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Interpretation of Motion Trajectories
Using Focus of Expansion

Krishnan Rangarajan and Mubarak Shah

Abstract—The focus of expansion (FOE) of a group of motion trajec-
tories is defined to be a point in the image plane at which the trajectories
intersect when they are extended. The FOE observed over a time sequence
defines the locus of FOE. We present an analytical approach for the study
of dynamic events as they project on the image plane by analyzing the
locus of FOE. We have found that the locus of FOE can be used to
make qualitative assertions regarding the type of motion. An interesting
behavior of the locus of FOE for various types of motion is observed.
The cases include a single point, a horizontal, a vertical, and a slopped
straight line. We can also determine whether the object has approaching
and receding motion or when the object changes its direction of motion.
This inference may be used in qualitative computer vision.

Index Terms— Dynamic scene analysis, focus of expansion, motion,
trajectories.

I. INTRODUCTION

Given n frames taken at different time instants and m points
in each frame, the motion correspondence establishes a mapping
of a point in one frame to another point in the next frame. This
correspondence can be used to generate a path followed by a point
lying on an object. A path can be generated by starting from a
point in the first frame and ending at some point in the last frame,
touching each frame at not more than one point, and by joining a
point in a frame by a straight line with its corresponding point in
the next frame. We call such a path a trajectory. Each trajectory
is identified by a point in the first frame. A set of nonintersecting
paths, which together involve all points in all frames, is a trajectory
set.

Under perspective projection, lines that are parallel in space may
not remain parallel in the image plane. With the camera pointing
in the Z axis,' lines parallel in space and having components in
the Z axis do not project to be parallel lines in the image plane.
These lines meet at a common point in the z-y plane known
as the vanishing point. Lines that are parallel in space and that
do not have a component in the Z axis project to the parallel
lines in the image plane, and hence, their vanishing point is at
infinity.

The motion trajectories are representative of the motion of the
underlying points. If we assume that the image plane z-y is parallel
to the X-Y plane, the trajectories that have a nonzero motion
component in the Z direction and are parallel in space will exhibit
the same vanishing point. The trajectories of points lying on an object
undergoing translation remain parallel in space. Hence, depending on
the vanishing point, we can segment the trajectories belonging to the
same object. Fig. 1 shows two cubes moving with different velocities
in space. The vanishing point of trajectories belonging to one cube
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TWe will be using uppercase X, Y, and Z to denote the world coordinates,
whereas we will use lowercase z and y to denote the image coordinates.
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Fig. 1. Two moving cubes. The Cube at the top is moving with a velocity of
vx =5, vy =5, and vz = 5, and the trajectories of the corner points meet
at vanishing point P with coordinates (—100, —100). The other cube at the
bottom is moving with a velocity vx = 6, vy = 3, and vz = 2, and the
trajectories of the corner points meet at vanishing point (2 with coordinates
(—300, —150). The focal length f of the camera is assumed to be 100.

is point P (—100, —100), and the vanishing point of trajectories of
the other cube is point @ (—300, —150). If the motions of objects
are assumed to be independent, each vanishing point will represent
one object.

The focus of expansion (FOE) is very similar to the vanishing
point of the motion trajectories. The FOE is defined to be a point in
the image from which, for a given forward direction of translating
motion and direction of gaze, all image features seem to diverge
radially. The FOE can be used to determine, for example, the
direction of vehicle heading. Since the FOE has previously been
used in motion research, we will also continue to use the FOE for
the vanishing point of motion trajectories. Previous related research
has been limited to computation of the FOE. In this correspon-
dence, we will assume that there exists a reasonably good method
for computing the FOE, and we will focus on the use of the
FOE for interpretation of motion trajectories. Precisely, we will
be dealing with an extended sequence of frames, which gives rise
to a sequence of trajectories between two frames and, hence, a
sequence of FOE’s. We term this sequence of FOE’s as the locus
of FOE. The aim of this correspondence is to show that the locus
of the FOE is closely related to the motion of the underlying
object.

We present an analytical approach for the study of dynamic events
as they project on the image plane by analyzing the locus of the
FOE. We have found that the locus of the FOE can be used to
make qualitative assertions regarding the type of motion. We can also
determine whether the object has approaching and receding motion
or when the object changes its direction of motion. This inference
may be used in qualitative computer vision.

