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Abstract

This paper presents a purely image-based approach to
fusing foreground silhouette information from multiple arbi-
trary views. Our approach does not require 3D constructs
like camera calibration to carve out 3D voxels or project
visual cones in 3D space. Using planar homographies and
foreground likelihood information from a set of arbitrary
views, we show that visual hull intersection can be per-
formed in the image plane without requiring to go in 3D
space. This process delivers a 2D grid of object occupancy
likelihoods representing a cross-sectional slice of the ob-
ject. Subsequent slices of the object are obtained by extend-
ing the process to planes parallel to a reference plane in a
direction along the body of the object. We show that ho-
mographies of these new planes between views can be com-
puted in the framework of plane to plane homologies using
the homography induced by a reference plane and the van-
ishing point of the reference direction. Occupancy grids are
stacked on top of each other, creating a three dimensional
data structure that encapsulates the object shape and loca-
tion. Object structure is finally segmented out by minimizing
an energy functional over the surface of the object in a level
sets formulation. We show the application of our method on
complicated object shapes as well as cluttered environments
containing multiple objects.

1. Introduction

Visual hull based methods have had an enormous impact
on a variety of applications including 3D modeling, object
localization, object recognition and motion capture appli-
cations amongst others. Most of these methods attempt to
fuse silhouette information from multiple views in 3D space
thereby requiring calibrated views. Camera calibration is it-
self a challenging problem with a large literature devoted to
it. There are many situations in real life where calibration
is a cumbersome task that may be best avoided. A common
case is when multiple non-stationary cameras (with possi-
bly different internal parameters) are used to capture differ-
ent views of an object in the absence of a calibration pattern.

In this paper we present a novel approach to silhouette
fusion that does not require calibrated views. The method
delivers the affine structure of objects which can be aug-
mented with a metric measurement from the scene for full
Euclidean structure. In many cases, though, the affine struc-
ture would suffice for applications like multi-object local-
ization, object recognition, generation of novel views, mo-
tion capturing and activity recognition among others, some
of which we demonstrate in this paper. Our approach gets
its inspiration from body part reconstruction using CAT
(Computed Axial Tomography) scans in medical imaging.
The basic method is quite simple, the CAT scanner uses X-
rays that penetrate into the body of the object to capture a
2D cross-sectional slice of the object. By moving the scan-
ner along the body of the object a series of successive slices
are obtained that are stacked on top of each other to obtain
the structure of the object.

In this spirit we consider objects to be composed of an
infinite number of cross-sectional slices, with the frequency
at which we sample the slices being a variable determining
the granularity of the reconstruction. We state the problem
of determining a slice of an object as finding the region on
a hypothetical plane that is occupied by the object. To this
end, we show that by homographic warping of silhouette
information from multiple views to a reference view we can
achieve visual hull intersection on aplane. If foreground
information is available in each view then this process de-
livers a 2D grid of space occupancies: indeed a represen-
tation of a slice of the scene objects cut out by the plane.
Starting with homographies between views due to a refer-
ence plane in the scene (usually the ground plane) we show
that homographies of successively parallel planes can be ob-
tained in the framework of plane to plane homologies using
the vanishing point of the reference direction (the direction
not parallel to the reference plane). This enables us to ob-
tain an arbitrary number of occupancy grids/slices along the
body of the object each being a discrete sampling of 3D
space of object occupancies. Finally, the slices obtained are
stacked up in the reference direction and the object structure
segmented out by minimizing an energy functional over the
surface of the object.
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Figure 1.Hπ is the homography induced by the planar surface
between view 1 and view 2. Warping a pixel from view 1 with
Hπ amounts to projecting a ray on to the plane at the piercing
point and extending it to the second camera. Pixels that are image
locations of scene points off the plane have plane parallax when
warped. This can be observed for the red ray in the figure.

2. Related Work

Visual hull methods [1] can yield surprisingly accurate
shape models. Over the years a number of variants have
evolved including surface representation [12] [11], voxel
representation [10], or image-based representation [6] [7].
Typically, the approach is to start with an estimate of the
silhouettes or boundaries of the object that are projected in
3D space for visual hull intersection (alternatively voxels
are projected back to test if the silhouettes carve them out).
The process is quite sensitive to segmentation and calibra-
tion errors since a small error in even a single view can have
a dramatic effect on the resulting 3D model. This is why
recent focus has been to move away from deterministic ap-
proaches and to make the process more statistical, thereby
delay the act of decision making/thresholding to as late in
the process as possible [17][5] [2].

