
Int J Comput Vis
DOI 10.1007/s11263-013-0624-1

Multiframe Many–Many Point Correspondence for Vehicle
Tracking in High Density Wide Area Aerial Videos

Imran Saleemi · Mubarak Shah

Received: 21 December 2011 / Accepted: 2 April 2013
© Springer Science+Business Media New York 2013

Abstract This paper presents a novel framework for track-
ing thousands of vehicles in high resolution, low frame
rate, multiple camera aerial videos. The proposed algorithm
avoids the pitfalls of global minimization of data association
costs and instead maintains multiple object-centric associa-
tions for each track. Representation of object state in terms
of many to many data associations per track is proposed and
multiple novel constraints are introduced to make the asso-
ciation problem tractable while allowing sharing of detec-
tions among tracks. Weighted hypothetical measurements are
introduced to better handle occlusions, mis-detections and
split or merged detections. A two-frame differencing method
is presented which performs simultaneous moving object
detection in both. Two novel contextual constraints of vehi-
cle following model, and discouragement of track intersec-
tion and merging are also proposed. Extensive experiments
on challenging, ground truthed data sets are performed to
show the feasibility and superiority of the proposed approach.
Results of quantitative comparison with existing approaches
are presented, and the efficacy of newly introduced con-
straints is experimentally established. The proposed algo-
rithm performs better and faster than global, 1–1 data asso-
ciation methods.
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1 Introduction

The goal of the work presented in this paper is the detection
and tracking of a large number of moving objects observed
from a high altitude aerial platform. Detection and tracking
of interesting objects has traditionally been a very impor-
tant area of research in classical computer vision (Yilmaz
et al. 2006), but there are several important challenges related
to tracking in high resolution multiple camera aerial videos
(e.g., Fig. 1) which allow, not tens or hundreds, but thousands
of vehicles to be visible in a single mosaic frame. Firstly, high
platform altitude results in extremely small object sizes. Lack
of color, coupled with small and variable object sizes (∼50
pixels) imply that object appearance and size are not too
discriminative for establishing correspondences, thus mak-
ing the use of intensity histogram intersection, and tem-
plate correlation based matching difficult. The second major
limitation arises due to the fact that background modeling
(Stauffer and Grimson 2000) and frame difference based
detection methods assume consistent global illumination and
high quality of image registration (global platform motion
compensation). Changes in illumination and camera gain
are common in aerial videos especially in multi-camera sen-
sors, which require explicit brightness and gain equalization.
For image registration, direct estimation methods (Mann and
Picard 1997) are computationally prohibitive, while feature
based registration results in significant residual errors. Small
errors in alignment, coupled with artifacts introduced due to
interpolation during warping, also result in intensity varia-
tions in even the background regions, which makes automatic
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Fig. 1 CLIF dataset (USAF 2006): Top mosaic of a six camera array
aboard an aerial platform. Mosaic resolution: ∼73 million pixels; each
camera’s FOV in a different color channel. Bottom single camera mosaic
generated from alignment of 80 frames; boundary of each frame’s FOV
in red. Image resolution: ∼43.7 million pixels (Color figure online)

thresholding of background difference challenging. More-
over, background modeling and accumulative frame differ-
ence require significant overlap between frames within tem-
poral windows, a constraint difficult to satisfy in aerial videos
due to high platform speeds.

Low frame rate is also a significant source of errors,
because object speed per frame becomes at least a few times
larger than object sizes, so that even with constant veloc-
ity dynamics, there are multiple equally likely hypotheses
in small temporal windows, while data association criteria
like minimization of distance travelled become infeasible.
Moreover, since platform motion is much faster than object
motion, objects are typically visible only for a few frames,
and therefore track initialization (and first correspondence)
becomes very important, which, in absence of GIS informa-
tion, e.g., road orientation, is non-trivial. Finally, heuristics
like assumption of constant velocity dynamics for locally
proximal objects, which is useful for track initialization, are
not valid in general, e.g., for proximal vehicles moving in
opposite lanes.

The inspiration for our proposed tracking method is
drawn from the simplicity of instantaneous nearest neighbor
association methods (NN for single target tracking), and
the intuitive benefits of multiple hypothesis tracking (MHT)

attributed to Reid (1979). The proposed method however,
is significantly different from both, and the similarities and
differences are highlighted in Sect. 2. Tracking is a widely
studied area of research but given the problems posed by
wide area aerial imagery, we propose a new tracking tech-
nique whose novel contributions include,

• A probabilistic multiple target tracking framework which
unlike conventional methods does not require 1–1 mea-
surement association across frames,

• Maintenance of multiple possible candidate tracks per
object, rather than multiple sets of global 1–1 association
configurations,

• Introduction of a new weighted hypothetical measure-
ment derived from observed measurement distribution,

• Application of a vehicle following model for uncongested
traffic as additional association constraint, and

• Weighted penalization of track intersection by fast com-
putation of all possible intersections between potential
associations.