The organization of the rest of the correspondence is as follows.
The next section deals with a survey of methods for computing
the FOE. The projection model that will be used throughout this
correspondence is described in Section III. In Section IV, we analyze
the locus of the FOE for various types of motion. Finally, Section
V deals with interpretation of motion trajectories using the locus of
the FOE.

0162-8828/92$03.00 © 1992 IEEE
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II. RELATED WORK

Earlier researchers have developed methods for computing the
FOE. The FOE is defined only for pure translation. The work on
FOE can be broadly categorized into two categories based on the
density of the optical flow used: dense flow methods and sparse flow
methods. The methods proposed by Ballard et al. [3], Negaharipour
and Horn [9], Prazdny [10], Dutta et al. [5], and Burger et al. [4] are
dense flow methods, whereas the methods proposed by Jain [6] and
Lawton [7] are sparse flow methods based on a small number of point
correspondences. These methods make use of the Hough transform
or employ an error surface for a restricted region in the image plane
and estimate the FOE by hill climbing. Each of these categories can
again be divided into subcategories based on whether they address
multiple independently moving objects or not.

Ballard et al. [3] use the fact that all the flow vectors converge
at the FOE, and they estimate the FOE by a Hough formulation.
Collinear flow vectors are detected by considering the (r,6) space.
A point (z,y) in the image that has a flow vector (u,v) votes for
(r,8), where r = zcosf + ysin6, and tané = 2. The points in
(r,8) space of radial flow lines form a circle, each circle corresponds
to one rigid object, and each circle is associated with a FOE. From
(r,0) space, the FOE is identified by the Hough method. Each r, ¢
votes for cells (a, b), obeying the constraint 5 = acosf+bsin 6. The
FOE is given by (2a, 2b). They concentrate on scenes having a single
moving object, but they do suggest as to how it can be expanded to
scenes with multiple moving objects.

Dutta et al. [S] address determination of the FOE under ego motion.
Pure translation of the camera is idealistic, and in the sequences of
real scenes, there is always a small rotation of the camera, which
introduces error into the FOE determination. They consider the error
due to rotation as a systematic error, develop expressions for the error,
and undo the rotation. They show that error in the FOE estimation due
to rotation is proportional to the depth of the points whose flow vec-
tors are considered. The FOE estimated by using large flow vectors
of the nearby points is closer to the actual FOE than the one found by
using small flow vectors belonging to distant points. They verify their
claims by comparing their method with the one that uses Anandan’s
method [2] for estimating the flow vectors and Adiv’s method {1] for
estimating motion parameters and, hence, the FOE. The method has
been designed for sensor motion as in autonomous navigation and is
not suitable for scenes with multiple independently moving objects.

The method proposed by Burger et al. [4] also takes a similar
approach to estimating the rotation and correcting it to find the correct
FOE. They define a fuzzy FOE that has an associated area around
it and assume that the FOE falls inside it. This area is grown by a
connected component algorithm around a point. This method has also
been designed for sensor motion as in autonomous navigation and is
not suitable for scenes with multiple independently moving objects.

Jain [6] has proposed a method for estimating the FOE without
optical flow. He uses a simple function based on the geometry that,
when maximized, leads to the FOE. The function that is maximized
is the sum of the distance from an arbitrary point to the points in the
two consecutive frames—the sum of the distances between points in
frames. This is a continuous function, and a gradient method is used
to find the minimum. There is no direct extension of this method to
scenes having multiple independently moving objects.

Lawton has proposed a method [7] that can estimate the FOE
given a sparse flow field. The main difference between this method
and that of the method proposed by Jain is that it combines the
token identification with the FOE estimation. The method, as it is, is
applicable to images generated by moving sensor, and it cannot be
extended to scenes with multiple independently moving objects in a
straightforward manner.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 12, DECEMBER 1992

There has been some work done in finding parallel lines in
a perspective image using vanishing points. There is a similarity
between vanishing points and the FOE. The vanishing point is the
point of intersection of line segments in the scene that are the
projection of parallel lines in 3-D space, and the FOE is the point
of intersection of flow vectors in the image that are the projection of
parallel 3-D flow vectors. Magee and Aggarwal [8] have proposed
a method for finding the vanishing point. They consider end points
of lines in the image and fit a plane with the focal point. The line
of intersection between two such planes points toward the vanishing
point of the two lines in the image. They map the unit vector of this
line of intersection onto a point on the surface of the Gaussian sphere
and cluster the points on the Gaussian surface based on distance. The
lines corresponding to these clustered points are parallel in 3-D space
and have a common vanishing point in the image plane.

