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for Action Detection and Segmentation in Videos
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Abstract—Deep learning has been demonstrated to achieve excellent results for image classification and object detection. However,
the impact of deep learning on video analysis (e.g. action detection and recognition) has not been that significant due to complexity of
video data and lack of annotations. In addition, training deep neural networks on large scale video datasets is extremely
computationally expensive. Previous convolutional neural networks (CNNs) based video action detection approaches usually consist of
two major steps: frame-level action proposal generation and association of proposals across frames. Also, most of these methods
employ two-stream CNN framework to handle spatial and temporal features separately. In this paper, we propose an end-to-end 3D
CNN for action detection and segmentation in videos. The proposed architecture is a unified deep network that is able to recognize and
localize action based on 3D convolution features. A video is first divided into equal length clips and next for each clip a set of tube
proposals are generated based on 3D CNN features. Finally, the tube proposals of different clips are linked together and
spatio-temporal action detection is performed using these linked video proposals. This top-down action detection approach explicitly
relies on a set of good tube proposals to perform well and training the bounding box regression usually requires a large number of
annotated samples. To remedy this, we further extend the 3D CNN to an encoder-decoder structure and formulate the localization
problem as action segmentation. The foreground regions (i.e. action regions) for each frame are segmented first then the segmented
foreground maps are used to generate the bounding boxes. This bottom-up approach effectively avoids tube proposal generation by
leveraging the pixel-wise annotations of segmentation. The segmentation framework also can be readily applied to a general problem
of video object segmentation. Extensive experiments on several video datasets demonstrate the superior performance of our approach
for action detection and video object segmentation compared to the state-of-the-arts.

Index Terms—Action detection, action segmentation, CNN, 3D convolutional neural networks, deep learning, tube proposal
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1 INTRODUCTION

T HE goal of action detection is to detect every occurrence
of a given action within a long video, and to localize each

detection both in space and time. Deep learning learning based
approaches have significantly improved video action recognition
performance. Compared to action recognition, action detection is
a more challenging task due to flexible volume shape and large
spatio-temporal search space.

Previous deep learning based action detection approaches first
detect frame-level action proposals by popular proposal algorithms
[1], [2] or by training proposal networks [3]. Then the frame-level
action proposals are associated across frames to determine final
action detection through tracking based approaches. Moreover, in
order to capture both spatial and temporal information of an action,
two-stream networks (a spatial CNN and an optical flow CNN)
are used. In this manner, the spatial and motion information are
processed separately.

Region Convolution Neural Network (R-CNN) for object
detection in images was proposed by Girshick et al. [4]. It was
followed by a fast R-CNN proposed in [5], which includes the
classifier as well. Later, Faster R-CNN [6] was developed by
introducing a region proposal network. It has been extensively
used to produce excellent results for object detection in images.
A natural generalization of the R-CNN from 2D images to 3D
spatio-temporal volumes is to study their effectiveness for the
problem of action detection in videos. A straightforward spatio-
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temporal generalization of the R-CNN approach would be to treat
action detection in videos as a set of 2D image detection using
Faster R-CNN. However, unfortunately, this approach does not
take the temporal information into account and is not sufficiently
expressive to distinguish between actions.

Inspired by Faster R-CNN [6], we propose Tube Convolutional
Neural Network (T-CNN) for action detection by leveraging the
descriptive power of 3D CNN. To better capture the spatio-
temporal information of video, we exploit 3D CNN since it is able
to capture motion characteristics in videos and shows promising
results on video action recognition. In our approach, an input video
is divided into equal length clips first. Then, the clips are fed into
Tube Proposal Network (TPN) and a set of tube proposals are
obtained. Next, tube proposals from each video clip are linked
according to their actionness scores and overlap between adjacent
proposals to form a complete tube proposal for spatio-temporal
action localization in the video. Finally, the Tube-of-Interest (ToI)
pooling is applied to the linked action tube proposal to generate a
fixed size feature vector for action label prediction.

Our T-CNN is generalization of Faster R-CNN. However,
Faster R-CNN relies on a set of anchor boxes with different sizes
and aspect ratios, and applies them in a sliding window fashion
for object detection. Bounding box regression is used to refine
the anchor boxes in terms of position and size for setting a tight
boundary around the object. Such object detection methods are
considered as top-down detectors, which are similar in spirit to
the top-down, class-specific segmentation algorithms [7], [8], [9]
which use the shape of the deformed model of a known object to
estimate the desired segmentation. Although top-down detection
methods have achieved promising results, they still face several
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issues. First, bounding boxes only provide coarse localization
information as compared to pixel-wise segmentation map. Second,
to train bounding box regression, a large amount of training data
is necessary. Also, since human actions are complex with dynamic
visual patterns, it would require variable templates for each fame
of a video for top-down algorithms, leading to the challenge of
preparing a set of good anchor boxes priors.

Low-level features like intensity, orientation, and motion can
render measurement of actionness for every pixel in image.
Therefore, we also propose to explore an alternative strategy for
action detection using bottom-up action segmentation. Assuming
pixel-wise annotations (action foreground and background) are
available, an encoder-decoder network structure, which is com-
monly used for image semantic segmentation [10], using 3D CNN
is developed to predict pixel-wise labels for each video frame.
Then the pixel-wise predictions (i.e. action segmentation map) for
each frame are used to infer the corresponding bounding boxes by
finding the boundary of the foreground map. After bounding box
generation, ToI pooling is applied to feature tubes for action recog-
nition. We dub the segmentation based approach as Segmentation
T-CNN (ST-CNN). The general frameworks of T-CNN and ST-
CNN are compared in Figure 1. The main difference between ST-
CNN and T-CNN is that ST-CNN avoids generating tube proposals
by treating action detection as a binary (i.e. foreground action and
background) video segmentation task.

To the best of our knowledge, this is the first work to ex-
ploit 3D CNN for video action detection (i.e. localization and
recognition) in an end-to-end fashion. As an extension to our
ICCV paper [11], the main contributions of this paper are sum-
marized as follows. First, we improve the T-CNN framework by
proposing a bottom-up approach, ST-CNN, which leverages pixel-
wise action segmentation for action detection. Second, we also
use ST-CNN for video object segmentation and show competitive
results comparing to the state-of-the-arts. Third, we conduct a
thorough comparison between T-CNN and ST-CNN on action
detection, and provide insights in terms of performance and
generalization ability. Moreover, through extensive experiments,
we demonstrate that our end-to-end 3D CNN approach has the
capacity to achieve superior performance over the popular two-
stream network pipeline for video analysis tasks, e.g. action
detection and video object segmentation.