Several methods have also been proposed to bypass sil-
houette estimation altogether, as many algorithms recon-
struct the scene structure based only on photometric infor-
mation [4] [8] [3]. Crucially, this class of methods must deal
with the visibility of points on the object’s surface (occlu-
sion reasoning) making them more complicated and com-
putationally expensive. This is why there are still many sit-
uations where silhouette-based methods are preferred e.g.
VR platforms or real-time interactive systems. For further
details the reader is directed to an excellent recent survey of
the area [13].

The common feature amongst all these methods is the re-
quirement of fully calibrated views and the use of 3D con-
structs like voxels or visual cones being intersected in the
3D world. Herein lies the novelty of our approach. We
present a completely image-based approach that uses only
2D constructs like planar homographies for silhouette fu-
sionin the image planewithout requiring to go in 3D space.

3. Approach

We begin with a description of planar homographies.
Let x = (x, y, 1) denote the image location (in homoge-
neous coordinates) of a 3D scene point in one view and let
x′ = (x′, y′, 1) be its coordinates in another view. LetHπ

denote the homography between the two views with respect
to scene planeπ as depicted in figure 1. Warping the first
view onto the second usingHπ, the pointx is transformed
to xw, wherexw = [Hπ]x. For scene points on planeπ,
xw = x′, while for scene points offπ, xw 6= x′. The mis-
alignmentxw − x′ is called the plane parallax. Geometri-
cally speaking, warpingx from the first image to the second
using homographyHπ amounts to projecting a ray from the
camera center through pixel at locationx and extending it
until it intersects the planeπ at the point often referred to
as the ‘piercing point’ ofx with respect to planeπ. The
ray is then projected from the piercing point onto the sec-
ond view. The point in the image plane of the second view
that the ray intersects isxw. In effectxw is where the image
of the piercing point is formed in the second camera. As
can be seen in figure 1, scene points on the planeπ have no
plane-parallax, while those off the plane have considerable
plane-parallax.

Using this concept, in the next section we show how
cross-sectional slices of the visual hull cut out by arbitrary
planes in the scene can be obtained by the homographic fu-
sion of multiple silhouettes onto a reference view.

3.1. Obtaining Object Slices

Consider figure 2(a). The scene is viewed from sev-
eral angles with the cylinder object detected as foreground
(white regions) in each view. One of the views, sayI1, is
chosen as the reference view. Warping viewIi to the refer-
ence view using homographyHiπ1 induced by scene plane
π, first every foreground pixel inIi is projected to its pierc-
ing point onπ. This process can be viewed as the fore-
ground object casting ashadow on π (an analogy if the
cameras are replaced by point light sources), as depicted by
the light blue regions in figure 2(a). The shadow is then pro-
jected onto the reference view to complete the operation of
the homographic warping.

Clearly computing the shadow is equivalent to determin-
ing the region onπ that falls inside the visual hull of the
object image inIi. The fusion of these shadows projected
from various views therefore amounts to performing visual
hull intersection on planeπ, depicted by the dark blue re-
gion in figure 2(a). This process is performed implicitly,
when we warp all the views onto the reference view and
fuse them to obtain the red region in the reference viewI1.
Without loss of generality, reference image planeI1 after
homographic fusion of foreground data can be viewed as a
projectively transformed planar slice of the object (strictly
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Figure 2. Warping the silhouettes of an object from the image plane to a plane in the scene using a planar homography is equivalent to
projecting the visual hull of the object onto the plane. If the camera center is considered as a point light source this can be interpreted as
the object casting its shadow on a plane. Figure (a) demonstrates this for a cylinder viewed from different angles. The intersection of these
shadowsamounts to performing visual hull intersection on the plane. The result is the dark blue region that can be considered a slice of the
cylinder cut out byπ. This process isimplicitly performed when we warp and fuse silhouette information from other views on to reference
view I1 and is depicted by the red region. (For the sake of clarity projection of the shadows are not shown in the reference view, and only
the intersection of these projections i.e. the slice in red is shown). Figure (b) demonstrates that the same process can be performed on a
second planeφ delivering another slice of the cylinder.