Our correspondence deals with the analysis and use of the FOE,
and we assume there exists some reasonably good algorithm for
computing the FOE. The experiments reported in the correspondence
use the FOE computed by finding the intersection of two straight line
segments of trajectories analytically.

III. PROJECTION MODEL

Let us assume that the origin of the world coordinate system
coincides with the origin of the image coordinate system. In addition,
let (0,0,0) be the position of the camera in the world coordinates.
Let (X7,Y/?,Z}) be the world coordinates of point ¢ at time ¢;,

and the image plane coordinates (zJ,y;) of point ¢ at time ¢; under
perspective projection are given by

J f' ’;]
I= ‘(j
_ LY

where f is camera focal length. The FOE of trajectories belonging to
an object is the point of intersection between the 2-D projection of
the trajectories in the image plane. It is assumed that when the time
interval between subsequent frames is small, these trajectories can
be considered to be straight lines. Let (94,9} ) denote the FOE of
trajectories belonging to the same object between times ¢; and ¢;.
Let vk, v}, and v} denote the velocity of the object in the X, Y,
and Z directions, respectively, in this time interval. The FOE of an
object between two time frames is determined by finding the point
of intersection of the projection of a pair of 2-D trajectories of points
belonging to this object and is given by

- f.vf(
¥z =- ") M
ZA
; fvd
93 = ——X. )
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These equations are derived in the Appendix. These equations imply
that that the FOE is the perspective projection of the point in space
whose coordinates are given by (v}, vy, v%).

IV. Locus ofF FOE

For a sequence of frames 1 to n, the world coordinates of any
point at time ¢;1; belonging to an object is related to its coordinates
at time ¢; by its motion parameters at time ¢;. The path traced by
(¥, 19{,), which is a FOE of the object, as we vary j from 1 ton —1
defines the locus of the FOE of the object. The type of motion and
the nature of motion like constant velocity, constant acceleration,
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Fig. 2. (a) Sector POQ is rotating about O in the Y .Z plane; (b) velocity
profile along OP. The points on OP are at different radii from the center of
rotation O but are in phase with each other; (c) velocity profile along OQ); (d)
velocity profile along arc PQ, where the radius remains constant but phase
angle is changing.
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Fig. 3. (a) Isometric view of 3-D trajectories of a line with end points
at (20,20,30), and (30,20,30) under translation with velocity components
vx =3, vy =4, and vz = 5; (b) perspective projection of trajectories
in (a); (c) locus of FOE, which is a single point.

etc. affect the locus of the FOE. In fact, the locus of FOE is the
perspective projection of the space curve given by the equations

r=vx
y=vy
z=vz

In this section, we study the locus of the FOE under pure
translation. For other types of motion, the FOE is not well defined.
For instance, under rotation, all points belonging to the same object
do not necessarily have the same FOE. Fig. 2(a) shows a sector OPQ
rotating about O in the Y'Z plane. Points R and P have the same
phase angle but different radii of rotation OR and OP, respectively,
whereas points R and Q have a phase difference and different radii
of rotation. The velocity profile along OP, where the radius alone
varies but not the phase angle, is shown in Fig. 2(b). The velocity
profile along OQ is shown in Fig. 2(c), and the velocity profile along
arc PQ, where the radius remains constant but the phase angle varies,
is shown in Fig. 2(d). The points on the same object will have the
same FOE if and only if they are located at the same distance from
the axis of rotation and they are in phase with each other.

The results in this section are reported with the aid of figures (Figs.
4-6) that have three parts. In (a), we plot the 3-D trajectories of the
points in motion as in an isometric view; in (b), we plot the 2-D
trajectories traced out in the image plane by the 3-D trajectories, and
finally, in (c), we plot the locus of the FOE.

In this subsection, we will consider various cases related to
translation.

