
1

)−t

+(1 − w)
1√

2πσ2
exp

(
− x2

2σ 2
2

)
. (2)

In Eq. 2, X is a random variable representing an edge
filter response for the image (data difference, horizon-
tal and vertical derivatives), 0 ≤ w ≤ 1 represents the
mixture proportions of the two terms, and Z is a nor-
malization factor that ensures that the integral of the
first term of the equation is 1. Based on the previous
assumptions, the image recovering problem can be cast
as the maximum a posteriori estimation problem:

p(g|f) =
∏

i

(p(fi|gi)

J∏
j=1

p(nj∇gi)), (3)

where p(fi|gi) is defined by the measured image sta-
tistics, and p(nj∇gi) is a spatial prior in terms of local
neighborhood derivatives. The maximization of Eq. 3 is
achieved using the standard minimization of the nega-
tive logarithm. Scharr et al. [75] also propose the use a
B-spline approximation of the likelihood function and
apply a gradient descent to estimate the parameters of
that function. The B-spline model is a robust statistics
kernel ρ(x) that allows the problem to be converted to
a robust statistics anisotropic diffusion of the following
form:

E(g, ∇g) =
∫
�

ρ0(g(x) − f (x)) + λ

J∑
j=1

ρj(|nj∇σ g(x)|)dx,

(4)

where x is a pixel location in the image domain �. Fig-
ure 4f–h show some of the results produced using this
method. The above framework can be directly extended
to the multidimensional case. Scharr and Uttenweil-
ler [77] demonstrate the application of the 3D extension
of the diffusion filtering to the problem of enhancing
time-varying fluorescence microscopy images of Actin
filaments.

The combination of robust statistics and anisotropic
diffusion can be considered as one the most effective
methods to enhance the quality of noisy nanoscale im-
ages. The framework is also promising if coupled with
other computer vision techniques such as object recog-
nition and image segmentation. The use of prior knowl-
edge can be extended by employing more advanced
models for spatial interaction [49] rather than simply

representing the priors by means of 1D frequency
distributions of edge directions.

3.2 Automatic particle detection

The ability to automatically detect particles in TEM im-
ages is essential in cryo-electron microscopy [62,96].
Detecting single particles represents the first stage of
most 3D single particle reconstruction algorithms [28,
81,60]. Usually, a typical particle 3D reconstruction pro-
cess would necessarily need to use thousands of or even
millions of particles to produce a reasonable 3D model.
This alone makes manual interaction for particle selec-
tion unfeasible and practically impossible. In the litera-
ture, the problem of particle selection is by far the most
studied problem in nanoscale computer vision. A recent
comparison of particle detection algorithms for TEM
images is presented by [96], and an overview of current
methods can be found in [62].

Methods for particle detection in TEM images can
be broadly grouped into two main classes: non-learning
methods and learning methods. Next, we summarize the
two approaches.

3.2.1 Non-learning methods

The main characteristic of non-learning methods is that
they do not require a training or learning stage. Methods
in this group include approaches based on template cor-
relation [4,68,80], edge detection [37,92,95], and gray
level intensity [79,91]. However, non-learning methods
tend to be less flexible and sensitive to both noise and
small variations in particle appearance when compared
to other approaches (Fig. 5)

Particles in micrograph images tend to have very sim-
ilar appearance, and sometimes can be assumed to ap-
pear in a reduced number of poses. If the appearance and
size of the particles do not change, template-matching
algorithms [14] can help determine the location of the
particles. Template matching based on cross correla-
tion [11] is one of the mostly used methods for object
detection in images. It works by calculating a match-
ing score between a template image and an input image
that contains instances of the objects to be detected.
The cross correlation between a template g(x, y) and an
image f (x, y) is given by:

f (x, y) ⊕ g(x, y) =
∫

f (x, y)g(x + α, y + β)dαdβ, (5)

where α and β are dummy variables of integration.
Correlation-based approaches for particle detection
work well when the location of the object is determined
mostly by an unknown translation. However, techniques
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Fig. 5 Detecting particles using correlation-based approach. a Original micrograph image. b Template for matching and 3D surface plot
of the correlation peak. c Correlation response on entire image. d Detected particles (All images from [4])

Fig. 6 Detecting circular particles using an edge-based Hough transform approach [95]. a Original micrograph image. b Detected edges.
c Accumulation space of Hough transform. d Detected particles (All images from [95])

usually generate a large number of false positives, creat-
ing the need for manual intervention. Image noise also
represents a challenge for correlation-based methods
and filtering is usually required before correlation takes
place (Fig. 5).