speaking a perspectivity with only 6dof).
In our implementation, instead of using binary fore-

ground maps, we pursue a more statistical approach and
model the background [9] in each view to obtain foreground
likelihood maps, thereby using cameras as statistical oc-
cupancy sensors (foreground interpreted as occupancy in
space). In the case of non-stationary cameras, object detec-
tion is achieved in a plane+parallax framework [16] assign-
ing high foreground likelihood where there is high motion
parallax. The reason to adopt asoft approach is to delay the
act of thresholding preventing any premature decisions on
pixel labelling; an approach that has proven to be very use-
ful in visual hull methods [17], due to their susceptibility to
segmentation and calibration errors. Let us restateIi as the
foreground likelihood map (each pixel value is likelihood of
being foreground) in viewi of n. Consider a reference plane
π in the scene inducing homographiesHiπj , from view i to
view j. WarpingIi’s to a reference viewIref , we have the
warped foreground likelihood maps:Îi = [Hiπref ]Ii.

Visual hull intersection onπ (AND-fusion of the shadow
regions) is achieved by multiplying these warped fore-
ground likelihood maps:

θref =
n∏

i=1

Îi, (1)

whereθref is the projectively transformed grid of object
occupancy likelihoods. Arguably a more elaborate fusion
model can be used at the expense of simplicity, but that is
not the primary focus of this research. Indeed, a sensor
fusion strategy that explicitly models pixel visibility, sen-
sor reliability, scene radiance as in [2], can be transparently

incorporated, without affecting our underlying approach of
fusing at slices in the image plane rather than in 3D space.

Each value inθref is saying what the likelihood is of
this grid location being inside the body of the object; in-
deed representing a slice of the object cut out by planeπ.
It should be noted that the choice of reference view is ir-
relevant, as the slices obtained on all image planes and the
scene planeπ are projectively equivalent. This computa-
tion can be performed at an arbitrary number of planes in
the scene, each giving a new slice of the object. Naturally,
this does not apply to planes that do not pass through the
object’s body, since visual hull intersection on these planes
will be empty, therefore a separate check is not necessary.
Figure 2(b) demonstrates a second slice of the cylinder ob-
tained using our approach.

Starting with a reference plane in the scene (typically
the ground plane), we perform visual hull intersection on
successively parallel planes in the up direction along the
body of the object. The probabilistic occupancy gridsθis
obtained in this fashion can be thresholded to obtain ob-
ject slices, but this creates the problem of finding the op-
timum threshold at each slice level. Moreover, the slices
have a strong dependency on each other as they are parts
of the same object/s, and should as such be treated as a
whole. Our approach is to model this dependency by stack-
ing up the slices, creating a three dimensional data structure
Θ = [θ1; θ2; . . . θn]. Θ is not an entity in the 3D world or
a collection of voxels. It is, simply put, a logical arrange-
ment of planar slices, representing discrete samplings of the
continuous occupancy space. Object structure is then seg-
mented out fromΘ i.e., simultaneously from all the slices
as a smooth surface that divides the space into the object
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Figure 3. The diagram illustrates the geometrical relationship of
the homography of an image plane to two parallel scene planesπ
andπ′. vZ is the vanishing point of the direction normal toπ and
π′. Given the homographyHπ from the image plane toπ, Hπ′ can
be computed by adding a scalar multiple of the vanishing pointv
to the last of column ofHπ.

and background. The details of this process are delayed un-
til section 4. In the next section, we present an image-based
approach using the homography of a reference plane in the
scene to compute homographies induced between views by
planes parallel to the reference plane.

3.2. Extending to Successive Planes

Consider a coordinate systemXY Z in space. Let the
origin of the coordinate frame lie on the reference plane,
with theX andY -axes spanning the plane. The Z-axis is
the reference direction, which is thus any direction not par-
allel to the plane. The image coordinate system is the usual
xy affine image frame, and a pointX in space is projected
to the image pointx via a 3×4 projection matrixM as:

x = MX = [m1 m2 m3 m4]X,

wherex andX are homogenous vectors in the form:x =
(x, y, w)T , X = (X, Y, Z, W )T , and ‘=’ means equality up
to scale. The projection matrixM can be parameterized as:

M = [vX vY vZ l̂],

wherevX , vY andvZ are the vanishing points forX, Y and
Z directions respectively and̂l is the vanishing line of the
reference plane normalized [14].

