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Abstract—High-throughput genome-wide RNA interference
(RNAi) screening is emerging as an essential tool to assist biologists
in understanding complex cellular processes. The large number of
images produced in each study make manual analysis intractable;
hence, automatic cellular image analysis becomes an urgent need,
where segmentation is the first and one of the most important
steps. In this paper, a fully automatic method for segmentation of
cells from genome-wide RNAi screening images is proposed. Nu-
clei are first extracted from the DNA channel by using a modified
watershed algorithm. Cells are then extracted by modeling the in-
teraction between them as well as combining both gradient and
region information in the Actin and Rac channels. A new energy
functional is formulated based on a novel interaction model for seg-
menting tightly clustered cells with significant intensity variance
and specific phenotypes. The energy functional is minimized by us-
ing a multiphase level set method, which leads to a highly effective
cell segmentation method. Promising experimental results demon-
strate that automatic segmentation of high-throughput genome-
wide multichannel screening can be achieved by using the proposed
method, which may also be extended to other multichannel image
segmentation problems.

Index Terms—Fluorescent microscopy, high throughput, image
segmentation, interaction model, level set, multichannel.

I. INTRODUCTION

H IGH-THROUGHPUT screening using automated fluo-
rescent microscopy is becoming an essential tool to as-

sist biologists in understanding complex cellular processes and
genetic functions [1]. By using the RNA interference (RNAi)
process, the function of a gene can be determined by inspect-
ing changes in a biological process caused by the addition of
gene-specific double-stranded RNA (dsRNA) [2], [3]. The de-
velopment of Drosophila RNAi technology to systematically
disrupt gene expression enables screening of the entire genome
for specific cellular functions. In a small-scale study using man-
ual analysis of genome-wide screening [4], biologists were able
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Fig. 1. Patches of RNAi cell image in the Actin channel with specific pheno-
types. (a) Spiky (S-type). (b) Ruffling (R-type). (c) Actin-acceleration-at-edge
(A-type).

to observe a wide range of phenotypes with affected cytoskele-
tal organization and cell shape. However, without the aid of
computerized image analysis, it is almost intractable to quan-
titatively characterize morphological phenotypes and identify
genes in high-throughput screening. For instance, in a typical
study conducted by our biologists [1], approximately 21 000
dsRNAs specific to the predicted Drosophila genes are robot-
ically arrayed in 384-well plates. Drosophila cells are plated,
and take up dsRNA from culture media. After incubation with
the dsRNA, cells are fixed, stained, and imaged by automated
microscopy. Each screen generates more than 400 000 images,
or even millions if replicas are included. Clearly, there is a
growing need for automated image analysis as high-throughput
technologies are being extended to visual screens.

The key problem here is to automatically segment cells from
cell-based assays in a cost-effective manner, since fast screen-
ing can generate hundreds of thousands of images in each study
with rather poor image quality. Three main challenges [5], [6]
related to this task are as follows. Firstly, cells with specific phe-
notypes need to be accurately segmented for further analysis.
Samples of the three major phenotypes, S-spikey, R-ruffling,
and A-actin acceleration at edge, to be identified in this study,
are shown in Fig. 1. They are used for the gene clustering and
scoring, and are of particular interest to our biologists. These
shapes are not always convex, and violate the assumption of
many algorithms [7], [8]. Secondly, significant intensity vari-
ations exist in each cell. Thus, areas inside each cell can no
longer be assumed as homogeneous regions, which cause many
intensity-based segmentation methods fail. Thirdly, cells are
tightly clustered and will not likely show a strong border where
they touch, which makes it difficult to separate the cells.

A novel cellular image segmentation scheme for RNAi flu-
orescent genome-wide screening is presented to address these
challenges. In our biological study, cells are fixed and stained
with different dyes to investigate the different components of
cells. Each staining is captured by one image channel. The three
channels, Actin, Rac, and DNA, are captured, as shown in Fig. 2.
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Fig. 2. Sample RNAi fluorescent images. (a) DNA channels. (b) Actin channels. (c) Rac channels. Original image of each channel contains 1280 × 1024 pixels.