Some particle detection uses edge-detection tech-
niques [37,92,95]. The process consists of detecting
edges in the micrograph images. The detected edges are
grouped into a shape model used to detect the particles.
Examples of such methods include the use of distance
transform and Voronoi diagrams [92], and robust voting-
based methods such as Hough transforms [95]. Hough
transform-based methods work by accumulating edge
angle information in a polar coordinate system [21].
The peaks of the polar accumulation space represent
the coordinates of the center location of each individ-
ual particle. Figure 6 summarizes the process of particle
selection described in [95]. In the Figure, (a) shows the
original image where particles are to be detected, (b)
displays the edge map estimated using an edge-detec-
tion technique, (c) shows the Hough accumulation space
(highly-voted locations are shown as brighter points),
and (d) shows the final detected particles. The Hough
transform allows for the detection of any generic shapes,
circles and rectangles are the simplest ones.

Analysis of the geometric arrangement of edge infor-
mation has been used by Yu and Bajaj [92]. The authors
describe a particle-detection algorithm that works by fit-
ting Voronoi diagrams [2] to the distance transform [36,
70] of an edge map. The method allows for the detec-
tion of rectangular and circular particles in micrographs.
The strong reliance on edge-map information makes the
method sensitive to noise. To minimize the effects of
noise, the authors suggest the use of filtering techniques
such as anisotropic diffusion [67,88].

Particles in micrographs tend to have an overall dark
appearance when compared to the noisy image brack-
ground. Information on the homogeneity of pixel gray
level intensity may also be used for particle detection.
The key idea is to detect individual regions that have spe-
cific concentrations of darker pixels. Yu and Bajaj [91]
proposed a gravitation-based clustering algorithm that
is similar to mode-finding algorithms such as the mean
shift [17]. The gravitation-based algorithm assumes that
particles represent disconnected regions of low pixel
intensity. Detection is accomplished by clustering these
regions followed by consistency tests to eliminate false
positives connected particles.

Singh et al. [79] proposed a particle detector based
on clustering regions containing pixels of low intensity.
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Fig. 7 Detecting particles using learned features. a Images of particles. b Images of non-particles. c Multi-scale, multi-orientation
rectangular set of features used for training. d Best selected features for detection. e Image containing particles to be detected.
f Detected rectangular particles. g Detected circular particles. (All images from [58])

In this case, the authors propose the use of a statistical
model of pixel-intensity distribution based on Markov
Random Fields [55]. Regions of the micrograph that are
likely to contain particles were determined by a seg-
mentation algorithm and the parameters of the Markov
Random Field were estimated using the Expectation–
Maximization algorithm [19]. However, the detection
of the correct location of each particle is a slow process
and produces many wrong detections.

The next group of methods use machine-learning tech-
niques to build detectors that are capable of learning the
general appearance of the particles.

3.2.2 Learning-based methods

Learning-based methods typically work in a two-stage
process [58,96]. The first stage is called learning. Dur-
ing this stage, an appearance model is created from a
set of training images of particles. The learned models
will allow for the recognition of particles even under
variations in appearance and a certain level of image
noise. The second stage is the detection stage that con-
sists of scanning the target at every location in the search
space for acceptable matches. The location of the best
matches will be the location of the detected particles.
Methods based on neural networks are also included in
this group [65].

The image is scanned for the presence of particles
that are similar to the learned model. Methods in this
group have the advantage of being both very general
(i.e., able to detect particles of any shape) and robust to
noise, two critical requirements in TEM image analysis.