Suppose the world coordinate system is translated
from the planeπ onto the planeπ′ along the reference
direction(Z) by z units as shown in figure 3, then it is easy
to show that we can parameterize the new projection matrix
M ′ as:

M ′ = [vX vY vZ αzvZ + l̂],

whereα is a scale factor. Columns 1, 2 and 4 of the projec-
tion matrices are the three columns of the respective plane

to image homographies. Therefore, the plane to image ho-
mographies can be extracted from the projection matrices,
ignoring the third column, to give:

Hπ = [vX vY l̂], H ′
π = [vX vY αzvZ + l̂].

In general:
Hγ = Href + [0|γvref ], (2)

whereHref is the homography of the reference planeγ is
a scalar multiple encapsulatingα andz, [0] is a 3x2 matrix
of zeros andvref is the vanishing point of the reference
direction. Using this result it can be shown (see appendix A)
that if we have the homographyHiπj induced by a reference
scene planeπ between viewsi andj, then the homography
Hiφj induced by a planeφ parallel toπ in the reference
direction is given by:

Hiφj = (Hiπj + [0|γvref ])(I3x3− 1
1 + γ

[0|γvref ]). (3)

In our implementation, we used the ground plane as the
reference scene plane and the up direction as the refer-
ence direction. The ground plane homographies between
views were automatically computed with SIFT [18] feature
matches and using the RANSAC algorithm [19]. Vanishing
points for the reference direction were computed by detect-
ing vertical line segments in the scene and finding their in-
tersection in a RANSAC framework as in [20]. It should be
noted that the particular values ofγ are not significant, we
are only interested in the range ofγ for planes that span the
body of the object (e.g., if the object is a person, then start-
ing from the ground plane to a plane parallel to the ground
plane but touching the tip of the head). The computation of
this range forγ is quite straightforward since outside this
range visual hull intersection on the corresponding planes
will be empty. In the next section, we describe how we seg-
ment out the object from the occupancy grid data.

4. Object Segmentation

As described earlier slices computed along the body of
the object are stacked, creating a three dimensional data
structureΘ that encapsulates the object structure. To seg-
ment out the object we evolve a parameterized surface
S(q) : [0, 1] → R3, that dividesΘ between the object
and the background similar to the approach in [3]. This is
achieved by formulating the problem in a variational frame-
work, where the solution is a minimizer of a global cost
functional that combines a smoothness prior on slice con-
tours and a data fitness score. Our energy functional is de-
fined as:

E(S) =
∫

S
g (|∇Θ(S(q))|)2 dq +

∫

S

∣∣∣∣
∂S(q)

∂q

∣∣∣∣
2

dq, (4)



where∇Θ denotes gradient ofΘ, andg denotes a strictly
decreasing function:g(x) = 1/(1 + x2). The first term
at the right side of (4) represents external energy. Its role
is to attract the surface towards the object boundary inΘ.
The second term, called the internal energy computes, the
area of the surface. Given the same volume, smoother sur-
face will have smaller area. Therefore, this term controls
the smoothness of the surface to be determined. When the
overall energy is minimized, the object boundary will be
approached by a smooth surface.

Minimizing energy functional (4) is equivalent to com-
puting geodesic in a Riemannian space:

E(S) =
∫

g (|∇Θ(S)|)
∣∣∣∣
∂S
∂q

∣∣∣∣ dq. (5)

With the Euler-Lagrange equation deduced, this objective
function can be minimized by using the gradient descent
method by an iteration timet as

~St = g (|∇Θ(S)|)κ ~N − (∇g (|∇Θ(S)|) · ~N ) ~N , (6)

whereκ is the surface curvature, and~N is the unit nor-
mal vector of the surface. Since the objects to be recon-
structed may have arbitrary shape and/or topology as shown
in our experiments, the segmentation is implemented using
the level set framework [15]. Level sets based methods al-
low for topological changes to occur without any additional
computational complexity, because an implicit representa-
tion of the evolving surface is used. The solution (6) can be
readily cast into level set framework by embedding the sur-
faceS into a 3D level set functionΨ with the same size as
Θ, i.e.S = {(x, y, z)|Ψ(x, y, z) = 0}. The signed distance
transform is used to generate the level set function in our
work. This yields an equivalent level set update equation to
the surface evolution process in (6):

∂Ψ
∂t

= g (|∇Θ|)κ|∇Ψ|+∇g (|∇Θ|) · ∇Ψ. (7)

Starting with an initial estimate forS and iteratively updat-
ing the level set function using (7) leads to a segmentation
of the object.