Only the nucleus of the cell is visible in the DNA channel, while
the cytoplasm of the cell is only available in an Actin channel.
The Rac channel contains some auxiliary information. In our
scheme, nuclei are first extracted from the DNA channel and
labeled, which are then used as the initialization for segmenta-
tion of cells in other channels. To separate the tightly clustered
cells, a model describing the interaction between neighboring
fronts is incorporated into the segmentation process. The seg-
mentation scheme is then developed by using multiphase level
sets. A new level set propagation scheme is obtained by min-
imizing the energy functional associated with the interaction
model. The proposed algorithm is a general image segmenta-
tion method, which may also be applied to other multichannel
imaging problems.

The rest of the paper is organized as follows. Section II pro-
vides a brief review of the related work. The proposed cell
segmentation scheme is presented in Section III. Section IV
provides the segmentation results and discussion, and finally,
Section V concludes the work.

II. RELATED WORK

A number of methods for nuclei and cell segmentation have
been reported in recent years. According to the techniques used,
existing methods can be broadly divided into two main cate-
gories, low-level and high-level information-based methods.

Methods in the first category are based on techniques ex-
ploiting low-level image features, such as pixel intensity and
image gradient. Since the watershed method has shown to pro-
duce good results in separating cells that are connected, it is
the most commonly used technique for cell image segmenta-
tion in this category. A major problem associated with these
methods is the over-segmentation of the image, although some
algorithms have been proposed to deal with this problem. For
example, Wählby et al. [9] used a rule-based approach for merg-
ing over-segmented regions. Zhou et al. [10] proposed Voronoi
diagram to correct the overlapped regions produced by marker-
controlled watershed. However, it is difficult to devise reliable
universal rules to merge the over-segmented regions in different
cases. The situation becomes even worse when the intensities
vary within a large range.

The other class of segmentation methods includes those ex-
ploiting constraints derived from the image data together with
high-level a priori knowledge of the objects. In this category,
deformable-model-based methods have been quite successful,
where contours driven by internal and external forces evolve in
the image until they converge to the boundaries of nuclei or cy-
toplasm [11], [12]. Since higher level knowledge is incorporated
in these methods, a more robust segmentation can be obtained.
However, overlapping areas may exist between these evolving
contours. To solve this problem, Zimmer et al. [7] introduced re-
pulsive force between parametric active contours by modifying
the edge map of each contour. However, their method may have
difficulty in segmenting dense clustered cells, where the edge
maps are difficult to distinguish. Furthermore, it will become
very complex to use parametric active contours to segment a
large number of cells. Ortiz de Solórzano et al. [13] employed
a level set scheme [14], [15] for the segmentation of nuclei and
cells. Each cell is approximated by a propagation front embed-
ded in a level set map, and the crossing of fronts is prevented
explicitly by considering the positions of other fronts. However,
the gradient curvature flow is not powerful enough to deal with
intensity variation inside each cell and to divide the cells at their
boundaries. The multiphase level set scheme [16]–[19] was used
by Dufour et al. [8] for segmenting and tracking cells in 3-D
microscopy images. However, due to the strong constraints ap-
plied in their work for optimization, success of the algorithm
has only been demonstrated on segmentation and tracking of
sphere-like convex cells.

In this paper, a new interaction model is proposed for
segmenting RNAi fluorescent cellular images. Large num-
ber of tightly clustered cells are successfully segmented by
combining the shape, contrast, intensity, and gradient infor-
mation, by the introduction of the competition and repul-
sion in the new interaction model using the multiphase level
set [16], [20].