2 Related Work

The commonly encountered task of multi-target tracking
(MTT) can be decomposed into the two coupled problems of
state estimation and data association. Numerous motion mod-
els and state estimation methods have been proposed in the
past for a variety of application scenarios. Examples include
constant velocity motion models, and state estimation meth-
ods like Kalman filter, and Particle filter (Porikli and Pan
2009; Vezzani et al. 2009; Bazzani et al. 2010). Some pro-
posed methods along with explicit handling of problems like
occlusions (Ablavsky et al. 2008), split–merge and entry–
exit events (Perera et al. 2006), can perform well for simpler
MTT applications. A detailed survey of traditional as well
as recent object detection and tracking algorithms has been
provided by Yilmaz et al. (2006).

In terms of data association, much of the existing literature
on MTT can be categorized into three main classes. These
include global nearest neighbor (GNN), joint probabilistic
data association filters, and MHT. GNN based methods are a
poor choice in the case of low frame rate, high altitude, wide
area sequences because most tracks have multiple equally
likely hypotheses, and most observations are equally likely
to belong to multiple tracks. The reasons for this include
very high object density, and the large distances covered by
objects between successive observations. One would hope
that bipartite graph matching (a type of GNN association)
based correspondences (Shafique and Shah 2005) would in
general be optimal, and while this is true in a small temporal
window, over time, a few wrong correspondences will prop-
agate the error to neighboring object trajectories resulting in
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Fig. 2 Examples of initial data association for a few objects. Mea-
surements in previous and current frames are shown as red square, and
blue square resp. Green lines represent associations. Top greedy nearest
neighbor initialized with zero velocity, solved globally using Munkres
(1957). Bottom result using proposed approach (best candidate decided
in subsequent frames). Global cost of assignment on top is less than that
on the bottom, but incorrect (Color figure online)

wrong matches and corrupting most state estimates, which in
general cannot be corrected later (see Fig. 2). Furthermore,
bipartite graph matching where each independent set of the
bigraph may contain ∼1,000 nodes will be computationally
expensive.

Joint probabilistic data association filter (JPDAF) is an
attractive choice for tracking large number of targets (Shalom
and Fortmann 1988), which is an all neighbors associa-
tion approach, and updates a target using all the measure-
ments available near its predicted location, weighted by the
motion model based assignment likelihood. This technique
essentially is a special, simpler case of MHT, and consid-
ers many possible data association hypotheses, but combines
them after each frame employing a weighted mean of assign-
ment probabilities, instead of propagating individual viable
hypotheses. JPDAF is often used in conjunction with Kalman
(Kang et al. 2003) and Particle filters (Schulz et al. 2001).

Given the scenario under consideration, it is obvious that
detection will be far from perfect, and problems like missed,
merged and split detections will be frequently encountered,
making instantaneous 1–1 correspondence difficult. Also, the
lack of initial velocity estimate requires association defer-
ment for at least a few frames. The only techniques capable
of performing association for a large number of objects in
a general framework are MHT based methods, which main-
tain many possible data association hypotheses and propagate
the corresponding target state estimates for each hypothesis,
essentially deferring correspondence decisions in anticipa-
tion that over time with the availability of subsequent data
measurements, the joint likelihoods of propagated hypothe-
ses will exhibit increased disparity, thus resolving any ambi-
guities. Since each hypothesis spawns a new set of child
hypotheses at each frame, the MHT approach may result in
a combinatorial explosion of hypotheses. However, efficient
implementations put forth in Cox and Hingorani (1996), Cox
et al. (1997), and Danchick and Newnam (2006), originally
due to the result by Murty (1968), allow generation of a best
subset of all possible hypotheses, thus making the problem
tractable for tracking of a few objects, by bounding both
computation and memory.

a a' a" 

b' b b" 

{a, a', a"}, {b, b', b"} 
{a, b', a"}, {b, a', b"} 
{a, a', b"}, {b, b', a"} 
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1-1 association hypotheses Many-1 association hypotheses All possible object-centric hypotheses 

{a, a', a"}, {b, a', b"} 
{a, b', a"}, {b, b', b"} 
{a, a', a"}, {b, b', a"} 
{a, b', b"}, {b, b', b"} 

Fig. 3 Illustration of possible global hypotheses scenarios for a toy
example containing two objects in three consecutive frames. Middle the
four possible global, 1–1 associations. Hungarian search (Kuhn 1955)
can choose only one of these four as the solution, while MHT (Cox and
Hingorani 1996) can propagate all four independently. Right many–1
associations by measurement sharing allowed by proposed approach
(shared detections shown in red) (Color figure online)

In order to appreciate the differences between the pro-
posed approach and conventional MHT approaches, it is
important to notice that the latter impose a 1–1 correspon-
dence constraint on measurement association, i.e., a single
‘hypothesis’ is a set of associations which does not allow 1–
many or many–1 correspondence (Fig. 3). Although this con-
straint is reasonable in many applications (e.g., radar tracking
of airborne targets), it can be a severe drawback in the case
of high density traffic with extremely noisy measurements.
Even relaxing this constraint requires maintenance of a large
number of concurrent hypotheses, a fraction of which satisfy
viable hypotheses for a single object. In other words, enu-
meration of top 10 candidate tracks for a single object may
require computation of a much larger set of global hypothe-
ses. Conversely, the top 10 global hypotheses may not even
have any of the top 10 candidates for a particular object. Fur-
thermore, MHT has much higher computation and memory
requirements than even bipartite graph matching, which itself
is O(N 3), and given N = 1,000 is prohibitive.