5. Results and Applications

In the absence of metric calibration patterns (as is very
commonly the case in natural scenes) lifting the require-
ment for full calibration in every view and relying on homo-
graphies induced by a dominant plane (typically the ground)
in the scene can greatly simplify the acquisition process. A
popular scenario is when we have a monocular sequence of
a single camera flying around the object in an arbitrary and
irregular motion path as is the case in the result shown in
figure 4. Also due to the inherent computational simplic-
ity of processing 2D data (conducive to graphics hardware
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Figure 4. Object Reconstruction: (a) 4 of the 30 views of a mummy
statue used in our experiment. (b) The left image is the foreground
likelihood map in the reference view with the fusion of 4 of the
200 slices overlaid. Image on the right are the 4 slices shown in
log scale (hotter is higher likelihood). (c) Object structure after
segmentation from the stacked slices is rendered with point ren-
dering algorithm together with color mapping from the original
images. (d) A closeup of segmented slices. The one on the right is
showing a view from the bottom of the object looking up.
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Figure 5. Object Reconstruction: (a) 4 of the 60 views of an action
figure model used in our experiment. (b) The left image is the
foreground likelihood map in the reference view with the fusion
of 4 of the 200 slices overlaid. Image on the right are the slices
shown in log scale (hotter is higher likelihood). (c) Rendering of
the object structure after segmentation from the stacked slices. (d)
A closeup of segmented slices.
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Figure 6. Computation time for homographic fusion on a Nvidia
Geforce 7300 GPU. (a) Number of slices vs. Time for 60 views
each at 480x720. (b) Image Resolution vs. Time for fusing 100
slices from 60 views.

acceleration) our approach has an advantage over other ap-
proaches that perform expensive 3D computations, which
can be intractable for complex shapes. Our current imple-
mentation of homographic fusion runs on a Nvidia Geforce
7300 GPU. It is capable of fusing 60 views (480x720 pixels)
at the rate of 50 slices/second (see figure 6).

Though, it may be debated that we lose robustness by
processing data on cross sections of 3D grids and not on vol-
umetric sections in world space. We believe in cases where
full calibration is impractical, and computation efficiency
is important the advantages of our approach convincingly
outweigh the reduction in robustness, if any. This is corrob-
orated by our experimental results and applications, some
of which are discussed next.

5.1. Object Reconstruction

Figures 4 and 5 show two of the objects that we used in
our reconstruction experiments. The data was captured us-
ing a digital camera set at a resolution of 480x720. The
mummy sequence in figure 4 is a monocular video cap-
tured with the camera flying around the object in a very
arbitrary/unconstrained motion path (see video sequence
here:www.cs.ucf.edu/ smkhan). The blue model sequence in fig-
ure 5 was captured with a camera stationary and the object on a
turntable. Figures 4(a) and 5(a) show 4 of the 30 and 60 views
used for each object respectively. In figures 4(b) and 5(b) we show
the reference views in each sequence overlaid with 4 of the 200 oc-
cupancy grids/slices computed for each object. The slices are also
shown separately in log scale (hotter is higher likelihood). Figures
4(c) and 5(c) show our reconstruction results. Only contour points
of the slice data (after segmentation fromΘ) were rendered using
a point rendering algorithm. Texture mapping was achieved by re-
verse warping the slice contour points to the original images for
color lookup. Artifacts are visible near the top part of the recon-
structions (see head portion of the object in figure 5(c)). These are
due to small errors in the homographies of the reference plane that
get propagated to homographies of the upper planes. In figures
4(d) and 5(d) we show closeups to emphasize that the reconstruc-
tion is slice data rather than a 3D mesh. Notice the detail in which
fine curvatures of the objects are captured. It should be pointed out
that the result of our method is the affine structure. This is because
at no step in the process did we use metric (calibration) informa-



tion from the scene. Though metric information from the scene
can be used to rectify the slice data for full Euclidean structure, it
may not be necessary for visualization purposes. For instance, in
figure 5(c) we used the typical aspect ratio (height to width) of an
adult human male.