As mentioned earlier in this paper, the main problem
encountered by current particle detection algorithms is
the inherent SNR in TEM images. As a consequence,
boundary and shape extraction are hard to accomplish.
A second problem is that the shape of the particles
may not be geometrically defined, resulting in the need
for more complex appearance models. Learning-based
algorithms such as the one proposed by Viola and Jones
[86] represent a promising way to solve the problem
of particle detection under noisy conditions. However,
depending on the level of complexity of the objects, the
learning stage can be computationally demanding and
slow. Additionally, good detection rates depend on the
ability of the classifier to learn a representative model
for the particles. This usually requires that a large num-
bers of features are measured over a large number of
training images.

Mallick et al. [58] applies an Adaboost-based
learning algorithm to detect particles in Cryo-EM micro-
graphs. Their method works as follows. First, a training
set containing images of particles and non-particles is
used to train the classifier. This is an off-line process.
Once the classifier is trained, an on-line detection pro-
cess is performed to detect the location of the particles
in the micrograph. Figure 7a,b show examples of images
from both particle and non-particle training set, respec-
tively. Figure 7c shows the type of features used by the
classifier during the training stage. Figure 7d shows the
best-performing features determined by the Adaboost
learning. Figure 7e–g show a micrograph image and the
resulting detected particles (circular and rectangular,
respectively).
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The detection stage in [58] uses a two-stage cascade
classifier. The cascade design aims at speeding the detec-
tion process by ruling out most of the non-particle im-
ages at the first stage. The second stage makes the final
decision if a subregion should be accepted as a particle.
The key idea here is that a strong classifier can be built
from a linear combination of weak classifiers [86]. In
turn, classifier F(t) at each stage is composed of a linear
combination of K simple classifiers based on a single
feature (weak classifiers). For example, let fk(t) with
k ∈ {1, . . . , K} represent weak classifiers that produce
a response +1 or −1 for each particle or non-particle
subimages, respectively. A strong classifier for a stage of
the cascade can be formed as a linear combination of
the weak classifiers as follows:

F(t) =
{

+1,
∑K

k=1 αkfk(t) ≥ T
∑K

k=1 αk

−1, otherwise,
(6)

where α = (α1, . . . , αK) is a vector of weights indicat-
ing the contribution of each classifier to the final deci-
sion and T is a threshold that determines the tradeoff
between false-negative and false-positive rates. The ap-
proach consists of training a large number of classifiers
fk(t) using the training sets for particle and non-particle
images, and automatically selecting the best candidates
of measurements using the Adaboost algorithm. This
algorithm selects and combines the best set of simple
classifiers fk(t) to form a strong classifier that achieves
close to ideal classification rates. The algorithm uses
rectangular features, as they are both fast to compute,
and approximate first and second derivatives of the im-
age at a particular scale. It is worth noting that the weak
classifiers can be of any form and are usually simple uni-
variate threshold-based functions. The strength of this
approach lies in the correct choices of parameters to
form the linear combination of weak classifiers achieved
via the Adaboost algorithm.

Improvements to this method can be achieved by pre-
filtering the images before training and detection. How-
ever, in principle the algorithm should work for very
noisy conditions as long as the classifier is trained under
those same conditions. Additionally, 3D objects under
arbitrary poses can represent a problem to this method.
Next, we discuss the reconstruction of 3D models of
nanoscale structures.

3.3 3D reconstruction of nano-objects

The availability of 3D information is of crucial impor-
tance to the analysis of both man-made and biological
nanoscale objects. This is especially relevant in fields
such as Structural Biology for the development

of detailed structural models and functions of macro-
molecules[44], and in nanoscale manufacturing proces-
ses such as nano-tube fabrication [6,16] that often
requires the detection of particles inside and outside of
the synthesized nanotubes. A more complete review of
tomographic techniques for single particle reconstruc-
tion is presented by [85].

As we mentioned in the beginning of this paper,
traditional TEM provides only 2D images of objects
and, therefore, does not carry any depth information.
Tomographic projection reconstruction [28,43,54,60,74,
81] and, more recently, multiple-view epipolar geome-
try [12,13,46] have been effectively applied to the devel-
opment of methods to provide both depth and structure
information of nanoscale objects. We now review some
of the works in both categories.