Another way of analyzing the existing literature in track-
ing is to consider the types of video considered in them,
as well as object density, and resolution, etc. Some existing
algorithms have performed well in planar scenes where ade-
quate motion based foreground-background segmentations
are achievable (Yin and Collins 2006). Most of the existing
methods however, have concentrated on medium and low
altitude aerial sequences (Xiao et al. 2008). Although such
sequences suffer from stronger parallax induced by out of
plane structures, like trees, towers, they offer the important
benefit of more pixels per target. In general, many algorithms
addressing the problem of MTT have attempted tracking in
scenarios involving a maximum of a few tens of objects, e.g.,
CAVIAR (Yang et al. 2009; Song et al. 2010) (∼10 objects
per frame, 235 in all), ETHMS (Xing et al. 2009) (maxi-
mum of 10 objects per frame), VIVID (Grabner et al. 2008)
(less than 5 objects per frame), ETH Central, and soccer and
hockey games data sets (Breitenstein et al. 2009) (less than
20 objects per frame). However, with the advent of supe-
rior unmanned aerial platforms and cheaper cameras, high
resolution, multi-camera, wide area, persistent surveillance
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Fig. 4 Overview of the proposed approach. Detections are represented
as circles or squares, separated into columns w.r.t. frames. Each color
shows detections and associations for different candidates of a single
track, while multicolored circles depict merged detections. Distinct col-
ored arrows between the same pair of detections imply sharing of the

detections among tracks. Hypothetical nodes are not shared as indi-
cated by a single dotted incoming edge. MTT can be formulated as the
problem of finding optimal, disjoint paths in a multi-partite graph. Our
proposed solution is to allow paths corresponding to distinct objects to
have overlap, by sharing nodes (Color figure online)

is now possible (USAF 2006), where thousands of objects
may be present in the sensor’s FOV. Such sequences have
opened doors to new areas of research within the field of
object detection, tracking and surveillance.

Recently, some research has been conducted in the area
of wide area aerial surveillance (Xiao et al. 2010; Reilly
et al. 2010). Both of these methods however perform object
association using bipartite graph matching, also known as
the Hungarian (Kuhn 1955) or Munkres algorithm (Munkres
1957). The high computation cost of this algorithm, espe-
cially for the scenario under consideration, has previously
been discussed. Since bipartite graph matching imposes a
1–1 correspondence constraint between objects in consecu-
tive frames, frequently encountered problems of occlusion,
mis-detection, detection merging and splitting need to be
handled explicitly, which complicate the graph structure in
addition to affecting the cost of solution (Shafique and Shah
2005). More importantly, since these methods make corre-
spondence decisions at every frame (instantaneous instead
of deferred), additional constraints incorporating the spatial
layout of neighboring objects need to be considered, thus
causing additional overhead. Given a wrong association in
the current frame, the tracker cannot recover, and the mis-
take is likely to propagate in a cascading fashion. The prob-
lem of simultaneous optimization of correspondences across
multiple frames has also been attempted using k-shortest path
algorithm in Berclaz et al. (2011) and Pirsiavash et al. (2011).
While these techniques have achieved impressive results for

pedestrian tracking, the k-shortest path algorithm explicitly
assumes that tracks (paths in a k-partite graph) are disjoint,
thus imposing a 1–1 correspondence constraint on detections
in successive frames.

Given this discussion, we now describe the various steps
of our approach.

3 Tracking Framework

Our proposed algorithm for association of a large number
of measurements across frames deviates significantly from
traditional MTT methods (Munkres 1957; Shalom and Fort-
mann 1988; Cox and Hingorani 1996) by relaxing the 1–1
correspondence constraint as shown in Fig. 4. We observe
that in real world data, correct association is often a function
of individual object-centric data likelihood and local neigh-
borhood context, as opposed to the result of a global cost
minimization or likelihood maximization. For example, the
knowledge of motion of far away objects in a scene does not
affect the cost of associating a particular object. On the other
hand, in these methods, existing tracks compete for avail-
able measurements, resulting in a single winner per mea-
surement, which is an impractically strict constraint on the
measurement quality. We present an algorithm for evaluation
of a ‘many-to-many data association likelihood’, i.e., a track
can be associated with multiple detections in the next frame
(1–many) by retaining multiple candidates per track, and
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multiple tracks can be associated with a single detection in
the next frame (many–1) by measurement sharing (Fig. 4).
The proposed method not only maintains multiple possible
tracks per object, which we call ‘candidates’, but also allows
candidates from distinct objects to share measurements. We
now introduce some notation before formally describing the
algorithm:

• p: a pixel location in a 2d common image reference frame,
i.e., (x, y).