The remainder of this paper is organized as follows. Section 2
reviews related work on action recognition and detection. Section
3 discusses the challenges of generalizing R-CNN from 2D to 3D.
Section 4 provides detailed procedures of the proposed T-CNN.
In Section 5, we introduce the bottom-up approach, ST-CNN, for
action detection and segmentation. The experimental results on
action detection and video object segmentation are presented in
Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

Object detection. For object detection in images, Girshick et
al. propose Region CNN (R-CNN) [4]. In their approach region
proposals are extracted using selective search. Then the candidate
regions are warped to a fixed size and fed into CNN to extract
CNN features. Finally, SVM model is trained for object clas-
sification. A fast version of R-CNN, Fast R-CNN, is presented
in [5]. Compared to the multi-stage pipeline of R-CNN, fast R-
CNN incorporates object classifier in the network and trains object
classifier and bounding box regressor simultaneously. Region of

Mask
T-CNN

Anchor boxes

…

Bounding box regression

…

Pixel-wise classification

…

T-CNN (top-down approach) ST-CNN (bottom-up approach)

…

…

Segmentation maps

Bounding box generation

Fig. 1. Top-Down (T-CNN) and Bottom-Up (ST-CNN) approaches. The
top-down approach takes the whole frame as the search space with
some predefined bounding box templates, filters candidate bounding
box proposals based on their confidence scores, and performs bounding
box regression on the selected proposals. While, the Bottom-Up ap-
proach directly operates on pixels. It takes only segments within frames
as candidates and agglomerates them as bounding box detection.

interest (RoI) pooling layer is introduced to extract fixed-length
feature vectors for bounding boxes with different sizes. After that,
Faster R-CNN [6] introduces a Region Proposal Network (RPN)
to replace selective search for proposal generation. RPN shares
full image convolutional features with the detection network, thus
the proposal generation is almost cost-free. A recent extension
of Faster R-CNN is the Mask R-CNN [12], which adds another
branch for predicting object mask within each bounding box detec-
tion. SSD (Single Shot MultiBox Detector) [13] and YOLO (you
only look once) [14], [15] detectors eliminate proposal generation
and detect objects in a single network, thus greatly improving the
detection speed. These state-of-the-art object detectors are served
as the basis for recent action detection methods [3], [16], [17].

3D CNN. Convolutional neural networks have been demon-
strated to achieve excellent results for action recognition [18].
Karpathy et al. [19] explore various frame-level fusion methods
over time. Ng et al. [20] use recurrent neural network employing
the CNN feature. Since these approaches only use frame based
CNN features, the temporal information is neglected. Simonyan et
al. [21] propose the two-stream CNN approach for action recogni-
tion. Besides a classic CNN which takes images as an input, it has
a separate network for optical flow. Moreover, Wang et al. fuse
the trajectories and CNN features. Although these methods, which
take hand-crafted temporal feature as a separate stream, show
promising performance on action recognition, they do not employ
end to end deep network and require separate computation of
optical flow and optimization of the parameters. 3D CNN is a
logical solution to this issue. Ji et al. [22] propose a 3D CNN
based human detector and head tracker to segment human subjects
in videos. Sun et al. [23] propose a factorization of 3D CNN
and exploit multiple ways to decompose convolutional kernels.
Tran et al. [24] use 3D CNN for large scale action recognition.
Leveraging the 3D CNN model [24] trained on Sport1M video
dataset [19], the 3D CNN framework has been exploited for
temporal action localization in untrimmed videos [25], [26], [27],
[28], [29]. However, to the best of our knowledge, we are the first
to exploit 3D CNN for action detection.

Action detection. Compared to action recognition, action
detection is a more challenging problem [30], which has been an
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active area of research. Before the deep learning era, the top-down
based approaches dominated the topic first. Ke et al. [31] present
an approach for event detection in crowded videos by matching
event models to over-segmented spatio-temporal volumes. Lan et
al. [32] treat the spatial location of human in the video as a latent
variable, and perform recognition and detection simultaneously.
Tian et al. [33] develop spatio-temporal deformable parts model
[34] to detect actions in videos. Oneata et al. [35] and Desai et al.
[36] propose sliding-windows based approaches.

Another line of research explores the bottom-up strategy.
Bottom-up based approaches replace the exhaustive search, which
is a common strategy in top-down approaches, with selective
search. The selective search has a much smaller search space
than the exhaustive one. In other words, selective search based
approaches take less time to perform “search” in frames. There-
fore, with the same processing time, these approaches are able
to take advantage of more advanced feature representations such
as Fisher vector or VLAD instead of basic HOG and HOF. Ma
et al. [37] use a linear SVM on a bag of hierarchical space-
time segments representation. They build a spatio-temporal feature
pyramid followed by latent SVM. Jain et al. [38] expand the
2D super-pixels to 3D super-voxels. Super-voxels are merged
according to appearance and motion costs to produce multiple
segmentation layers. Authors in [39] and [40] over segment a
video into super-voxels, which are merged into action proposals.
The proposals are used to determine action labels for detection.
Lu et al. [41] propose a hierarchical Markov Random Field (MRF)
model to connect different levels of the super-voxel hierarchies for
action detection.

The success of deep learning algorithms, particularly CNN, in
images paved the way to use them for action detection in video.
Authors in [1] extract frame-level action proposals using selective
search and link them using Viterbi algorithm. While in [2] frame-
level action proposals are obtained by EdgeBox [42] and linked by
a tracking algorithm. Motivated by Faster R-CNN [6], two-streams
R-CNNs for action detection is proposed in [3], [17], where a
spatial RPN and a motion RPN are used to generate frame-level
action proposals. Kalogeiton et al. [43] extend the spatial only
proposal to spatio-temporal proposal by inducing action tubelet.
Singh et al. [16] adopt SSD to perform online spatio-temporal
action localization in real-time. However, these deep learning
based approaches treat the spatial and temporal features of a
video separately by training two-stream 2D CNN. Therefore, the
temporal consistency in videos is not well explored in the network.
In contrast, in the proposed T-CNN, we determine action tube
proposals directly from input videos and extract compact and more
effective spatio-temporal features using 3D CNN.

It is also worth noting that the existing deep learning based ap-
proaches operate in a top-down fashion, which requires exhaustive
search in the whole frame followed by narrowing down to several
appropriate bounding boxes. Clearly, a bottom-up based approach
is more efficient. We propose a segmentation based action detec-
tion approach (ST-CNN), which accumulates foreground pixels
together to form segmentation regions in all frames. And we are
the first to generalize the encoder-decoder style network from 2D
to 3D for action detection and segmentation.

Video object segmentation. Video object segmentation aims
to delineate the foreground object(s) from the background in all
frames. Several CNN based approaches have been proposed for
this task. Existing methods [44], [45], [46] leverage two-stream
pipeline to train a RNN [47] model or learn motion patterns for

TABLE 1
Network architecture of T-CNN. We refer kernel with shape d× h× w

where d is the kernel depth, h and w are height and width. Output
matrix with shape C ×D×H ×W where C is the number of channels,
D is the number of frames (depth), H and W are the height and width

of feature maps.

name kernel dims output dims
(d× h× w) (C ×D ×H ×W )

conv1 3× 3× 3 64× 8× 300× 400
max-pool1 1× 2× 2 64× 8× 150× 200
conv2 3× 3× 3 128× 8× 150× 200
max-pool2 2× 2× 2 128× 4× 75× 100
conv3a 3× 3× 3 256× 4× 75× 100
conv3b 3× 3× 3 256× 4× 75× 100
max-pool3 2× 2× 2 256× 2× 38× 50
conv4a 3× 3× 3 512× 2× 38× 50
conv4b 3× 3× 3 512× 2× 38× 50
max-pool4 2× 2× 2 512× 1× 19× 25
conv5a 3× 3× 3 512× 1× 19× 25
conv5b 3× 3× 3 512× 1× 19× 25
toi-pool2 – 128× 8× 8× 8
toi-pool5 – 512× 1× 4× 4
1x1 conv – 8192
fc6 – 4096
fc7 – 4096

moving object segmentation [46]. While taking inspiration from
these works, we are the first to present a 3D CNN based deep
framework for video object segmentation in a fully automatic
manner without human selected feature.