1. When an object translates with a uniform velocity, the locus of
the FOE is a point, that is, the FOE remains stationary. This
follows from (1) and (2) as v}, vi, and v}, remain constant
for all j. Fig. 3 shows an instance of this case.
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Fig. 4. (a) Isometric view of 3-D trajectories traced out by the end
points at (20,20,30) and (30,20,30) of a line under translation with velocity
components of vx = 3, vy =4, and vz = 5, and acceleration component
ax =01, ay =0, and az = 0; (b) perspective projection of the
trajectories in (a); (c) locus of FOE, which is a straight line parallel to
the z axis.
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Fig. 5. (a) Isometric view of 3-D trajectories traced out by the end
points at (20,20,30) and (30,20,30) of a line under translation with velocity
components vx = 3, vy = 4, and vz = 5, and acceleration component
ax = 0,ay = 0.1, and az = 0; (b) perspective projection of the
trajectories in (a); (c) locus of FOE, which is a straight line parallel to y
axis.

2. If the object translates in X, Y, and Z but X alone has a
constant acceleration ax, the velocities at time instant j can
be written as

vé( =y + (J - D.ax

v} = vy

vé = 'Ulz.
Since we are assuming acceleration to be constant, the locus of
the FOE is given by the equation

vx + (= 1).ax

ﬂi = _f 1
vz

19]

y

1l

1
vy
-for
vz

The above equations represent a line parallel to the z axis. Fig.
4 shows an instance of this case.

3. If a rigid line translates in X, Y, and Z but Y alone has
acceleration, which is constant a,, then the velocities at time
instant j can be written as

1
vh = vy
i ! )
vy =vy + (j — 1).ay
vy = vy.

Since we are assuming acceleration to be constant, the locus of
the FOE is given by the equations
1
; v
v = X

oL
1 .
i vy +(J — 1).ay
9 = —prtU - Day ; J-ay,
vz
The above equations represent a line parallel to the y axis. Fig.
5 shows an instance of this case.
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Fig. 6. (a) Isometric view of 3-D trajectories traced out by the end
points at (20,20,30) and (30,20,30) of a line under translation with velocity
components vy = 3, vy = 4, and vz = 5, and acceleration component
ax = 0,ay = 0, and az = 0.1; (b) perspective projection of the
trajectories in (a); (c) locus of FOE, which is an inclined line.

4. If a rigid object translates in X,Y, and Z but Z alone has
constant acceleration, then the velocities at time instant j can
be written to be

vi = vk
j 1
v} = vy
, . )
vy =vz +(j — 1.az.

Since we are assuming acceleration a7 to be constant, the locus
of the FOE is given by the equations

9 = —f v

- ’Ué-‘r(] —1).az
J vy

9 = ~f

vh+ (G -1z’

The above equations represent an inclined line with slope %iﬁ
Fig. 6 shows an instance of this case. x

5. When an object translates in X, Y, and Z with constant
acceleration of ax,ay,az in X,Y and Z, the velocities at
time instant j can be written to be

Uf( =vx + (G- 1).ax
v} =y +(j - 1.ay
vy = vy + (- .az.

Since we are assuming acceleration to be constant, the locus of
the FOE is given by the equations
9 - _ vk + (j — 1).ax
v+ (- 1).az

- vy + (j —1).ay

¢ v+ (- Dz’
The above equations represent an inclined line with slope
%}Y(—ziz—z)%g—)). From these equations, we can see that the locus
of FOE is an inclined line with slope 2X- when az = 0. When
ax = 0,ay =0, and az # 0, the slope of this line is %,
as in item 4 above.

V. INTERPRETATION OF Locus oF FOE

In this section, we will summarize the observations regarding the
interpretation of locus of the FOE under various types of motion.
From the analysis, it will also be shown that the change of direction
of motion and receding and approaching motion can be determined
from the locus of the FOE.

1. If the locus of the FOE is a single point, then the object is

undergoing translation without any acceleration.

camera

v

Fig.7. Deciding whether a point  (shown by a filled circle) is approaching
or receding. The figure shows the projection on the X -Z plane. The camera
is shown as #. A reference axis is drawn at point i. Around the point i,
six different areas A;-Ag are marked. The sign of the FOE is also marked
in the quadrants formed by the reference axis.