• It : image frame observed at time t , aligned to a common
reference, 1 ≤ t ≤ Z .

• ΔI t−1
t : adaptive consecutive frame difference between

images It−1 and It .
• x j

i (t): the state, [p, v, α, s], of the j th candidate track of
the i th object at frame t , where p is the current location of
the object, v and α are the mean velocity and acceleration
vectors respectively, while s is the size of the object. The
variance σs of the object size is also maintained.

• Σi, j (t): a 2 × 2 covariance matrix of accelerations of the
j th candidate of i th object at time t .

• X (t): set of all existing tracks at frame t, {x j
i |1 ≤ i ≤

Tt , 1 ≤ j ≤ Ni (t)}, where Tt is the number of objects
observed so far and Tt ≥ Tt−1, and Ni (t) is the number
of ‘candidate’ tracks for the i th object.

• X ′
i (t): set of all existing tracks except xi (t), i.e., X (t) −

{x j
i (t)|1 ≤ j ≤ Ni (t)}.

• yk(t): a measurement vector, {(pk, sk, gk)}, representing
properties of a set of pixels that belong to a moving object
k, observed in frame t , where p is the object centroid, s is
size in pixels, and g is the mean frame difference of the
pixels on object.

• Yt : set of measurements at frame t, {yk(t)|1 ≤ k ≤ Qt }.

The proposed framework concentrates on the posterior
conditional probabilities of single objects, and assumes them
to be independent of all but a few other objects. The goal
then is to maximize the probability of each candidate track
as opposed to the joint probability of all tracks (as in Hungar-
ian or MHT). Writing formally, given predictions of existing
tracks X (t) and measurements Yt at time t , the goal of our
framework is to maintain Ni (t) candidate tracks for object
i at time t , where a candidate has the posterior probability,

P
(

x j
i (t)|X ′

i (t),Y1:t
)

. At any given time, the candidate with

the highest probability can be picked as the current state of
an object as described later. Additionally, a fixed number of
top candidates are retained and propagated for subsequent
frames. We assume that all candidate tracks of a particu-
lar object are mutually independent, while x j

i (t) and X ′
i (t)

are not (since they may share measurements). On the other
hand, each of them is dependent on the set of measurements,
Yt . The full posterior probability of a particular candidate

therefore involves a recursive relationship with other objects
and measurements which results in an intractable computa-
tion. We therefore decompose our desired posterior proba-
bility for a candidate track into independent and dependent
components with respect to the rest of the tracks. The goal
is to propagate candidates with the highest values of the fol-
lowing probabilities: Pi , which is the so called object-centric
or target-oriented probability, and is independent of not only
the rest of the tracks, but also of the rest of the candidates
for the object i , and is the subject of Sect. 4; Pf which indi-

cates the probability of association for x j
i (t) conditioned on

all the candidate tracks of all the objects X ′
i (t), that it may

be following on a road; and Pm which depends on the poten-
tial intersection or merging of tracks within short temporal
windows, and is high for the candidate x j

i (t) if it does not
intersect with any other candidate of other objects. Only the
candidates which intersect with, or are in the spatial vicin-
ity of track x j

i (t) will affect the terms Pf and Pm . These
conditional probabilities will be explored in Sect. 5.

3.1 Logarithmic Opinion Pooling

Given the probabilities from context based cues, as well as the
object-centric motion and observation models, the aggregate
probability of a candidate is computed by combining them
using Logarithmic opinion pooling (Durrant-Whyte 1988),
which has been shown to be less scattered than linear pool-
ing (weighted mean). It has also been shown that for the
geometric mean of a set of probability distributions, the KL
divergence from the true distribution, is smaller than the
average of the KL divergences of the individual distribu-
tions (Hinton 1999). We assume that the independent cue,
Pi , and two novel context aware (dependent) cues, Pf , and
Pm are expert opinions about the same conditional proba-

bility, P
(

x j
i (t)|X ′

i (t),Y1:t
)

, and are conditionally indepen-

dent, given X ′
i (t) and Y1:t . We therefore combine these opin-

ions in a weighted fashion as follows:

P
(

x j
i (t)