3 GENERALIZING R-CNN FROM 2D TO 3D
Generalizing R-CNN from 2D image regions to 3D video tubes
is challenging due to the asymmetry between space and time.
Different from images which can be cropped and reshaped into
a fixed size, videos vary widely in temporal dimension. Therefore,
we divide input videos into fixed length (8 frames) clips, so that
video clips can be processed with a fixed-size CNN architecture.
Also, clip based processing mitigates the cost of GPU memory.

To better capture the spatio-temporal information in video,
we exploit 3D CNN for action proposal generation and action
recognition. One advantage of 3D CNN over 2D CNN is that it
captures motion information by applying convolution in both time
and space. Since 3D convolution and 3D max pooling are utilized
in our approach, not only in the spatial dimension but also in
the temporal dimension, the size of video clip is reduced while
relevant information is captured. As demonstrated in [24], the
temporal pooling is important for recognition task since it better
models the spatio-temporal information of video and reduces
background noise. However, the temporal order is lost in the
process. That means if we arbitrarily change the order of the
frames in a video clip, the resulting 3D max-pooled feature cube
will be the same. This is problematic in action detection, since it
relies on the feature cube to get bounding boxes for the original
frames. To this end, we incorporate temporal skip pooling to retain
temporal order residing in the original frames. More details are
provided in the next section.

Since a video is processed clip by clip, action tube proposals
with various spatial and temporal sizes are generated for different
clips. These clip proposals need to be linked into a sequence
of tube proposal, which is used for action label prediction and
localization. To produce a fixed length feature vector, we propose
a new pooling layer – Tube-of-Interest (ToI) pooling layer. The
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Fig. 2. Tube of interest pooling. In this example four feature maps of
different sizes are first pooled spatially to 4 × 4 then pooled temporally
to a fixed size of 1. The cell size for spatial pooling in each feature map
varies depending on the size of the feature map. “99K” indicates the loss
back-propagation path of a ToI output, yi ( ), to its corresponding input,
xi.

ToI pooling layer is a 3D generalization of Region-of-Interest
(RoI) pooling layer of R-CNN. The classic max pooling layer
defines the kernel size, stride and padding which determine the
shape of the output. In contrast, for RoI pooling layer, the output
shape is fixed first, then the kernel size and stride are determined
accordingly. Compared to RoI pooling which takes 2D feature map
and 2D regions as input, ToI pooling deals with feature cube and
3D tubes. Denote the size of a feature cube as d× h× w, where
d, h and w respectively represent the depth, height and width of
the feature cube. A ToI in the feature cube is defined by a d-by-
4 matrix, which is composed of d boxes distributed in d feature
maps. The boxes are defined by a four-tuple (xi1, y

i
1, x

i
2, y

i
2) that

specifies the top-left and bottom-right corners in the i-th feature
map. Since the d bounding boxes may have different sizes, aspect
ratios and positions, in order to apply spatio-temporal pooling,
pooling in spatial and temporal domains are performed separately.
First, the h × w feature maps are divided into H × W bins,
where each bin corresponds to a cell with size of approximately
h/H × w/W . In each cell, max pooling is applied to select the
maximum value. Second, the spatially pooled d feature maps are
temporally divided into D bins. Similar to the first step, d/D
adjacent feature maps are grouped together to perform the standard
temporal max pooling. As a result the fixed output size of ToI
pooling layer is D × H × W . A graphical illustration of ToI
pooling is presented in Figure 2.

Back-propagation of ToI pooling layer routes the derivatives
from output back to the input as shown in Figure2. Assume xi
is the i-th activation to the ToI pooling layer, and yj is the j-th
output. Then the partial derivative of the loss function (L) with
respect to each input variable xi can be expressed as:

∂L

∂xi
=
∂L

∂yj

∂yj
∂xi

=
∑
j

[i = f(j)]
∂L

∂yj
. (1)

Each pooling output yj has a corresponding input position i. We
use a function f(·) to represent the argmax selection from the

ToI. Thus, the gradient from the next layer ∂L/∂yj is passed back
to only that neuron which achieves the max ∂L/∂xi.

4 T-CNN FOR ACTION DETECTION

As shown in Figure 3, our T-CNN is an end-to-end deep learning
framework that takes video clips as input. The core component is
the Tube Proposal Network (TPN) (see Figure 4) to produce tube
proposals for each clip. Linked tube proposal sequences are used
for spatio-temporal action detection and action recognition in the
video.

…
Clip 1 Clip 2 Clip n

8-frame video clips

Action tube proposal generation

…

Clip 1 Clip n

Tube proposals

Linking tube proposals

Action recognition
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… …

…
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Fig. 3. An overview of the proposed Tube Convolutional Neural Network
(T-CNN) for action detection. First, an input video is divided into equal
length clips of 8 frame each and fed to Tube Proposal Network to
generate tube proposals. Next, these proposals are then linked into
larger tubes covering full actions and fed to Action Detection network.
Finally, Action Detection network employs TOI pooling to recognize and
localize the action.

4.1 Tube Proposal Network

For a 8-frame video clip, 3D convolution and 3D pooling are used
to extract spatio-temporal feature cube. In 3D CNN, convolution
and pooling are performed spatio-temporally. Therefore, the tem-
poral information of the input video is preserved. Our 3D CNN
consists of seven 3D convolution layers and four 3D max-pooling
layers. We denote the kernel shape of 3D convolution/pooling by
d×h×w, where d, h, w are depth, height and width, respectively.
In all convolution layers, the kernel sizes are 3 × 3 × 3, padding
and stride remain as 1. The numbers of filters are 64, 128 and
256 respectively in the first 3 convolution layers and 512 in the
remaining convolution layers. The kernel size is set to 1 × 2 × 2
for the first 3D max-pooling layer, and 2×2×2 for the remaining
3D max-pooling layers. The details of network architecture are
presented in Table 1. We use the C3D model [24] as the pre-
trained model and finetune it on each dataset in our experiments.

After 3D conv5, the temporal size is reduced to 1 frame
(i.e. feature cube with depth D = 1). In the feature cube, each
frame/slice consists of a number of channels specified in Table 1.
Here, we drop the number of channels for ease of explanation.
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Following Faster R-CNN, we generate bounding box proposals
based on the conv5 feature cube1.

Anchor bounding boxes selection. In Faster R-CNN, the
bounding box dimensions are hand picked, i.e. 9 anchor boxes
with 3 scales and 3 aspect ratios. We can directly adopt the same
anchor boxes in our T-CNN framework. However, it has been
shown in [15] that if we choose better bounding box priors for
the network, it helps the network learn better to predict good
detections. Therefore, instead of choosing hand-picked anchor
boxes, we apply k-means clustering on bounding boxes in the
training set to learn 12 anchor boxes (i.e. cluster centers). This
data driven anchor box selection approach is adaptive to different
datasets.