2. If the FOE moves along a line, then the following holds:

a.  If the locus is a straight line parallel to the x axis, then
the motion is translation with acceleration along the X
direction only.

b. If the locus is a straight line parallel to the y axis,
then the motion is translation with acceleration along
Y direction only.

c.  If the locus is an inclined straight line, then the motion
is translation with acceleration in theZ direction or
along two or more of the X, Y, and Z directions. This
includes cases 4 and 5 discussed in Section IV.

3. We can identify the instants at which the object changes its
direction of motion along the Z axis. This is because the
velocity along the Z direction appears in the denominator of
the X and Y coordinates of the FOE. As the velocity along the
Z direction changes sign, there is a discontinuity in the plot of
¥, and ¥, against time at the same time instant. This fact can
be used in identifying instants at which the object changes its
direction of motion along the Z direction.

4. We can also identify instants at which the object changes its
direction of motion along the X and Y axes. The change in
direction of motion along the X axis is seen as a smooth
crossover from positive to negative values in the plot of the
X coordinates of the FOE against time. This is because vx,
which is the velocity along the X direction, appears in the
numerator of ¢.. Similarly, the change in direction of motion
along the Y axis is seen as a smooth crossover from positive
to negative values in the plot of the y coordinates of the FOE
against time.

5. We can determine whether an object is approaching or receding
at any instant of time using the sign of the FOE and the sign
of image coordinates of a point. Fig. 7 shows the X-Z plane
and a reference grid at the point of interest i at time instant j.
In each quadrant, a ‘+’ or ‘~’ sign is marked, and it denotes
the sign of the 97 if the point moves into that quadrant in time
instant j + 1. These signs can easily be determined by using
the fact that 9, = —2X. For instance, the point i shown in
Fig. 7 will only move to the arca A; if its vx is negative and
vz is positive; therefore, ¥, will be positive. We will consider
the following cases:

a. If 43 > 0, then the following hold:
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No [ XLV [ZE [ XZ[ Y2 21 ] =1 [ o z7 vi 91 | Approach/Recede | Area
1 50 | 50 [ 50 || 40 | 70 | 80 [ -100 | -100 -50 -87.5 33.33 | Recede Al
2 50 | 50 | 50 || 60 | 70 [ 30 || -100 | -100 -200 -233.33 50 Approach A2
3 50 | 50 | 50 {| 40 | 70 [ 45 [ -100 | -100 88.89 | -155.56 | -200 | Approach A3
4 50 | 50 | 50| 70 | 70 | 80 |} -100 | -100 [ -87.5 -87.5 | -66.67 | Recede A4
5 50 | 50 | 50 || 70 | 70 [ 60 || -100 | -100 | -116.67 | -116.67 | -200 Recede A5
6 50 | 50 | 50 || 40 | 70 | 30 [ -100 | -100 | -133.33 | -233.33 -50 Approach A6

Fig. 8. Rigid line with end points at 1, 2 was moved in space, and the ¥. was computed. Our decision procedure was used in deciding whether point 1 was
approaching or receding. In this table, we show six cases listed in column 1. The columns 2—4 and 5-7, respectively, show the world coordinates of point 1
in frames 1 and 2, whereas columns 8 and 9 and 10 and 11 show their corresponding image coordinates. The ¥, of each case is given in column 12.

o Izt —x > 0, the object is receding. The point
should move to one of the areas A, As, or Aq
for 2! — 27 > 0. As 92 > 0, the point would
have moved into area A, in the Fig. 7. See entry
one in the table shown in Fig. 8 for an example.

. If z{“ - zf < 0, then the object is approaching.
The point should move to one of the areas Ag,
Az, or As for 22+ — ) < 0. As 92 > 0, the
point would have moved into area A, in Fig. 7.
See entry two in the table shown in Fig. 8 for an
example.

b. If 92 < 0, then the following hold:

. If z{“ - x{ > 0, and ¥ < x{, then the object
is approaching. The point should move to one of
the areas A;, A3, or A4 for x{“ —z! > 0. As
91 <0, it could have moved to either As or As.
As 92 < z!, the point would have moved to area
As in Fig. 7. See entry three in the table shown
in Fig. 8 for an example.

e Halt' =2 >0,and 91 > !, then the object is
receding. The point should move to one of the
areas A1, As, or Aq for 2271 —x? > 0. As
91 <0, it could have moved to either As or Ay
As 91 >z, the point would have moved to area
Ay in Fig. 7. See entry four in the table shown in
Fig. 8 for an example.