III. RNAi IMAGE SEGMENTATION

In this section, we present the proposed automatic scheme for
RNAi fluorescent genome-wide screening segmentation. Since
the number and locations of cells are unknown, it is difficult to
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Fig. 3. (a) Initialization of the segmentation with nuclei. (b) Segmentation
results using independent level sets. Due to the intensity similarity and the weak
boundaries between cells, it is difficult to extract cells without considering the
interaction between them.

directly segment cells from Actin and Rac channels, as shown in
the sample images of Fig. 2. However, nuclei in the DNA chan-
nel are rather clearly imaged, and hence, are relatively easier to
segment, which can then be used to count and position cells in
other channels. Thus, the proposed segmentation scheme con-
sists of two modules. In the first module, segmentation of nuclei
is done by using a modified watershed method. The extracted
nuclei are then used as initialization for the segmentation of cells
in the second module. Since the Rac channel does not contain
much useful information, it is summed into the Actin channel for
cell segmentation to enhance the image contrast for segmenta-
tion. The challenges include weak boundaries between touching
cells and intensity variations in each cell, which may cause many
segmentation methods to fail, as shown by an example in Fig. 3.
In order to deal with this problem, a novel interaction model
characterizing the relationship between neighboring contours
is proposed. The multiphase level set method is employed for
minimizing the associated energy functional, which results in a
robust cell segmentation method. The details of the scheme are
given as follows.

A. Nuclei Segmentation

The first module of our RNAi image segmentation scheme is
for extracting nuclei from the DNA channel. Since the nuclei
appear much brighter than the background in the DNA chan-
nel, as shown in Fig. 4(a), Otsu’s thresholding method is first
applied to extract all the nuclei. A binary image with nuclei
as foreground is obtained, as shown in Fig. 4(b). However, a
global threshold value may not be optimal for the whole image.
Note that some nuclei close to each other do not get separated
due to the variance of pixel intensity [see Fig. 4(b)]. A higher
threshold may help to separate the nuclei, but it will cause some
other nuclei to be missed or split.

In order to separate the connected nuclei after thresholding,
a distance transform is applied to the binary image, as shown in
Fig. 4(c). It can be seen that “basins” (dark areas) appear inside
the nuclei, and “dams” (bright lines) are formed between them.
The watershed algorithm [21] is then naturally employed to label
the nuclei on the distance transform map. However, the simple
watershed algorithm works well only when the shape of nuclei
is exactly circular [22], [23]. Otherwise, multiple watershed
regions may be produced for each single nucleus.

To handle this problem, an enhanced watershed algorithm
is developed. In the first step, an initial classification of all
points into catchment basin regions is done by tracing points
down to their local minimum, following the path of steepest
descent. Each segment consists of all the points whose paths of
gradient descent terminate at the same minimum. The number of
segments is equal to the number of local minima in the image.
Obviously, too many regions are produced, which results in
over-segmentation. To alleviate this, flood level thresholds are
established. Flood level is a value that reflects the amount of
prestored water in the catchment basins. In other words, the
flood level threshold is the maximum depth of water that a region
could hold without flowing into any of its neighbors. With the
flood level established, a watershed segmentation algorithm can
sequentially combine watersheds whose depths fall below the
flood level. The minimum value of the flood level is zero, and
its maximum value is the difference between the highest and
the lowest values of the input image. In practice, we set the
flood level as a scaled value between 0 and 1. Thus, the second
step of the algorithm is to analyze neighboring basins and to
compute the heights of their common boundaries for flood level
thresholds.

The segmentation results of our watershed method are shown
in Fig. 4(d). By combining the results obtained by simple thresh-
olding and the watersheding, touching nuclei can be separated,
such that each nucleus has a unique label. The labeling results
are shown in Fig. 4(e). After the initial labeling, there may be
some small regions caused by noise, which may also be labeled
as nuclei. To eliminate these unwanted regions, the average size
range of nucleus is used as a criterion. Since the resolution of im-
age acquisition equipment is known, the range can be estimated
easily. If the size of a region is much smaller than the average
nucleus size, the region will be considered as one produced by
the noise. It will then be removed or merged into an adjacent
region. Fig. 5 shows an example of the final segmentation results
of our nuclei labeling algorithm.

B. Cell Segmentation

Once nuclei are properly identified, the segmentation of
cells by using the proposed interaction model can pro-
ceed. The interaction involves mainly two types of mech-
anisms: repulsion and competition. The repulsion term is
for separating the clustered cells and the competition is
for defining the cell boundaries. These mechanisms are for-
mulated as a new energy functional, which is then mini-
mized by using the multiphase level set method to get cell
segmentation.