Each bounding box (bbx) is associated with an “actionness”
score, which measures the probability that the bbx corresponds to
a valid action. We assign a binary class label (of being an action or
not) to each bounding box. Bounding boxes with actionness scores
smaller than a threshold are discarded. In the training phase, the
bbx which has an Intersection-over-Union (IoU) overlap higher
than 0.7 with any ground-truth bbx, or has the highest IoU overlap
with a ground-truth box (the later condition is considered in case
the former condition may find no positive sample) is taken as a
positive bounding box proposal.

Temporal skip pooling. Bounding box proposals generated
from conv5 feature tube can be used for frame-level action
detection by bounding box regression. However, due to temporal
max pooling (8 frames to 1 frame), the temporal order of the
original 8 frames is lost. Therefore, we use temporal skip pooling
to inject the temporal order for frame-level detection. Specifically,
we map each positive bounding box generated from conv5 feature
cube into conv2 feature cube which has 8 feature frames/slices.
Since these 8 feature slices correspond to the original 8 frames
in a video clip, the temporal order is preserved. As a result, if
there are 5 bounding boxes in conv5 feature cube for example,
5 scaled bounding boxes are mapped to each conv2 feature slice
at the corresponding locations. This creates 5 tube proposals as
illustrated in Figure 4, which are paired with the corresponding 5
bounding box proposals for frame-level action detection. To form
a fixed feature maps, ToI pooling is applied to the variable size
tube proposals as well as the bounding box proposals. Since a
tube proposal covers 8 frames in Conv2, the ToI pooled bounding
box from Conv5 is duplicated 8 times to form a tube. We then
apply L2 normalization to the paired two tubes, and vectorize and
concatenate them. Since we use the C3D model [24] as the pre-
trained model, we apply a 1x1 convolution to match the input
dimension of fc6. Three fully-connected (FC) layers process each
descriptor and produce the output: displacement of height, width
and 2D center of each bounding box (“bbox”) in each frame.
The regression loss measures the differences between ground-
truth and predicted bounding boxes, represented by a 4D vector
(∆centerx, ∆centery , ∆width, ∆height). The sum of them
for all bounding boxes is the regression loss of the whole tube.
Finally, a set of refined tube proposals by adding the displacements
of height, width and center are generated as an output from the
TPN representing potential spatio-temporal action localization of
the input video clip.

1. Since the depth of conv5 feature cube is reduced to 1, the ToI pooling after
that essentially reduces to RoI pooing, a special case of ToI. For consistency,
we use ToI throughout the entire framework.

4.2 Linking Tube Proposals
A set of tube proposals are obtained for each video clip after
the TPN. We then link these tube proposals to form a sequence
of proposals for spatio-temporal action localization of the entire
video. Each tube proposal from different clips can be linked in
a tube proposal sequence (i.e. video tube proposal) for action
detection. However, not all combinations of tube proposals can
correctly capture the complete action. For example, a tube pro-
posal in one clip may contain the action and a tube proposal in
the following clip may only capture the background. Intuitively,
the content within the selected tube proposals should capture an
action and connected tube proposals in any two consecutive clips
should have a large temporal overlap. Therefore, two criteria are
considered when linking tube proposals: actionness and overlap
scores. Each video proposal is then assigned a score defined as
follows:

S =
1

m

m∑
i=1

Actionnessi +
1

m− 1

m−1∑
j=1

Overlapj,j+1, (2)

where Actionnessi denotes the actionness score of the tube
proposal from the i-th clip, Overlapj,j+1 measures the overlap
between the linked two proposals respectively from the j-th and
(j+1)-th clips, andm is the total number of video clips. As shown
in Figure 4, each bounding box proposal from conv5 feature cube
is associated with an actionness score. These actionness scores are
inherited by the corresponding tube proposals from conv2 feature
cube. The overlap between two tube proposals is calculated based
on the IoU (Intersection Over Union) of the last frame of the
j-th tube proposal and the first frame of the (j + 1)-th tube
proposal. The first term of S computes the average actionness
score of all tube proposals in a video proposal and the second term
computes the average overlap between the tube proposals in every
two consecutive video clips. Therefore, we ensure the linked tube
proposals can encapsulate the action and at the same time have
temporal consistency. An example of linking tube proposals and
computing scores is illustrated in Figure 5. We choose a number
of linked proposal sequences with highest scores in a video (see
more details in Sec. 6.1).

4.3 Action Detection
After linking tube proposals, we get a set of linked sequences
of tube proposal, which represent potential action instances. The
next step is to classify these linked tube proposal sequences. The
tube proposals in the linked sequences may have different sizes.
In order to extract a fixed length feature vector from each of the
linked proposal sequence, our proposed ToI pooling is utilized.
Then the ToI pooling layer is followed by two FC layers and a
drop-out layer. The dimension of the last FC layer is N + 1 (N
action classes and 1 background class).

5 BOTTOM-UP ACTION DETECTION IN VIDEOS

The proposed T-CNN approach is able to detect actions in
videos and put bounding boxes for localization in each frame.
As discussed before, T-CNN as a top-down approach relies on
exhaustive search in the whole frame and appropriate bounding
boxes selection. It has been shown that bottom-up approaches
which directly operate on group of pixels e.g. through super-
voxel or super pixel segmentation are more efficient for action
detection. Also, it is obvious that pixel-wise action segmentation
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maps provide finer human silhouettes than bounding boxes, since
bounding may also include background pixels.

To achieve this goal, we develop a ST-CNN (Segmentation
Tube CNN) approach to automatically localize and segment the
silhouette of an actor for action detection. Figure 6 shows the
network structure of the proposed ST-CNN. It is an end-to-end
3D CNN, which builds upon an encoder-decoder structure like
the SegNet [10] for image semantic segmentation. A video is
divided into 8-frame clips as input to the network. On the encoder
side, 3D convolution and max pooling are performed. Due to
3D max pooling, the spatial and temporal sizes are reduced. In
order to generate the pixel-wise segmentation map for each frame
in the original size, 3D upsampling is used in the decoder to
increase the resolution of feature maps. To capture spatial and
temporal information at different scales, a concatenation with
the corresponding feature maps from the encoder is employed
after each 3D upsampling layer. Finally, a segmentation branch
is used for pixel-wise prediction (i.e. background or action fore-
ground) for each frame in a clip. Recognition branch takes the
segmentation maps (output of the segmentation branch), where

TABLE 2
Network architecture of ST-CNN. Note that conv6 and conv7 (in the
segmentation branch) are applied to each frame of the concat1 layer
feature cube (112× 8× 240× 320) to produce 8 segmentation maps.