o Ifxit'—2? <0,and 9 < 7, then the object is
receding. The point should move to one of the
areas Ae, Az, or As for 171 — 2! < 0. As
92 < 0, it could have moved to either As or As.
As 92 < x], the point would have moved to area
As in Fig. 7. See entry five in the table shown in
Fig. 8 for an example.

o Ifai™ —a! <0, and ¥ > z!, the object is
approaching. The point should move to one of
the areas As, A2, or As for a:,“'] - I’Z < 0. As
91 <0, it could have moved to either Ag or As.
As 97 > x], the point would have moved to area
Asg in Fig. 7. See entry six in the table shown in
Fig. 8 for an example.

We assumed that the piercing point (the point in an image at
which the ray along which the camera was aimed pierces the
image plane) is to the right of the point under consideration. A
similar decision procedure can be developed when the piercing
point is to the left of the point under consideration. We tested
these cases using synthetic data generated by moving a rigid
line in space. The results are tabulated in Fig. 8 for one of the
end points of the line.

V1. CONCLUSION

In this correspondence, we have shown that the FOE’s of motion
trajectories carry rich information related to the motion of the objects.
The locus of the FOE also helps in identifying instances at which the
object changes its direction of motion along any principle axes. Since
under translation all points on the same object have the same velocity,
their trajectories have the same FOE. This property of the FOE can
be used in developing an algorithm for segmenting trajectories into
groups belonging to the same object, which will make use of the
information available in the whole span of the trajectories.

APPENDIX

In this Appendix, we will derive the expressions for the FOE (1)
and (2). Let (z{, y]) and (ac{Jrl , y{“) be the trajectory segment of
point 1 in frames j and j + 1, and let (3, 43), (z3™, y3t") be the
trajectory segment of point 2 in frames j and j + 1. Further, assume
that points 1 and 2 lie on the same object, which is translating in space
with a velocity of v%, v}, and v in the X, Y, and Z directions,
respectively. Let the 3-D coordinates of points 1 and 2 in frame j
be (X{,Y/,Z]) and (X3,Y7, Z3), let and those of points 1 and 2
in frame j + 1 be (X371, ¥y Zi*") and (0. CARN ZARNV AR )
Clearly, the following equations hold:

X=X 4k
J+1 _ vy J
YT =Y+

Z{T =2zt

X3 = X3 + ok
B =y + v}
Zi = 73 4+l

In addition, applying the projection equations

o= %X_
! .
i —fYY
= Z{ |
x{+1 — —fX{ +U§(
Z+ 15
RN '
Zi + vy

The equations of the trajectory segments of points 1 and 2 are
given by the following equations:

r—a) _ 2l — 2t
y—yl  yl-yl"
r-z,  x,—at!
v-vi v
FOE (¥, 0{;) is the point of intersection of these lines and is
given by
99— _f.vj(
p o
N J
9l = _f-lj’y



1210

REFERENCES

[1] G. Adiv, “Determining three-dimensional motion and structure from
optical flow generated by several moving objects,” IEEE Trans. Patt.
Anal. Machine Intelligence, vol. PAMI-7, pp. 384401, 1985.

[2] P. Anandan, “Measuring visible motion from image sequences,” Ph.D.
thesis, Univ. of Mass., Amherst, MA, 1987.

[3] D. H. Ballard and O. A. Kimball, “Rigid body motion from depth and
optical flow,” Comput. Vision Graphics Image Processing, vol. 22, pp.
95-105, 1983.

[4] W. Burger and B. Bhanu, “On computing a fuzzy focus of expansion

for autonomous navigation,” in Proc. Conf. Comput. Vision Patt. Recogn.

(San Diego), 1989, pp. 563-568.

R. Dutta, R. Manmatha, E. M. Riseman, and M. A. Snyder, “Issues in

extracting motion parameters and depth from approximate translational

motion,” in Proc. DARPA IU Workshop (Cambridge, MA), Apr. 1988,

pp. 945-960.

R. Jain, “Direct computation of the focus of expansion,” IEEE Trans.

Patt. Anal. Machine Intelligence, vol. PAMI-5, pp. 58-64, 1983.