1) Interaction Model: Consider an image I that has M clus-
tered touching cells Si(i = 1, . . . , M). Let Ci(i = 1, . . . ,M)
denote the contours that evolve toward the boundaries of the
cells. Instead of examining each contour independently, we in-
tegrate the interaction between neighboring contours into the
segmentation process. The repulsion and competition are de-
fined as follows.

1) Repulsion: The repulsive force prevents the contours from
overlapping. Since the overlapping of the cell contours
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Fig. 4. Segmenting of nuclei in the DNA channel. (a) Patch taken from an image of the DNA channel. (b) Binary thresholding result of (a). (c) Distance transform
of (b). (d) Result of watershed on (c). (e) Labeling nuclei by combining (b) and (d).

Fig. 5. Removing noise from the DNA channel. (a) Patch taken from an
image of DNA channel. (b) Binary thresholding result of (a). (c) Initial labeling
of nuclei using watershed. (d) Final labeling of nuclei after removing small
regions.

is not allowed, the repulsion needs to be emphasized to
assure that the contours do not cross each other. This is to
say that the union of all the regions {Ai |i = 1, 2, . . . ,M}
enclosed by contours Ci(i = 1, . . . , M) is empty⋃

i �=j

Ai ∩ Aj = ϕ. (1)

2) Competition: Consider a pixel p of the image I among
several cells. Which cell does p belong to? The answer lies
in the competition between the evolving contours. In this
paper, the membership of p is determined by computing
the competition

m∗
i = arg min

i
D(p,mi) (2)

where D is the difference measure metric and {mi |i =
1, 2, . . . ,M,M + 1} denotes the membership. The back-
ground is indicated as the (M + 1)th region. The pixel
p is assigned to the cell that produces the smallest
difference.

2) Energy Functional: To realize the interaction model, re-
pulsion and competition are formulated by using an energy func-
tional. Cells are segmented simultaneously by minimizing the
joint energy functional. In our scheme, the repulsion can be
naturally formulated as

Erep = ω

M∑
i=1

M∑
j=1,j �=i

Ai ∩ Aj (3)

where the positive parameter ω controls the repulsive force be-
tween the contours during the segmentation process.

When formulating the competition energy, the level set rep-
resentation of the well-known Mumford–Shah model is em-
ployed [24], [25]. This model seeks to assign labels to pixels by
minimizing the piecewise constant energy functional. Thus, the
label of a pixel is decided by the competition of the surround-
ing contours and the background. The functional contains two

data attachment terms that penalize the variance of the intensity
inside and outside each object. Thus, it can be used to segment
cells stained with fluorescent dyes, which appear as regions of
average intensity larger than that of the background. However,
due to the large intensity variation inside the cells, this model
alone is not suitable to segment the cells from the background.
To exploit the gradient information between the cells and the
background, we add a geodesic length measure [26] in order to
snap the contours to image edges. The membership of a pixel
is then assigned by jointly considering the region-based and the
gradient-based competition. Then, we have

Ecom = λo

M∑
i=1

∫
in(Ci )

|I − ci |2dx dy + λb

∫
Ω b

|I − cb |2dx dy

+ µ

M∑
i=1

∫ 1

0
g(|∇I(Ci(q))|)|C ′

i(q)|dq (4)

where Ωb denotes the background, which is composed of the
region outside of all the objects, i.e., out(C1) ∩ out(C2) ∩ · · · ∩
out(CM ). The operators in() and out() give the regions inside
and outside of an object, respectively. Equation (4) assumes
that the image consists of M + 1 homogeneous regions, M
cells, and the background. The intensity means of the objects
and the background are denoted by ci and cb , respectively, in
(4). Parameters λo , λb , and µ are fixed weighting parameters.
Function g : [0,+∞) → R+ is a strictly decreasing function,
which is chosen to be a sigmoid function in our implementation

g(x) =
(
1 + e(

x −β
α )

)−1
(5)

where α decides the slope of the output curve and β defines the
point around which the output window is centered.