name kernel dims output dims
(d× h× w) (C ×D ×H ×W )

conv1 3× 3× 3 64× 8× 240× 320
max-pool1 1× 2× 2 64× 8× 120× 160
conv2 3× 3× 3 128× 8× 120× 160
max-pool2 2× 2× 2 128× 4× 60× 80
conv3a 3× 3× 3 256× 4× 60× 80
conv3b 3× 3× 3 256× 4× 60× 80
max-pool3 2× 2× 2 256× 2× 30× 40
conv4a 3× 3× 3 512× 2× 30× 40
conv4b 3× 3× 3 512× 2× 30× 40
max-pool4 2× 2× 2 512× 1× 15× 20
conv5a 3× 3× 3 512× 1× 15× 20
conv5b 3× 3× 3 512× 1× 15× 20
upsample4 3× 3× 3 64× 2× 30× 40
conv4c 3× 3× 3 448× 2× 30× 40
upsample3 3× 3× 3 64× 4× 60× 80
conv3c 3× 3× 3 448× 4× 60× 80
upsample2 3× 3× 3 64× 8× 120× 160
conv2c 3× 3× 3 128× 8× 120× 160
upsample1 3× 3× 3 48× 8× 240× 320
conv1c 3× 3× 3 64× 8× 240× 320
conv6 1× 1 4096× 8× 240× 320
conv7 1× 1 2× 8× 240× 320
toi-pool – 112× 8× 8× 8
fc6 – 4096
fc7 – 4096

the foreground segmentation maps (action regions) are converted
into bounding boxes, and the feature cube of the last concatenation
layer “concat1”, to extract the feature tube of the action volume.
ToI pooling is applied to the feature tube and followed by three FC
layers for action recognition. The detailed network configuration
is presented in Table 2.

Compared to T-CNN, ST-CNN is a bottom-up approach and
has the following advantages for action detection.
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• ST-CNN provides pixel-level localization for actions (i.e. ac-
tion segmentation maps), which are more accurate than bounding
boxes for action localization. Moreover, bounding boxes can be
easily derived from the segmentation maps.
• ST-CNN avoids bounding box regression used in T-CNN,

which is hard to converge. Specifically, to learn a sufficient regres-
sion model, large amount of data is required. In contrast, less data
is required for binary (foreground vs. background) classification
and convergence is easier to reach. In our case, lack of annotated
training video data causes difficulty in training the bounding boxes
regression model. Since ST-CNN uses a classification model,
which predicts foreground/background label for each pixel, the
number of training samples is drastically increased, since one
detection bounding box or action segmentation map includes
hundreds of pixels.

Connections between T-CNN and ST-CNN. Although we
do not employ TPN om ST-CNN as in T-CNN, both frameworks
explicitly use 3D convolutions as building blocks to learn spatio-
temporal features for action detection. The encoder part of ST-
CNN shares the same network architecture of T-CNN for feature
extraction. Moreover, ToI pooling is employed in both frameworks
to handle variable bounding box sizes in tubes.

5.1 3D Upsampling Layer

A common method of recovering higher image resolution from
max-pooling is to use un-pooling [48] followed by a convolution
layer. The locations of the maximum values within max-pooling
regions are recorded. The un-pooling layer places the values
from the layer above to appropriate positions, according to the
recorded max-pooling locations, as an approximation of reverse
max-pooling. Deconvolution [49] is another approach to increase
the resolution feature map, and has been explored in various tasks
such as semantic segmentation [49], optical flow estimation [50],
etc. A graphical illustration of the 3D un-pooling followed by 3D
convolution is presented in Figure 7.

Compared to un-pooling and deconvolution, sub-pixel convo-
lution proposed in [51] shows better performance for image super-
resolution and is more computationally efficient. Therefore, we
adopt the sub-pixel convolution approach [51] and generalize it
to 3D. An example of the 3D sub-pixel convolution operation to
upscale an input low resolution feature cube by a factor of 2 in
both spatial and temporal dimensions is demonstrated in Figure 8.

3D Un-pooling

Frame 1 Frame 2 Frame 3 Frame 4

8 frames

Zero-padding frame3x3x3 conv

Input low resolution feature cube (dimension: C x D x H x W = 1 x 4 x 4 x 4 )

Output high resolution feature cube 

(C x D x H x W = 1 x 8 x 8 x 8 )

Fig. 7. The 3D “un-pooling + convolution” operation with a upscale factor
of 2 in both spatial and temporal dimensions. In this example, the input is
a low resolution (LR) input feature cube (C×D×H×W = 1×4×4×4).
The un-pooling operation is used to generate two upscaled frames (H×
W = 8× 8) for each input frame. (Note that the un-pooling locations are
randomly selected for demonstration purpose.) Then 3D convolution is
applied to the resulting 8 frames and 2 zero-padding frames to produce
the high resolution (HR) feature cube (C×D×H×W = 1×8×8×8).

Formally, suppose we want to upsample the LR feature maps
(or cube) by pd, ph and pw times in depth (frame), height and
width, respectively. A convolution layer is first applied on the
LR feature maps, PLR with dimension (C × D × H × W =
CL × DL × HL × WL), to expand the channels from CL to
CH = pd × ph × pw ×CL. In the example of Figure 8, CL = 1
and the upscale factor is 2, i.e. pd = 2, ph = 2 and pw = 2. We
denote the channel expanded feature maps as P̂LR. The spatial
(H × W ) and temporal (D) resolutions of P̂LR are the same
as those of PLR. Second, subsequent channel-to-space&depth
transpose layer is placed on top of it to upsample the spatial and
temporal dimensions by (ph, pw) and pd times, respectively. Let
PHR
c,i,j,k(C ×D ×H ×W = CH ×DH ×HH ×WH) be the

pixel value in the HR feature maps, located at (c, i, j, k) denoting
the position (channel, depth/frame, height, width). The pixels in
the HR feature maps PHR are mapped from P̂LR according to:

PHR
c,i,j,k = P̂LR

c′,i′,j′,k′ , (3)

where c ∈ {0, ..., CH − 1}, i ∈ {0, ..., DH − 1}, j ∈
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Fig. 8. The 3D sub-pixel convolution approach for feature cube upscal-
ing. In this example, given the LR input feature cube with dimension
(C × D × H × W = 1 × 4 × 4 × 4). It is first added with two zero-
padding frames. Then the 3 × 3 × 3 convolution operation is applied
to those frames (i.e. 0-2, 1-3, 2-4, and 3-5). Take the 3D convolution on
frames 1-3 as an example. We use 8 3D convolution kernels to generate
P̂LR with 8 channels. Then channel to space & depth reshape is per-
formed, following Eqs. 3 and 4, to produce PHR, where both the spatial
dimension (H ×W ) and the temporal dimension (D) are increased by
a factor of 2. Therefore, the operations (3D convolution and channel-to-
space&depth reshape) on the input frames (0-2, 1-3, 2-4, and 3-5) result
in an upscaled feature cube (C ×D ×H ×W = 1× 8× 8× 8).

{0, ...,HH − 1}, and k ∈ {0, ...,WH − 1}. Indices c′, i′, j′

and k′ for P̂LR are defined as follows:
c′ = c · pd · ph · pw + mod(i, pd) + pw · mod(j, ph)

+pw · ph · mod(k, pw)
i′ = bi/pdc
j′ = bj/phc
k′ = bk/pwc

(4)

Note that 3D convolution is performed in the LR feature space
in the sub-pixel convolution approach, whereas it is applied on the
un-pooled sparse feature cube (in HR space) in the “un-pooling
+ convolution” strategy. Therefore, the 3D sub-pixel convolution
method is able to integrate more information in 3D convolution
for feature cube upscaling.