3.3.1 Tomographic reconstruction from projections

Tomographic reconstruction methods are well known
techniques in medical applications [72]. The reconstruc-
tion of the 3D shape of objects is obtained from the
integration of their mapped projections acquired from
several viewing angles.

The most frequently used algorithm in this class is
the weighted back-projection algorithm [27]. The algo-
rithm has its foundations in the frequency domain the-
orem, which states that the 2D Fourier transform of a
projection through a 3D volume coincides with a plane
passing through the origin of the 3D Fourier transform
of the volume with the same orientation as the projec-
tion. As a result, the Fourier transform of each image
can be calculated and placed in the 3D Fourier space
based on pre-computed Euler angles that represent the
angles of acquisition of each image. Once all Fourier
transforms are placed in the 3D Fourier space, the in-
verse Fourier transform of that space will produce a
reconstructed version of the imaged object. The Fourier
projection theorem is valid for any dimension. Figure 8a
illustrates the 1D projection of a 2D object for a given
angle. Figure 8b shows various 2D projections (i.e., im-
ages) obtained from a 3D object. Figure 8c shows the
reconstruction results for a single nanoscale particle.

The main idea of this method, for the case of recon-
structing a 2D object from 1D projections, is summarized
as follows. Let us consider the function f (x, y) represent-
ing the object of interest. The Fourier transform of f is
given by:

F(u, v) =
∞∫

−∞

∞∫
−∞

f (x, y)e−j2π(ux+vy)dxdy. (7)
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Fig. 8 Reconstruction from angular projections. a 1D projection of a 2D object for a given angle θ . b Back-projection principle from
2D images to 3D reconstruction (From [57]). c 3D reconstruction of nano particles (From [43])

Let Pθ (t) be the 1D projection of the object image for a
given angle θ such that:

Pθ (t) =
∫
L

f (x, y)dL. (8)

As a result, Pθ (t) is the line integral of the image inten-
sity, f (x, y), along a line L that at a distance ρ = x cos θ +
y sin θ . The 1D Fourier transform of the projection is
given by:

Sθ (ω) =
∞∫

−∞
Pθ (t)e−j2πωtdt. (9)

We can now obtain an estimate of F(u, v) from the Fou-
rier transform of various projections from different an-
gles. The reconstructed object is given by the inverse
Fourier transform of the angular projections as:

f (x, y) =
∞∫

−∞

∞∫
−∞

F(u, v)e j2π(ux+vy)dudv. (10)

The main steps of the algorithm for the 2D case are
summarized as follows:

1. Obtain a projection of the object at various angles
θ1, . . . , θn.

2. Calculate the Fourier transform of each projection
to obtain F(u, v).

3. Estimate the reconstruction of the object function by
calculating the inverse Fourier transform of F(u, v).

However, the reconstruction problem in electron
microscopy has many differences from the classical
tomography reconstruction of medical images. First, as
we mentioned earlier in this paper, electron microscopy

images have very low SNR. Second, the image acquisi-
tion process generates a random distribution of projec-
tions as the geometry of the data collection cannot be
controlled. Finally, gaps in Fourier space are likely to ap-
pear due to uneven distribution of projection directions.
As a result, in order to produce high resolution recon-
structions of the particles, this technique requires the
availability of a large number of images of each particle.
This is not always possible as TEM image acquisition is
an expensive and time-consuming process. Additionally,
reconstruction of large molecular biological samples can
be computationally demanding, sometimes even requir-
ing the use of special parallel computing hardware [28].

3.3.2 Mutiple-view epipolar geometry

Alternatively, computer vision methods for multiple-
view reconstruction [26,38] can effectively be applied to
the problem of obtaining 3D models from TEM images.
The epipolar geometry constraint [26,38] allows for the
recovery of 3D information from a pair of images of the
same scene or object. Recent work by Brandt et al. [12,
13] has demonstrated the application of epipolar geome-
try for the alignment of multiple TEM images. Epipolar
geometry has also been used to perform reconstruction
of curved nanowires from SEM images [42], as well as
to achieve reconstruction of DNA filaments from TEM
images [44]. Cornille et al. [18] describe a calibration
algorithm for 3D reconstruction in SEM images.