∣∣X ′
i (t),Y1:t

)
= Pi

(
x j

i (t)
∣∣X ′

i (t),Y1:t
)κ ·

Pf

(
x j

i (t)
∣∣X ′

i (t),Yt

)ω · Pm

(
x j

i (t)
∣∣X ′

i (t),Yt

)1−κ−ω

,

(1)

where 0 < κ+ω < 1. Each of the terms in the above equation
is explained in detail in subsequent sections. Notice that only
the object-centric distribution Pi depends on previous mea-
surements (Y1:t−1). The contextual constraints are computed
independently for each frame, and only depend on measure-
ments in that frame (in addition to other objects X ′

i (t)). This
aggregate probability represents the quality of a candidate
track, given all the measurements, some of which are shared
between this candidate and other tracks, as well as the motion
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and measurement based likelihoods of the rest of the tracks.
We can then choose the best candidate track x j∗

i (t) of an
object i , at any given time t , by simply finding the one with
maximum aposteriori likelihood, that is,

j∗ = argmax
j

P
(

x j
i (t)

∣∣X ′
i (t),Y1:t

)
, (2)

thereby avoiding the need for any optimization for data-
association (bipartite graph matching, MLE, etc.). Examples
of the aggregate posterior likelihood of candidates for various
tracks are shown in Sect. 7 (Fig. 16).

4 Object-Centric Association

The desired object-centric probability is computed as if the
goal were to track only a single object. In other words, the
object-centric probability of a candidate track x j

i (t) is not
affected by either other existing object tracks or by measure-
ments other than ya(i, j)(t), where a(i, j) ∈ [1, Qt ] is the

index of the detection that is being associated with x j
i (t). This

probability therefore, depends solely on the motion (process)
and detection (observation) models, and is independent of
other candidates and tracks. It can be expanded as,

Pi

(
x j

i (t)|X ′
i (t),Y1:t

)

= P
(

x j
i (t)|Y1:t

)

= P
(

ya(i, j)(t)|x j
i (t)

)
P

(
x j

i (t)|Y1:t−1

)
, (3)

where the second step results from Bayes’ rule and the nor-
malizing constant is omitted. Assuming that the distribu-
tion P(x j

i (t − 1)|Y1:t−1) is known from the previous frame,
the prediction step can be obtained using the Chapman–
Kolmogorov equation, and using the fact that P(x j

i (t)|x j
i (t −

1),Y1:t−1) = P(x j
i (t)|x j

i (t−1)) (because first order Markov
process):

P
(

x j
i (t)|Y1:t−1

)
= P

(
x j

i (t)|x j
i (t − 1)

)

P
(

x j
i (t − 1)|Y1:t−1

)
(4)

The first term in the above equation is based on the motion
model, which in our framework is a constant acceleration
model, such that at frame t , an existing candidate track x j

i (t −
1) is propagated by predicting it to attain the new state x̂ j

i (t),

assuming that the acceleration α
j
i (t − 1) is maintained, i.e.,

p̂ j
i (t) = p j

i (t − 1) + v j
i (t − 1) + α

j
i (t − 1), (5)

v̂ j
i (t) = v j

i (t − 1) + α
j
i (t − 1), (6)

α̂
j
i (t) = α

j
i (t − 1). (7)

The observation noise function is assumed to be the prod-
uct of two independent Gaussian distributions and the confi-
dence of the detector in observing a detection, and is written
as:

P
(

ya(i, j)(t)|x j
i (t)

)
= N

(
ya(i, j)(t)|x̂ j

i (t),Σi, j (t − 1)
)

·
N

(
ya(i, j)(t)|s j

i (t − 1), σ
j

s,i (t − 1)
)

· ga(i, j)(t), (8)

since an object’s motion (acceleration) and size can be
assumed to be independent. The detector confidence g is
elaborated on in Sect. 4.2.

Using constant acceleration instead of constant velocity
motion model has important ramifications in our approach.
Although a constant velocity model can handle reasonable
variance in velocity, traffic on roads often involves sharp turns
like on ramps and intersections, and the wave nature of traf-
fic on congested highways forces abrupt accelerations and
decelerations of vehicles, which significantly increases con-
stant velocity based association ambiguity. The benefits of
constant angular (yaw) rate and acceleration based motion
models for vehicular traffic has been experimentally estab-
lished in (Schubert et al. 2008).

4.1 Object Detection by Two Frame Difference

Image alignment: Since the aerial platform is in motion, the
first step before motion based object detection is the com-
pensation of platform motion, which is performed by detect-
ing Harris corners in consecutive frames, followed by SIFT
descriptor computation at each corner, and RANSAC based
robust least squares fitting of a Homography transformation
(Fig. 1, bottom). While a Homography is computed for all
frames w.r.t a reference, only half the frames are actually
warped (e.g., even frames warped to preceding odd frames),
because the proposed detection method simultaneously per-
forms detection in two consecutive frames. Given overlap-
ping FOVs, inter-camera transformations are similarly esti-
mated, once per sequence (Fig. 1, top).