6 EXPERIMENTS

To verify the effectiveness of the proposed 3D end-to-end deep
learning framework for action detection and segmentation, we
evaluate our approach on three trimmed video action detection
datasets including UCF-Sports [52], J-HMDB [53], UCF-101 [54];
one un-trimmed video action detection dataset – THUMOS’14
[55]; and a video object segmentation dataset – DAVIS’16 [56].
In the following, we provide the implementation details of our

networks, datasets and experiment settings, as well as show
experimental comparisons of our method to the state-of-the-arts.

6.1 Implementation Details
6.1.1 T-CNN for action detection
The TPN and recognition network share weights in their common
layers. Due to memory limitation, in the training phase, each video
is divided into overlapping 8-frame clips with resolution 300×400
and temporal stride 1. When training the TPN, each anchor box
is assigned a binary label. An anchor box which has the highest
IoU overlap with a ground-truth box, or an anchor box that has an
IoU overlap higher than 0.7 with any ground-truth box is assigned
a positive label, and others are assigned negative labels. In each
iteration, 4 clips are fed into the network. Since the number of
background boxes (i.e. negative boxes) is much larger than that of
action boxes, we randomly select some of the negative boxes to
balance the number of positive and negative samples in a batch.
For recognition network training, we choose 40 linked proposal
sequences with highest scores in a video as Tubes of Interest.

T-CNN model is trained in an alternative manner. First, we
initialize the TPN based on the pre-trained model in [24], and
use the generated proposals to initialize the recognition network.
Next, the weights tuned by the recognition network are used to
update the TPN. Finally, the tuned weights and proposals from
the TPN are used for finalizing the recognition network. For
UCF-Sports and J-HMDB, the learning rate of the networks is ini-
tialized as 10−3 and decreased to 10−4 after 30k batches. Training
terminates after 50k batches. For UCF-101 and THUMOS’14, the
learning rate is initialized as 10−3 and decreased to 10−4 after
60k batches. Training terminates after 100k batches.

During testing, each video is divided into non-overlapping 8-
frame clips. If the number of frames in the video cannot be divided
by 8, we pad zeros after the last frame to make it divisible. 40
tube proposals with highest actionness confidence through TPN
are chosen for the linking process. Non-maximum suppression
(NMS) is applied to the linked proposals to get the final action
detection results.

6.1.2 ST-CNN for action detection
We use the same resolution 300 × 400 of the input videos
without cropping and resizing. The detection task uses both losses
(segmentation loss and recognition loss) as shown in Figure 6.
In the training phase, similar to T-CNN, videos are divided into
overlapping 8-frame clips with temporal stride 1. For the J-
HMDB dataset, the ground-truth annotations provide pixel-wise
binary labels, where foreground is considered as positive and
background as negative. These pixel-wise annotations are used
for minimizing the segmentation loss. Once the segmentation is
generated for each frame, a bounding box is obtained by including
positive pixels (i.e. foreground) in each frame. Bounding boxes
in each video clip form tubes of interest. Through ToI max
pooling, the feature cube size is fixed for action recognition. The
learning rate is initialized at 10−4 and decreased to 10−5 after
498, 000 batches where each batch contains 4 clips. Training
terminates after 500, 000 batches. During testing, the incoming
video is divided into non-overlapping 8-frame clips first. Then,
the segmentation branch predict the foreground/background for
all the pixels (action segmentation – localization). Finally, we
take the boundary of predicted foreground pixels in each frame to
form the Tube-of-Interest, which is fed into the ToI pooling layer
to predict the action label (action recognition).
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6.1.3 ST-CNN for video object segmentation
Since ST-CNN already includes a segmentation loss, it can be
easily applied to the video object segmentation task, i.e. seg-
menting the primary foreground object in each video frame. The
benchmark dataset, DAVIS’16 [56], is employed for evaluation. In
this experiment, only segmentation loss is considered as shown in
Figure 6 since action recognition is not involved. Similar to the
detection task, each batch contains 4 clips, but the learning rate is
initialized at 10−3 and decreased to 10−4 after 100, 000 batches.
The training process terminates after 120, 000 batches.

6.2 Action Detection Experimental Results
6.2.1 UCF-Sports
UCF-Sports dataset contains 150 short videos of 10 different sport
classes. Videos are trimmed and the action and bounding boxes
annotations are provided for all frames. We follow the standard
training and test split defined in [32] to carry out the evaluation.

We use the usual IoU criterion and generate ROC curve in
Figure 9(a) when overlap equals to α = 0.2. Figure 9(b) illustrates
AUC (Area-Under-Curve) measured with different overlap crite-
rion. In direct comparison, our T-CNN clearly outperforms all the
competing methods shown in the plot. We are unable to directly
compare the detection accuracy against Peng et al. [3] in the plot,
since they do not provide the ROC and AUC curves. As shown in
Table 3, the frame level mAP of our approach outperforms theirs
in 8 actions out of 10. Moreover, by using the same metric, the
video mAP of our approach reaches 95.2 (α = 0.2 and 0.5), while
they report 94.8 (α = 0.2) and 94.7 (α = 0.5).

6.2.2 J-HMDB
J-HMDB consists of 928 videos with 21 different actions. All
the video clips are well trimmed. There are three train-test splits
and the evaluation is done on the average results over the three
splits. The experimental results comparison is shown in Table 4.
We report our results using 3 metrics: frame-mAP, the average
precision of detection at frame level as in [1]; video-mAP, the
average precision at video level as in [1] with IoU threshold
α = 0.2 and α = 0.5. It is evident that our T-CNN consistently
outperforms the state-of-the-art approaches in terms of all three
evaluation metrics.

6.2.3 THUMOS’13 (UCF 101)
UCF-101 dataset with 101 actions is commonly used for action
recognition. For action detection task, a subset (THUMOS’13) of
24 action classes and 3, 207 videos have spatio-temporal annota-
tions [16]. Similar to other methods, we perform the experiments
on the first train/test split only. We report our results in Table 5
with 3 metrics: frame-mAP, video-mAP (α = 0.2) and video-
mAP (α = 0.5). Our approach again yields the best performance.
Moreover, we also report the action recognition results of T-CNN
on the above three datasets in Table 6.

6.2.4 THUMOS’14
To further validate the effectiveness of our T-CNN approach for
action detection, we evaluate it using the untrimmed videos from
the THUMOS’14 dataset [55]. The THUMOS’14 spatio-temporal
localization task consists of 4 classes of actions: BaseballPitch,
golfSwing, TennisSwing and ThrowDiscus. There are about 20
videos per class and each video contains 500 to 3, 000 frames.
The videos are divided into validation set and test set, but only

videos in the test set have spatial annotations provided by [58].
Therefore, we use samples corresponding to those 4 actions in
UCF-101 with spatial annotations to train our model.