The alignment of images taken from different view-
ing angles is a required step before tomographic recon-
struction can be performed [85]. The method described
by Brandt et al. [12,13] performs image alignment by
means of a global optimization algorithm to solve the
feature matching problem over a set of TEM images.
Their method starts by finding initial estimates of
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Fig. 9 A TEM 3D reconstruction system from multiple images. Adapted from [12]. a A set of images from multiple view points. b Frame
to frame automatic feature matching. c Alignment of the feature tracks using epipola constraint. d Final tomographic reconstruction

feature matches from successive images using the
epipolar constraint. This is the stereo matching stage,
and it results in a set of point correspondences
between each pair of images. Once these correspond-
ing features are at hand, the method solves for the
overall image alignment by means of a global optimiza-
tion algorithm [38]. Finally, the aligned images are used
as input for the tomographic reconstruction process.
Figure 9 illustrates the process as a sequence of the
above mentioned steps.

Jacob et al. [44] proposed a method to achieve recon-
struction of DNA filaments from TEM images. The
method is based on a spline-snake algorithm that min-
imizes the 3D to 2D projection error for all views of a
cryo-TEM micrographs of a DNA filament. The algo-
rithm requires user initialization of the snake and uses
a bank of Gaussian-like directional filters to detect seg-
ments of the DNA filament.

Huang el al. [42] describe a method to reconstruct the
3D shape of curved nanowires. The method uses epi-
polar geometry [26,38] to match stereo pairs of SEM
images of nanowires. The image-formation geometry
of electron microscopy can be approximated by ortho-
graphic projection and parallax motion provides enough
information for 3D reconstruction. Segments of the nan-
owire lying in the epipolar plane cannot be reconstructed.
Additionally, the method works better for nanowires
with very low curvature.

The reconstruction of nanoscale objects is a prom-
ising problem area for computer vision applications.
Most work so far has focused on the 3D reconstruc-
tion process. However, automatic analysis and recog-
nition of the reconstructed surfaces have not received
much attention. Noise and the non-conventional

nature of the source data makes these problems even
more challenging and interesting. Next, we present a
brief discussion on data visualization and virtual reality
methods applied to the problem of nanoscale character-
ization.

3.4 Visualization and manipulation

Visualization is crucial to nano-technology. Most of the
methods described in this section are applications of
virtual reality for nanoscale visualization. Virtual real-
ity technology provide an ideal framework to support
key applications in nanoscale imaging such as visual
inspection of devices for defect detection as well as pre-
cise visual-guided manipulation in device manufactur-
ing [35,55,82]. This can be achieved, for example, by
fusing multi-modal imaging data and graphics to allow
for applications such as device placement and measure-
ment. Additionally, virtual reality also provides excel-
lent means for education and training [66]. A recent
review of the applications of virtual reality to nanoscale
characterization is presented by Sharma et al. [78].

Fang et al. [24] propose a method for interactive 3D
microscopy volumetric visualization. The method con-
sists of a combination of 2D hardware-supported texture
mapping and a modified fast volume rendering algo-
rithm based on shear-warp of the viewing matrix [51].
Tan et al. [82] describe a nanoscale manipulator system
that works with a scanning-probe microscope (cantile-
ver-based system)(Fig. 10). The system combines force
interaction feedback and visualization for nanoscale
manipulation through a haptic interface.

Manipulation systems are evolving into immersive
virtual reality environments that provide real-time
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Fig. 10 Broken carbon nano-tube between two raised elec-
trodes [64]

visual and tactile feedback to the users [56]. This al-
lows for the creation of nano-devices and sensors in an
environment where users can interact with forces and
simultaneously visualize the results of each manipula-
tion.

The development of immersive virtual reality envi-
ronments is particularly useful in nano-scale manufac-
turing. This is the direction taken by the Nanoscale
Science Research Group at UNC-Chapel Hill. They
have developed a nanoscale manipulator system that
fuses multi-modal imaging information onto a single
visualization output [35]. The system uses projective
texture mapping of SEM image onto AFM topography
data along with a calibration method that allows for
localization of the AFM probe in space. The SEM and
AFM datasets are manually aligned and the user can
choose the level of relative mixture between the two
data sources.