Combining the repulsion and competition terms, we obtain a
joint energy functional E for cell segmentation

E = λo

M∑
i=1

∫
in(Ci )

|I − ci |2dx dy + λb

∫
Ω b

|I − cb |2dx dy

+ µ

M∑
i=1

∫ 1

0
g(|∇I(Ci(q))|)|C ′

i(q)|dq

+ ω
M∑
i=1

M∑
j=1,j �=i

Ai ∩ Aj . (6)
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The segmentation is achieved by minimizing the energy func-
tional (6). Explicit parametric active contours can be used to
minimize the energy aforementioned; however, since there are
hundreds of cells in each image, it is extremely complex to
deal with the interaction between them using parametric ac-
tive contours. In this paper, we use an efficient multiphase
level set scheme for energy minimization, which is detailed as
follows.

3) Evolution of Multiphase Level Set: In the level set formu-
lation, Ci , the contour of the ith object, is embedded as the zero
level set of a level set function Ψi , i.e., Ci = {(x, y)|Ψi(x, y) =
0}. The level set function Ψi is defined to be positive outside
of Ci and negative inside of Ci . The value of the function Ψi at
each point is computed as the Euclidean distance to the nearest
point on the contour Ci . Each of the M objects being segmented
in the image has its own contour Ci and corresponding Ψi .

In order to express the energy functional (6) using level
sets, we first bring in the Heaviside function H and the Dirac
function δ

H(x) =
{

1, x ≤ 0
0, x > 0 and δ(x) =

d

dx
H(x). (7)

The inside and outside operators can then be formulated as

in(Ci) = 1 − H(Ψi) and out(Ci) = H(Ψi). (8)

We are then able to express the energy functional (6) using level
sets as

E = λo

M∑
i=1

∫
Ω
|I − ci |2 (1 − H(Ψi)) dx dy

+ λb

∫
Ω
|I − cb |2

M∏
i=1

H(Ψi)dx dy

+ µ

M∑
i=1

∫
Ω

g(I)|∇Ψi(x, y)|δ(Ψi(x, y))dx dy

+ ω
M∑
i=1

M∑
j=1,j �=i

∫
Ω

(1 − H(Ψi)) (1 − H(Ψj )) dx dy (9)

where Ω denotes the image domain.
The energy functional (9) can be minimized iteratively. In

each iteration, we first fix ci (i = 1, 2, . . . ,M) and cb and
minimize the energy functional E with respect to Ψi(x, y)
(i = 1, 2, . . . ,M). We employ the gradient descent method for
minimization. The evolution equation for each Ψi(t, x, y) is then
obtained by deducing the associated Euler–Lagrange equation
as

∂Ψi

∂t
= δ(Ψi)


λo |I − ci |2 − λb |I − cb |2

M∏
j=1,j �=i

H(Ψj )

+ µ∇g · ∇Ψi

|∇Ψi |
+ νg div

(
∇Ψi

|∇Ψi |

)

+ω
M∑

j=1,j �=i

(1 − H(Ψj ))


 . (10)

TABLE I
PARAMETERS USED IN THE EXPERIMENTS

Fig. 6. Segmentation of ruffling cells. (a) Patch from the DNA channel shows
the nuclei. (b) Two touching ruffling cells. (c) and (d) Intermediate segmentation
results of the cells. (e) Final segmentation results of the ruffling cells.

After evolving the level sets, the means ci and cb of the regions
can be updated.

The new evolution equation has several advantages that are
particularly useful for RNAi fluorescent cellular image segmen-
tation. First of all, the overlapping of the evolving contours
is prevented by the repulsion term, which helps to isolate the
touching cells in the dense clusters. Besides that, the information
from both the image intensity and the gradient is exploited by
the new scheme. This helps to separate the cells from the back-
ground and deal with the dramatical intensity variation between
different cells. Furthermore, the fourth term of (10) keeps the
curves smooth, and makes the algorithm more robust to noise.