In untrimmed videos, there often exist other unrelated ac-
tions besides the action of interests. For example, “walking”
and “picking up a golf ball” are considered as unrelated actions
when detecting “GolfSwing” action. We denote clips which have
positive ground truth annotation as positive clips, and the other
clips as negative clips (i.e. clips containing unrelated actions). If
we randomly select negative samples for training, the number
of boxes on unrelated actions is much smaller than that for
background boxes (i.e. boxes capturing only background). Thus
the trained model will have no capability to distinguish action of
interest and unrelated actions.

To this end, we introduce a so called negative sample mining
process. Specifically, when initializing the TPN, we only use
positive clips. Then we apply the model on the whole training
video (consisting of both positive and negative clips). Most false
positives in negative clips should include unrelated actions to
help our model learn the difference between action of interest
and unrelated actions. Therefore we select boxes in negative clips
with highest scores as hard negatives, since low scores probably
related to the image background and those background clips do not
contribute to the model to distinguish between action of interest
and unrelated actions. In the TPN updating procedure, we choose
32 boxes which have IoU with any ground truth greater than 0.7
as positive samples and randomly pick another 16 samples as
negative. We also select 16 samples from the hard negative pool as
negatives. Therefore, we efficiently train a model, which is able to
distinguish not only action of interest from background, but also
action of interest from unrelated actions.

The mean ROC curves of different methods for THUMOS’14
action detection are plotted in Figure 9(c). Our method without
negative mining performs better than the baseline method Sultani
et al. [58]. Additionally, with negative mining, the performance
is further boosted. For qualitative results, we shows examples of
detected action tubes in videos from UCF-Sports, JHMDB, UCF-
101 (24 actions) and THUMOS’14 datasets (see Figure 10). Each
block corresponds to a different video that is selected from the test
set. We show the highest scoring action tube for each video.

6.2.5 T-CNN vs. ST-CNN for Action Detection
We evaluate the proposed ST-CNN method on the J-HMDB
dataset using two performance measures, i.e. bounding box action
detection and pixel-wise segmentation maps, since both bounding
box and segmentation maps annotations are provided for this
dataset. For action detection evaluation, we generate the bounding
box for each frame based on the enclosing box of the predicted
segmentation map. We report the video mean average precision
(mAP) results of our method and several state-of-the-art detec-
tion approaches in Table 4. ST-CNN achieves the best results
and outperforms T-CNN by 0.8%. We also compare ST-CNN
with a baseline method [41] in terms of action segmentation,
and our method performs significantly better than the baseline,
leading to almost 10% improvement of IoU. Some qualitative
action segmentation and action detection results of our ST-CNN
approach on the J-HMDB dataset are illustrated in Figure 11. We
also show the detection results of T-CNN for comparison. The
predicted segmentation maps of ST-CNN are well aligned with
the body contours, which results in more accurate bounding boxes
than T-CNN (e.g. “brush hair”, “catch” and “pick” as shown in
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Fig. 9. The ROC and AUC curves for UCF-Sports dataset [52] are shown in (a) and (b), respectively. The results are shown for Jain et al . [38]
(green), Tian et al . [33] (purple), Soomro et al . [39] (blue), Wang et al . [57] (yellow), Gkioxari et al . [1] (cyan) and Proposed Method (red). (c) shows
the mean ROC curves for four actions of THUMOS’14. The results are shown for Sultani et al . [58] (green), the proposed T-CNN (red) and T-CNN
without negative mining (blue).

TABLE 3
mAP for each class of UCF-Sports. The IoU threshold α for frame m-AP is fixed to 0.5.

Diving Golf Kicking Lifting Riding Run SkateB. Swing SwingB. Walk mAP
Gkioxari et al. [1] 75.8 69.3 54.6 99.1 89.6 54.9 29.8 88.7 74.5 44.7 68.1
Weinzaepfel et al. [2] 60.71 77.55 65.26 100.00 99.53 52.60 47.14 88.88 62.86 64.44 71.9
Peng et al. [3] 96.12 80.47 73.78 99.17 97.56 82.37 57.43 83.64 98.54 75.99 84.51
Kalogeiton et al. [43] – – – – – – – – – – 87.7
Ours (T-CNN) 84.38 90.79 86.48 99.77 100.00 83.65 68.72 65.75 99.62 87.79 86.7
Ours (ST-CNN*) 70.9 89.1 90.7 89.7 99.6 71.1 80.4 89.3 86.7 77.5 84.5
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Fig. 10. Action detection results obtained by T-CNN on UCF-Sports, JHMDB, UCF-101 and THUMOS’14. Red boxes show the detections in the
corresponding frames, and green boxes show ground truth. The predicted labels are overlaid.

Figure 11). Although the segmentation noise may cause imperfect
bounding box predictions (see the last two example frames of
“climb”, where incorrect foreground appear on the hand rail),
some post-processing techniques such as conditional random fields
(CRFs) can be employed to smooth out the segmentation noise to
achieve better segmentation maps.

We compare our 3D sub-pixel convolution with the “un-
pooling + convolution”, denoted by Ours (un-pool)) in Table 4. We
replace our upsample convolution layer with transpose convolution
layer and keep other settings unchanged. By using upsample
convolution, we achieve about 5% accuracy gain compared to
transpose convolution based approach.

Since the J-HMDB dataset provides the annotations of pixel-

wise segmentation maps, ST-CNN can leverage such pixel-wise
labeling information to train the model. However, the other action
detection datasets may only have bounding box annotations for
actions, such as UCF-Sports. How well the trained ST-CNN
model on J-HMDB is able to generalize to other datasets for
action detection with no additional bounding box training? To
validate its performance, we directly apply the trained ST-CNN
on J-HMDB to the UCF-Sports dataset for generating action
segmentation maps. The tightest bounding box that covers the
foreground segmentation in each frame is considered as the action
bounding box prediction. Beside bounding box prediction, since
the UCF-Sports dataset consists of different action categories, we
need to train the action recognition classifier on UCF-Sports to
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Fig. 11. Action segmentation and detection results obtained by ST-CNN on the J-HMDB dataset. Green pixel-wise segmentation maps show the
predictions of ST-CNN, and the red boxes show the bounding boxes generated from the segmentation maps. Yellow boxes represent the detection
results obtained by T-CNN for comparison.

TABLE 4
Comparison of the state-of-the-art approaches on J-HMDB. The IoU

threshold α for frame m-AP is fixed to 0.5.

f.-mAP v.-mAP v.-mAP
(α = 0.5) (α = 0.2) (α = 0.5)

Gkioxari et al. [1] 36.2 – 53.3
Weinzaepfel et al. [2] 45.8 63.1 60.7
Peng et al. [3] 58.5 74.3 73.1
Kalogeiton et al. [43] 65.7 74.2 73.7
Singh et al. [16] – 73.8 72.0
Ours (T-CNN) 61.3 78.4 76.9
Ours (ST-CNN) 64.9 78.6 78.3
Ours (un-pool) 57.1 71.6 73.9

TABLE 5
Comparison of the state-of-the-art on UCF-101 (24 actions). The IoU

threshold α for frame m-AP is fixed to 0.5.

f.-mAP video-mAP
IoU th. 0.05 0.1 0.2 0.3
Weinzaepfel et al. [2] 35.84 54.3 51.7 46.8 37.8
Peng et al. [3] 65.73 78.76 77.31 72.86 65.7
Kalogeiton et al. [43] 67.1 – – 77.2 –
Singh et al. [16] – – – 73.5 –
Ours 67.3 78.2 77.9 73.1 69.4

TABLE 6
Action recognition results of our T-CNN approach on the four datasets.