Basic aspects of virtual reality technology are strongly
linked to computer vision techniques such as camera
calibration [83,93], augmented reality [3], and real-time
video-based tracking [20,84]. For instance, image-based
tracking can, in principle, be used to provide real-time
feedback for augmented reality tasks while on-line cam-
era calibration methods allow for 3D alignment of both
camera and environment information to support image
fusion. Applications such as nanomotion planning of
complex manufacturing tasks implies the integration of
mechanical haptic systems vision-based global planning,
and model-based local motion planing [47].

4 Discussion and conclusions

This paper attempts to provide a comprehensive review
of computer vision methods for image-based nanoscale

characterization. The main objective of this paper is to
motivate the development of new computer vision algo-
rithms that will address the many challenges in this new
and promising application area. We have focused mainly
on the characterization and description of the methods
without performing quantitative comparisons.

There are several avenues available for future re-
search. Some possible directions include:

• The tracking of particles and surfaces.
• The characterization of noise statistics of nanoscale

imaging devices.
• View morphing for visualization when only reduced

sets of images are available.
• The development of defect and misalignment detec-

tion algorithms.
• The use of texture analysis to characterize nanoscale

materials.
• 3D reconstruction using occluding contours and cir-

cular motion of the tilting stage.
• The characterization of semi-tranparent objects.

Tracking algorithms are often used in many inter-
esting applications [1,7,9]. However, tracking is mostly
performed at the optical microscope resolution such as
fluorescence microscopy for the analysis of biological
specimens. At the nanoscale realm we found the work
of Mantooth et al. [59], which uses cross-correlation to
calculate the drift in scanning tunneling microscope. The
algorithm tracks inter-image drift, allowing for regis-
tration of a sequence of images into a single coordi-
nate plane. The detection of defects is another important
application [48].

Modeling image statistics is key to image enhanc-
ing. Following a similar approach as the one proposed
by [76], one might attempt to model different levels of
noise and image statistics for specific microscopes and
material analysis processes (TEM image acquisition).
These models can be used to help enhance image qual-
ity and analyze device structure. Image enhancement
can, in principle, be accomplished through multi-image
restoration [16]. This technique is based on the assump-
tion that multiple images of the same object are often
corrupted by independently-distributed noise [5]. This
allows for image restoration algorithms that combine
the information content available in multiple images to
obtain a higher quality image output. This can be of help,
for example, for TEM imaging when multiple images
are available but the individual image quality is poor.
In this case, multiple image restoration methods such
as the one described in [16] can help produce a better
image output.
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View-morphing techniques, such as the one devel-
oped by Xiao and Shah [89] may help visualization of
nanoscale objects by generating novel views of an ob-
ject from few image samples. The generation of novel
views provides a way for creating extra geometrically
consistent information without the need for explicit 3D
reconstruction. For example, generating TEM images
from several view points is a time-consuming and com-
putationally demanding process. View-morphing may
reduce the time required for generating novel views by
synthesizing geometrically consistent images from few
acquired samples.

Tracking [90] and circular motion geometry [45] can
be applied to problems such as determining the spatial
localization of particles in nanotube fabrication. The key
idea is to analyze a sequence of TEM images acquired
at varying viewing angles. The main problem here is to
determine if particles are present inside or outside of
the nanotubes. As TEM images are projections of the
3D objects, it is difficult to determine the exact location
of particles in the imaged sample.

Nanoscale imaging is certainly an exciting and chal-
lenging field with numerous applications for computer
vision research. The low SNR that is a common char-
acteristic of nanoscale images makes the application
of vision techniques even more challenging. However,
as vision algorithms become more robust and available
computer hardware becomes faster, we are able to ap-
proach these problems more successfully. In terms of
advancing computer vision technology, the challenging
aspects of nanoscale image provide an excellent testbed
that will drive vision algorithms to become increasingly
more robust and accurate.
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