Why two frames? Given frame to frame alignment, our goal
is to minimize the number of consecutive frames required
for detection, because pixels where motion is undetectable,
is proportional to that number (Fig. 5). Another reason for
this goal is that residual error after alignment, and the warp-
ing process itself, results in significant noise in difference
images, which also increases with the number of frames
used. The minimum number of frames required for motion
estimation is obviously two, the difference of which, how-
ever, produces significant ghosting. We use a new approach
for detecting ghosts, based on the observation that all blobs
obtained using difference of two frames belong to either one
of the frames. Specifically, we note that for any blob to be a
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Fig. 5 Difficulties with
background learning based
detection (Stauffer and Grimson
2000) for fast moving platform.
11 frames aligned to a common
reference are shown where each
frame’s FOV is depicted by blue
polygons. Using a background
model over the first 10 frames
will allow detection of objects in
only the region inside the green
polygon, and 54.12 % pixels
will not be detectable in the 11th
frame. The proposed method
uses only two frames, so all
pixels in the red polygon will be
detectable, losing only 4.93 %
pixels (Color figure online)

Fig. 6 Background gradient suppression in adaptive two frame differ-
ence. Too high a value of λ starts eroding foreground objects. λ = 25
was used in our experiments

true moving object, in addition to motion, it must have sig-
nificantly different intensity relative to the background, or it
would not have had a high frame difference.

Adaptive frame difference: The detection method employs the
general frame difference function, Ft = 0, if −γ < ΔI t−1

t <

γ , and 1 otherwise, where γ , is a positive threshold selected
automatically using Otsu’s method (Otsu 1979), and

ΔI t−1
t = It−1 − It

exp
(
∇(It−1 + It )

)λ
. (9)

∇(.) represents the spatial gradient magnitude of the mean
of the consecutive images and is used to dilute the frame
difference after raising to a power λ (Fig. 6), essentially sup-
pressing some frame difference emanating from regions of
high gradients (strong edges in background). The value of λ

was fixed at 25 for all our experiments. Both the frame differ-
ence, and mean gradient are normalized before computation
of Eq. 9.

Current Image
St. dev = 0.2450

Previous Image
St. dev = 0.1568

Current Gradient
Mean = 0.1464

Previous Gradient
Mean = 0.0791

Current Image
St. dev = 0.0442

Previous Image
St. dev = 0.1193

Current Gradient
Mean = 0.0440

Previous Gradient
Mean = 0.0965

Fig. 7 Ghost disambiguation: blobs from ΔI t−1
t superimposed on pre-

vious and current frames. Two examples are shown for bright (left) and
dark (right) objects. Image intensity variance, mean image gradient for
true detection are larger than that of the ghost

Ghost disambiguation: Given the set of detected object blobs
as Yt−1:t = {

yk

}
, for each blob yk, k ∈ [1, Qt−1 + Qt + ξ ],

obtained after connected component analysis of Ft , we wish
to obtain two disjoint sets, Yt−1 and Yt . Yt−1 then becomes
the set of blobs where standard deviation of intensity as well
as mean of image gradient for previous image pixels belong-
ing to the blob, are larger than that in the current image
(Fig. 7). The opposite condition is true for the set of blobs in
the current image written as Yt , and the set of blobs where
neither condition is satisfied, i.e., Yξ , is discarded as false
positives. Some blobs may also be discarded based on size,
eccentricity, and mean frame difference within them.

In other words, we know which pixels belong to a detected
object, but we don’t know which image (previous or current)
contributed to the detected blob. For the same set of pixels,
we essentially have two blobs in two images, a true object and
a ghost. We assume that the background is locally homoge-
nous, so true blobs have a higher inter-pixel intensity differ-
ence compared to the ghost blob. Similarly, ghost blobs have
a smaller mean gradient (see Fig. 7). This is a reasonable
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Fig. 8 Object detections in four small disjoint regions of a single camera’s FOV are shown as red rectangles. Explicit examples of ghost removal
can be seen by comparing Fig. 10d and e (Color figure online)

assumption because a moving object could not have been
detected even with a background model if its intensity were
not different relative to the background. These conditions are
applied to actual intensity images, It−1 and It , given the blob
pixels, rather than on ΔI t−1

t . The detected blob is also dilated
by a few pixels, to include part of background as context, for
performing the test for ghost disambiguation.

These conditions resemble some of the motion based
object detection methods that employ local luminance and
contrast variation to isolate moving objects (Cucchiara et al.
2000; Huang et al. 2008; Wang et al. 2008). The main dif-
ference in our approach is that we use these local cues for
ghost disambiguation, not object detection, which is based
on the adaptive two frame difference (Eq. 9). Some exam-
ples of detections after ghost removal are shown in Fig. 8.
Each measurement yk(t) is then represented by the vector
{(pk, sk, gk)}, where pk is the blob centroid, sk is the detected
area in pixels (object size), and gk = μ(|ΔI t−1

t | ∈ yk)

is the mean frame difference. Adaptive frame difference
image, ΔI t−1

t is also saved for use during the tracking
process.