IV. RESULTS AND DISCUSSION

In this section, we present our experimental results on the
segmentation of Drosophila RNAi fluorescent cellular images.
Since each image contains all kinds of cells, fixed universal
parameters are needed for automatic segmentation. Different
parameter settings are tested, and the one with the best perfor-
mance is then used for the segmentation of all the images. The
values of the parameters used in our experiments are shown
in Table I. It should be noted that our algorithm is not sen-
sitive to the parameters. In our experiments, the performance
of the algorithm varies not more than 5%, when the values of
the parameters change by approximately 25%. Currently, the
segmentation of each image with 1280 × 1024 pixels takes ap-
proximately 2–3 s on a PC with 3 GHz CPU. The computational
time can be significantly shortened by using high-performance
computer or parallel computing techniques.

Selected patches of the segmentation results containing cells
with specific phenotypes “S-type,” “R-type,” and “A-type” are
shown in Figs. 6–8 to demonstrate the performance of our algo-
rithm. In Fig. 7, spiky cells are successfully segmented (notice
the spiky edges of the cells). In addition, the tightly clustered
cells are separated, thanks to the interaction model. Further-
more, cells with large intensity variations are extracted, and the
contours are able to stop at the weak boundaries between the
cells and the background, since both image intensity and gra-
dient information is used. Similar observations can be made in
Fig. 8, where segmentation results of “R-type” and “A-type”
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Fig. 7. Cell segmentation process. (a) Improved image of Actin channel. The nuclei obtained by segmenting the image of DNA channel are marked in different
colors, which are used as the initialization of level sets. (b)–(e) Evolution process of level sets. (f) Final segmentation results with spiky cells successfully segmented.

Fig. 8. Cell segmentation process. (a) Improved image of Actin channel with labeled nuclei as initialization. (b)–(d) Evolution process of level sets. (e) Final
segmentation results with ruffling and actin cells successfully segmented.

cells are demonstrated. The quantitative performance evalua-
tion was performed by comparing our results to the ground
truth. For comparison purposes, the segmentation results of the
widely used open source software CellProfiler [27] on our data
sets were also obtained. The performance of our method and
that of CellProfiler were then evaluated and compared. In Cell-
Profiler, thresholding was first applied to extract cells from the
image. In order to divide the clustered cells, the propagation
algorithm is employed [28]. This method is similar to the wa-
tershed method, but can be considered as an improvement in
that it combines the distance to the nearest nucleus and intensity
gradients to divide cells. However, the cells are divided at the
places most likely with strong gradients.

Fig. 9 shows some randomly chosen image patches and the
corresponding segmentation results of our method. Manual seg-
mentation results from biologists are included as ground truth
for validation. The segmentation results using CellProfiler with
default parameter setting are also displayed. It can be seen that
our segmentation method outperforms CellProfiler in two ways.
One is that CellProfiler tends to oversegment the nuclei, where
large nucleus may be divided into several small regions. Since
the segmentation result of nuclei is used to determine the number
of cells in the Actin channel, this directly results in the over-
segmentation of the cells. More cells are produced than there

actually are. The other problem of CellProfiler is that it tends
to put circular shape constraints on segmentation of each cell.
Thus, it is not able to get the specific cell shapes present in our
data sets. For each cell, the segmented region from CellProfiler
is normally round in shape with a smaller area than the ground
truth. Thus, compared to CellProfiler, our method obtains better
segmentation results.

In order to quantitatively analyze the performance of the pro-
posed approach, an F -score is employed as our performance
measure. The F -score is an evaluation measure computed from
the precision and the recall values that are standard techniques
used to evaluate the quality of the results of a system against
the ground truth. Let X denote the segmentation result and Y
be the ground truth. The precision p and recall r are given by

p =
|X ∩ Y |
|X| , r =

|X ∩ Y |
|Y | . (11)

The F -score is then computed by taking the harmonic average
of the precision and the recall [29]

Fβ = (1 + β2)
pr

r + β2p
(12)

where β is the weighting parameter. In order to give equal weight
to precision and recall, a common approach is to set β = 1, such
that F1 = 2pr/(p + r).
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Fig. 9. Three sets of segmentation results from the validation data sets. Each row shows the segmentation results of one set of images. First column: patches
of DNA channel. Second column: patches of actin channel. Third column: our segmentation results. Fourth column: segmentation results of CellProfiler. Last
column: manual segmentation results for comparison. Compared with the ground truth, one can see that CellProfiler tends to oversegment the nuclei, which leads
to the oversegmentation of the cells. In addition, CellProfiler tends to put circular shape constraints on cell segmentation. Thus, it is not able to get the specific cell
shapes present in our data sets. Evaluated against the ground truth, our method is able to get better segmentation results than CellProfiler.