5.2. Object Localization and Detection

Our method can be used in much harder conditions for object
detection and localization or to initialize a more elaborate pho-
tometric method. The presence of high levels of noise, occlusions
and low resolution limit the use of the method for precise 3D mod-
eling; however, the method can still be used reliably to locate ob-
jects in the scene. Our test data is quite challenging as can be seen
in figure 7(a). It is a surveillance scenario containing multiple peo-
ple viewed by four wide-baseline cameras covering a relatively
large area (parking lot). The cameras have different resolutions
and aspect ratios (240x360, 240x320), gamma corrections and the
scene has considerably poor contrast, causing noisy background
subtraction. The most challenging feature, though, is the sever-
ity of inter-occlusions between people limiting the visibility. Due
to low resolution on the objects (approx 50 pixels in the longer
direction) only a small number of slices could be meaningfully
generated. We limited our results to 25 slices. Despite all these
factors our method was able to generate surprisingly good results
as shown in figure 7(b). Though there are a few artifacts (regions
not pruned by visual hull intersection), these can be resolved by
increasing the number of views.

6. Conclusion

In this paper we have presented an image-based visual hull ap-
proach for fusing foreground silhouette information from multiple
views. Unlike other visual hull based methods that require cali-
brated views and use 3D constructs like voxels, 3D visual cones
or polygonal meshes, our method uses only minimal geometric
information i.e. homographies between views and the vanishing
points of a reference direction. We perform visual hull intersec-
tion in the image plane without without requiring to go in 3D
space. Each planar computation delivers object occupancies on
a plane representing a cross-sectional slice of the scene objects
cut out by the particular plane. Our method also avoids making
hard decisions about silhouette labelling in images, which would
have required tedious per-image parameter settings. Instead, fore-
ground likelihood values are directly fused and object segmenta-
tion is performed on all the slices simultaneously using a gradient
based approach.

We have tested our approach on applications including fine 3D
structure modelling as well as multi-object localization and de-
tection in cluttered and noisy conditions. Many new ideas and
applications can be explored using our method. Different modal-
ities, like infra-red imagery, can be seamlessly integrated into
our method. Full body tracking of multiple occluding objects is
a direct application that we are currently exploring. Currently,
our method assigns equal importance to every view. Considering
views with different resolutions, quality, noise levels and vantage
points are fused, it makes sense to have a mechanism of assigning
different weights based on quality and reliability of data. Another
interesting topic that we are currently investigating is the integra-

tion of photo-consistency constraints in our framework to elimi-
nate the need for prior detection of silhouette information.

APPENDIX A

Let Hiπj be the homography between viewsi andj induced
by scene planeπ. Now Hiπj can be decomposed as the product of
two homographies first fromi to π and then fromπ to j:

Hiπj = (Hπtoj)(Hitoπ). (8)

Similarly the homographyHiφj induced by a planeφ that is par-
allel toπ can be written as:

Hiφj = (Hφtoj)(Hitoφ). (9)

Now from equation (2) we have:

Hφtoj = Hπtoj + [0|γvref ]. (10)

Hitoφ = inv(Hφtoi) = inv(Hπtoi + [0|γvref ])

= Hitoπ − 1

1 + g
Hitoπ[0|γvref ]Hitoπ, (11)

whereg = trace([0|γvref ]Hitoπ). Replacing (10) and (11) into
(9) we have:

Hiφj = (Hπtoj + [0|γvref ])(Hitoπ

− 1

1 + g
Hitoπ[0|γvref vref ]Hitoπ.) (12)

SinceHitoπ is a central projection from one plane to another (2D
perspectivity with 6 DOF) the last row is [0 0 1]; therefore,g =
trace([0|γvref ]Hitoπ) = γ. Plugging this and (8) into (12) and
with some matrix algebra we reach:

Hiφj = (Hiπj + [0|γvref ])(I3x3− 1

1 + γ
[0|γvref ]). (13)
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(a)

(b)
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