4.2 Detection Confidence and Object Size

As described before, the small object sizes, variability in
shape, and lack of texture and color, may preclude the use
of appearance based detection and tracking techniques. The
proposed method however, does take into account the con-
sistency in object size, as well as the confidence in detection,
which can be expressed as the mean frame difference of the
pixels belonging to a blob, i.e., gk . Given the size sk and
mean frame difference gk for measurement yk(t), two more
cues can be incorporated into the association likelihood. We
therefore include gk(t), as the third term in Eq. 8.

Moreover, one of the terms defining object-centric pos-
terior (second term in Eq. 8) incorporates the object size,
sk(t) in addition to the object motion model. The mean
frame difference gk of the measurement yk(t) represents the
tracker’s confidence in observing a measurement, and is espe-
cially useful in the case of mis-detections and occlusions, as
described in Sect. 4.4. It also significantly reduces the proba-
bility of associating a track to a low confidence false positive.

4.3 Candidate Initialization and Propagation

The object-centric likelihood is highly dependent on the
object’s velocity and acceleration estimates, which are not
reliable until after an object has been tracked for at least a few
frames. In absence of road orientation, and given low frame
rate, greedy nearest neighbor based initialization (zero initial
velocity) can be highly erroneous even for very few objects
(Fig. 2, top). This ambiguity cannot be resolved unless the
direction of motion is explicitly estimated by road detection,
etc. For example, (Xiao et al. 2010) proposed the use of GIS
which requires platform metadata which may be unreliable
or unavailable. Moreover, GIS data itself often needs post-
processing and refinement. Heuristics based on coarse road
direction estimate (Reilly et al. 2010), and comparisons of
spatial layout of objects in consecutive frames (Xiao et al.
2010) have also been used to alleviate this problem, but these
incur overhead which is needless given that multiple candi-
dates per object can be maintained to postpone correspon-
dence.

The first few associations for each track are decisive for
correct tracking, which is where multiple candidate tracks
prove the most important. In the second frame of visibility t ,
for an object xi , with only a single measurement candidate,
x1

i (t − 1), all measurements in the spatial vicinity of the
first frame’s position are assumed to be feasible candidates
regardless of orientation, such that ∀k | ‖pk(t) − p1

i (t −
1)‖ ≤ dmax, a new candidate track is spawned for the object
xi . dmax is a fixed distance based on the image resolution
and typical object size, and acts as a gating function, and
was constant for all experiments. An example of multiple
candidate initialization is shown in Fig. 9. The speed of a
track candidate can be computed in the second, while the
acceleration can be computed starting from the third frame
of visibility.

In addition, at any arbitrary frame t , each member in the set
of unassociated measurements, is initialized as a new object
track with a single candidate, each with a single track point,
and probability gk(t). Furthermore, all associated measure-
ments, whose un-normalized maximum association likeli-
hood (among all tracks) is less than half the mean of max-
imum association likelihoods (among all candidates of all
tracks), are also initialized as new tracks, i.e., handling of the
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Fig. 9 Evolution of candidates of a single target, over 12 frames. Each
image shows top 10 candidates for the object, where filled square repre-
sent actual, and filled triangle depict hypothetical measurements. Color
of each candidate track depicts relative probability as per the color bar.

Detections in each frame are shown as green bounding boxes. Notice
that all candidates are equally likely up to second frame, due to lack of
acceleration estimate, but the correct candidate soon emerges as most
likely (Color figure online)

case where a new object may appear (enter) near an existing
track’s predicted location.

4.4 Occlusion and Mis-detection Handling

Since objects in high altitude aerial sequences are fre-
quently mis-detected because of illumination changes (due
to changes in sensor gain) and shadows, and undergo occlu-
sions in urban traffic scenarios (e.g., trees or bridges, etc.),
it may sometimes be impossible to find any reasonable asso-
ciation for the best and correct hypothesis. Furthermore, in
absence of road network knowledge or data driven learning,
it is nearly impossible to discern between a valid occlusion
like bridges or trees, and a mis-detection like a dark object in
a shadow or object with appearance similar to background. In
this case, the proposed algorithm adds a hypothetical mea-
surement, ŷk , where k > Qt , to the ensemble of possible
candidates, anticipating that the object will soon come out of
occlusion. This process however carries an implicit penalty
arising from the association likelihood representing mean
frame difference, gk(t). Specifically, the hypothetical mea-

surement vector for a candidate x j
i (t − 1), is defined as,

ŷk(t) =
[
p j

i (t − 1) + v j
i (t − 1) + α

j
i (t − 1),

s j
i (t − 1), μ(|ΔI t−1

t | ∈ ŷk)
]
, (10)

that is, a hypothetical detection is assumed to have been
observed at the predicted location, with a size equal to the
object’s size in the last frame, and a confidence, gk(t), equal
to the mean gray area corresponding to an area in the current
difference image, which is the same size as the object’s pre-
viously observed size. This confidence computation is the