Accuracy (%)
UCF-Sports 95.7
J-HMDB 67.2
UCF-101 (24 actions) 94.4

predict which action the tubes belong to. We follow the same
experimental settings as in Section 6.2.1, and report the results in
Table 3. We see that although ST-CNN is trained on a different
dataset (J-HMDB), it still achieves a frame level mAP of 84.5%,
which is comparable to T-CNN with a mAP of 86.7%. Note that
T-CNN is trained on UCF-Sports for bounding box prediction.
The results show that the ST-CNN model trained on J-HMDB is
able to well distinguish between action regions and background,
demonstrating its high capacity of generalizing to cross-dataset
action detection. Moreover, ST-CNN outperforms other competing
action detection approaches.

6.3 Video Segmentation Experiments

Densely Annotated VIdeo Segmentation (DAVIS) 2016 dataset is
specifically designed for the task of video object segmentation. It
consists of 50 videos with 3455 annotated frames. Consistent with
most prior work, we conduct experiments on the 480p videos with
a resolution of 854× 480 pixels. 30 videos are taken for training
and 20 for validation.

For this experiment, we only need the segmentation branch of
our ST-CNN network. Before the training process, we gather the
videos from three datasets: JHMDB [53], DAVIS’16 [56] (only
training set) and SegTrackv2 [59]. We resize all the frames and
annotations to fixed dimensions of 320×240. If there are multiple
foreground objects in the annotation, we merge them as a single
foreground object and consider other pixels as background. We
train the model for 100k iterations and fix the learning rate at
10−3. We call this trained model as our pre-trained model for
video segmentation.

We then use this pre-trained model and finetune it on
DAVIS’16 training set for 8k iterations with learning rate 10−4

and 2k more iterations with learning rate 10−5. Due to GPU
memory constraint, we are not able to process the high resolution
videos in 3D CNN. In the training phase, we resize input videos to
320× 240 and adjust ground truth annotations to the correspond-
ing resolution. During testing, test videos are resized to 320×240
and fed into the network. To make our results comparable to
ground truth, the 320× 240 segmentation maps from the network
are upscaled to 854 × 480 by bi-linear interpolation. Finally,
our segmentation boundaries are smoothed by fully connected
conditional random field [60].

Due to limited number of training videos in DAVIS’16 dataset,
we also perform data augmentation to increase the number of
video clips for training. Specifically, the following data augmen-
tation techniques are considered:

• Illumination Modification. We translate the video pixels from
RGB space to HSV space, since the Saturation (S) channel
correspond to “lightness”, while value (V) channel determines
the “brightness”. The V channel value v is randomly altered to
v′ via v′ = av where a ∈ 1± 0.1.

• Background replacement with Foreground. Half of the fore-
ground (either top/down or left/right) is replaced by background.
We use the nearest pixels to interpolate the region.

• Clip Flipping and Shifting. We randomly select clips to flip
horizontally, and shift the image by 1 pixel.
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Fig. 12. Transfer learning from J-HMDB to UCF-Sports. We compare ST-CNN action segmentation (green) and bounding box detection (yellow)
with ground truth (red) on selected frames of testing videos.

We adopt the same evaluation setting as reported in [56]. There
are three parts. Region Similarity J , which is obtained by IoU
between the prediction and the ground-truth segmentation map.
Contour Accuracy F measures the contours accuracy. Temporal
Stability T tracks the temporal consistency in a video. For the first
two evaluation, we report the mean, recall and decay. For the third
one, we report the average. We compare our results with several
unsupervised implementations, since our approach does not re-
quire any manual annotation or prior information about the object
to be segmented, which is defined as unsupervised segmentation.
It is different from the semi-supervised approaches which assume
the ground truth segmentation map of the first frame of a test video
is given. Apparently, unsupervised segmentation is a much harder
task, but is more practical since it does not require any human
labelling effort during testing once the segmentation model has
been trained. We compare our method with the state-of-the-art
unsupervised approaches in Table 7. According to the results, our
method achieves the best performance in all performance metrics.
Compared to ARP [61], the previous state-of-the-art unsupervised
approach, our method achieves 5% gain in contour accuracy (F )
and 15% gain in temporal stability (T ), demonstrating that 3D
CNN can effectively take advantage of the temporal information
in video frames to achieve temporal segmentation consistency.

Figure 13 shows the quantitative results per video sequence of
our approach and the next three top performing methods on DAVIS
dataset: ARP [61], LVO [47] and FSEG [45]. Our approach per-
forms the best on low contrast videos including Blackswan, Car-
Roundabout and Scooter-Black and achieves competitive results
on other videos. Figure 14 presents the qualitative results on four
video sequences. In the first row, our results are the most accurate.
Our method is the only one which can detect the rims. In the
second row, ARP performs the best in suppressing background.
However, only our approach detects both legs. The third row
shows that only our method is able to accurately segment the tail of
the camel. The last row is a very challenging video because of the
smoke and small initial size of the car. ARP misses part of the car,
while LVO and FSEG mis-classify part of background as moving
object. However, our method segments out the car completely and
accurately from the background smoke in the scene.

6.4 Computational Cost

We carry out our experiments on a workstation with one GPU
(Nvidia GTX Titan X). Given a 40-frames video, T-CNN pipeline
takes 1.1 seconds to generate tube proposals, 0.03 seconds to link

tube proposals in a video and 0.9 seconds to predict action label.
ST-CNN takes only 0.7 seconds to detect actions (including about
0.6 seconds for segmentation), which is 3 times faster than T-CNN.
In ST-CNN, the video clips are only fed into the network once and
the detection results are obtained, while in T-CNN, the clips are
fed into TPN first to get the tube proposals. Then both clips and
tubes are used in the recognition network to predict the label. Since
the input to the first stage are clips with fixed duration, while the
input to the second stage is whole videos with various duration,
it is hard to share weights in their common layers. In contrast,
in ST-CNN, there is only one stage since we avoid the proposal
generation part. Therefore, ST-CNN is more efficient than T-CNN.

7 CONCLUSION

In this paper we propose an end-to-end 3D CNN based pipeline for
action detection in videos. It exploits 3D CNN to extract effective
spatio-temporal features and perform action segmentation and
recognition. We explored two approaches to locate the action.
In the first, coarse proposal boxes are densely sampled based
on the 3D convolutional feature cube and linked together (T-
CNN). In the second, pixels in each frame are segmented into
foreground/background and foreground pixels are aggregated into
action segments (ST-CNN). Extensive experiments on several
benchmark datasets demonstrate the strength of our approach for
spatio-temporal action detection as well as segmentation compared
to the state-of-the-arts.
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