Fig. 10. F1 -score of our method and the CellProfiler. Our method gets a
higher score on all the validation data sets.

The F1-scores of our method and the CellProfiler are shown
in Fig. 10. When computing the scores, 20 sets of images are
randomly chosen from all the data sets. Since each image con-
tains about 100–500 cells, thousands of cells are segmented and
measured in our experiments. It can be seen that our method

gets a higher score on all of the images. This can be explained
by the results shown in Fig. 9. Evaluated against the ground
truth, the CellProfiler may have higher precision values because
it produces smaller cells so that most of its results are inside of
the ground truth. However, it has very low recall values, because
a large part of the cells are not obtained. The precision of the
proposed method may not be as high as the CellProfiler, but the
recall values are generally much higher. Thus, our method has
higher overall F1-scores.

V. CONCLUSION

In this paper, we proposed an automatic scheme for the seg-
mentation of high-throughput RNAi fluorescent cellular images.
Since the precision of the following cell analysis largely de-
pends on the performance of cell segmentation, it is of great
importance to have a good segmentation scheme. In this paper,
the proposed automated segmentation scheme starts extracting
nuclei from the DNA channel and uses the results as the ini-
tialization for the segmentation of cells from other channels. A
novel interaction model was formulated for segmenting tightly
clustered cells with significant intensity variance and specific
phenotypes. The energy functional was minimized by using a
multiphase level set method, which leads to a highly effective
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cell segmentation method. Promising segmentation results on
RNAi fluorescent cellular images are presented. In our future
work, we will explore more image information for better cell
segmentation. We believe that the incorporation of more im-
age information, e.g., cell texture, into the interaction model
will lead to a better segmentation performance. In addition, the
proposed method can be extended to other multichannel image
segmentation applications, but not limited to RNAi cellular im-
age segmentation. We will explore the use of our method on
solving other problems of multisource imaging systems.

ACKNOWLEDGMENT

The authors would like to express their appreciation of the
rewarding collaborations with our biological colleagues; in par-
ticular, Dr. P. Bradley and Dr. N. Perrimon, Department of
Genetics, Harvard Medical School. The raw image data de-
scribed in this paper were obtained from their laboratory. The au-
thors would also like to thank the research members, especially
Mr. F. Li of the Life Science Imaging Group in the Center
for Bioinformatics, Harvard Center for Neurodegeneration and
Repair (HCNR), Harvard Medical School, and Functional and
Molecular Imaging Center, Radiology, Brigham and Women’s
Hospital, Harvard Medical School.

REFERENCES

[1] M. Boutros, A. A. Kiger, S. Armknecht, K. Kerr, M. Hild, B. Koch, S.
A. Haas, R. Paro, and N. Perrimon, “Genome-wide RNAi analysis of
growth and viability in drosophila cells,” Science, vol. 303, pp. 832–835,
2004.

[2] H. Agaisse, L. Burrack, J. Philips, E. Rubin, N. Perrimon, and D. E.
Higgins, “Genome-wide RNAi screen for host factors required for intra-
cellular bacterial infection,” Science, vol. 309, no. 5738, pp. 1248–1251,
Aug. 2005.

[3] B. Sonnichsen, L. B. Koski, A. Walsh, P. Marschall, B. Neumann,
M. Brehm, A.-M. Alleaume, J. Artelt, P. Bettencourt, E. Cassin,
M. Hewitson, C. Holz, M. Khan, S. Lazik, C. Martin, B. Nitzsche, M. Ruer,
J. Stamford, M. Winzi, R. Heinkel, M. Röder, J. Finell, H. Häntsch,
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[12] A. Garrido and N. Pérez de la Blanca, “Applying deformable templates
for cell image segmentation,” Pattern Recog., vol. 33, no. 5, pp. 821–832,
2000.
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