[7] D. T. Lawton, “Processing translational motion sequences,” Comput.
Vision Graphics Image Processing, vol. 22, pp. 116-144, 1983.

[8] M. Magee and J. K. Aggarwal, “Determining vanishing points from

perspective images,” Comput. Vision Graphics Image Processing, vol.

26, pp. 256-267, 1984.

S. Negahdaripour and B. K. P. Horn, “A direct method for locating the

focus of expansion,” Comput. Vision Graphics Image Processing, vol.

46, pp. 303-326, 1989.

K. Prazdny, “Determining the instataneous direction of motion from

optical flow generated by a curvilinearly moving observer,” Comput.

Vision Graphics Image Processing, vol. 17, pp. 238-248, 1981.

[5

—

[6

—

[9

—

[10]

Separability of Spatiotemporal Spectra of Image Sequences

Michael P. Eckert, Gershon Buchsbaum, and Andrew B. Watson

Abstract— We calculated the spatiotemporal power spectrum of 14
image sequences in order to determine the degree to which the spectra are
separable in space and time and to assess the validity of the commonly
used exponential correlation model found in the literature. We expand
the spectrum by a singular value d position into a sum of separable
terms and define an index of spatiotemporal separability as the fraction of
the signal energy that can be represented by the first (largest) separable
term. All spectra were found to be highly separable with an index of
separability above 0.98. The power spectra of the sequences were well fit
by a separable model of the form

_ . ab/(4m%)
P D) = (agam® 1 k2073 (of2m2 + 72

where k is radial freq y, [ is t al freq y, and a,b
are spatial and temporal model parameters that determine the effective
spatiotemporal bandwidth of the signal. This power spectrum model cor-
responds to a product of exponential autocorrelation functions separable

in space and time.
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I. INTRODUCTION

The statistics of images and image sequences have been extensively
studied for image coding and compression applications [1], [2] as
well as for the development of models of biological image processing
[3], [4]- An exponential autocorrelation function has been shown to
be a good model for temporal frame-to-frame correlations of image
sequences, €.8., [S]-[8], and for spatial correlations within each frame,
eg. (2], 3], [9).

This paper focuses on the separability of the spatiotemporal sta-
tistics of image sequences and on the validity of using a separable
exponential autocorrelation model for the spatiotemporal statistics.
The autocorrelation function is uniquely related to the power spectrum
via a Fourier transform, and either is valid as a description of the
statistics.

The spectra of 14 image sequences were calculated. The sequences
represented a small ensemble of possible motion activity. The se-
quences were selected for a range of motion activity. For example, a
fast camera pan represents the maximum image motion activity, and
a small moving object with a static background represents the least
activity. Sequences with motion activity between these extremes had
slight camera motion and some object motion.

II. CALCULATION OF IMAGE STATISTICS

We collected 14 image sequences (256 x 256x 64 @ 8 b/pixel, 30
frames/s with no scene cuts) from a video disc that contained scenes
from a broadcast TV source. Each frame was originally sampled at
512 x 512 pixels/screen, but adjacent pixels were averaged, and the
image was subsampled to 256 x 256 pixels/screen. The sample mean
of each sequence was removed to reduce low-frequency bias in the
calculations.

The sample power spectrum P(ky, ks, f) of each sequence
z(n1,m2,t) is the squared magnitude of the discrete Fourier
transform calculated as

1
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where ki,ko are spatial frequencies, f is temporal frequency, ni,n2
are spatial locations, and ¢ is time measured in frame number.

We converted the two spatial frequency dimensions ; and k2 into
one radial frequency dimension k by averaging in 32 annuli around
the spatial frequency origin as illustrated in Fig. 1. In this manner,
the spatial frequency range of 0~127 cycles/screen of ki and k2 is
represented by 32 annuli in bands of 4 cycles/screen. Averaging the
spatial spectra in annuli is equivalent to assuming a circularly sym-
metric spatial autocorrelation function. This autocorrelation function
is not separable in the two spatial dimensions but is considered a
better fit than the corresponding separable autocorrelation function
for most images [9].

The average magnitude of the power spectrum in each annulus can
be obtained by summing over the power spectrum P(ki, k2, f) in
the annulus indexed by k& and normalizing by the number of sample
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