reason that the adaptive frame difference image ΔI t−1
t is

stored.
If the hypothetical measurement is indeed a mis-detection,

this penalty would not be too severe, which is in contrast
to existing approaches that rely on fixed weight occlusion
nodes (Reilly et al. 2010). A hypothetical detection is espe-
cially useful in the case of mis-detection due to high detection
threshold. In case a track has actually ended, the process of
hypothetical measurement insertion is not continued for more
than a fixed number of frames. A hypothetical measurement
is also useful in case of blob merging, where association to
centroid of merged detection will likely result in change of
direction as opposed to that of hypothetical detection. An
example of such a scenario is shown in Fig. 10. The process
of hypothetical measurement introduction essentially con-
verts the space of observations (measurements/detections)
from discrete (Yt ), to continuous, such that the probability
of an arbitrary observation at any pixel, with any size can
be computed. The observation distribution is analogous to
a correlation surface or classifier output surface for motion
based detections.

Given the discussion in Sect. 4, the independent compo-
nent Pi of the probability for each candidate (Eq. 3) can now
be computed. Furthermore, a structured method for genera-
tion of new object tracks, as well as for spawning new candi-
date tracks for existing objects has been described. In Sect. 5,
we describe methods to compute the context dependent com-
ponents, Pf and Pm .

5 Context Aware Association

One of the main goals of the proposed work is to avoid hard
assignments, as well as the 1–1 correspondence constraint.
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(e)(d)(c)(b)(a)

Fig. 10 Effect of Weighted hypothetical measurement (filled triangle
instead of filled square) on detection merging. Tracks of two objects
travelling left to right in parallel are shown in red and cyan. Detections
in the frame are shown as green boxes. a shows the initialization of each
of the two tracks in frame 318 of sequence 2, overlaid on I318 on top,
and the difference image ΔI 317

318 on bottom. b shows the best candidate
for each track at frame 321, overlaid on I322. c shows the second best

candidate of each track in frame 322, each of which corresponds to
association with the merged blob center, while d displays the best can-
didates of each that is created by association to a weighted hypothetical
measurement, depicted by blue dotted boxes. The images in e contain
the corresponding difference image, where the hypothetical measure-
ments obviously have non-zero mean gray area, i.e., gk(t). Notice that
the ghosts in e are not detected as objects (Color figure online)

The relaxation of this constraint however, introduces the
problem of track merging. In absence of matching functions
that discourage measurement waste, it is possible that a track
switching its label incorrectly, will result in duplicate tracks
for one object, and none for the other. Even if the duplicate is
not chosen as the best candidate, it may serve to help discard
the correct one based on a lower probability. The lost object’s
subsequent measurements will not only be wasted, but there
will be no reacquisition. Only initiation of a new object track
will take place, because unassociated detections spawn new
tracks, essentially resulting in broken tracks.

In the subsequent subsections, we propose two novel data
association constraints which are also applicable to conven-
tional MTT techniques. The goal of these techniques is to
consider the effects that neighboring objects have on tracking
of a particular target, while evaluating the association like-
lihood for that target. They also reduce measurement waste,
that can result from track merging due to detection sharing.

5.1 Vehicle Following Model

The correlation between the accelerations of vehicles fol-
lowing one another has been established by research in
transportation theory and traffic analysis. Various models
have been proposed in these fields, which attempt to math-
ematically explain how drivers tend to follow one another
in a stream of traffic. These models include Fuzzy logic
(Kikuchi and Chakroborty 1992), cellular automata (Nagel
and Schreckenberg 1992), differential and difference equa-
tions (Newell 1961), and are useful in planning and analysis
of transportation systems. However, these methods have not
been used in the area of target tracking in dense urban traf-
fic scenarios, possibly due of lack of visual data that chal-
lenges conventional methods. The data set under consider-
ation presents precisely such scenarios where small object
sizes, low frame rates, and the sheer number of targets pre-
clude many traditional cues like proximity, maximum or

constant velocity, rigidity, or locally similar motion. We
observe in the data set that for free flowing traffic, the
instantaneous accelerations of leading-following car pairs are
closely related, but shifted in time, as illustrated in Fig. 11a,
b. For the purpose of evaluating the effect of the lead vehi-
cle’s motion on the following vehicle, we employ the clas-
sical stimulus response model, the Gazis–Herman–Rothery
(GHR) model (Gazis et al. 1959), as generalized by Edie
(1960):

d2pF (t)

dt2 =
ρ

[
dpF (t − Δt)

dt

]m

[
pL(t − Δt) − pF (t − Δt)

]l
·

[
dpL(t − Δt)

dt
− dpF (t − Δt)

dt

]
, (11)

where pL and pF are the 2d locations of the lead and fol-
lowing vehicles respectively, ρ is the sensitivity coefficient,
a high value of which indicates high response intensity for
the following driver, Δt is the response time, while m and
l are two parameters, which have empirically been found to
be between m = 0–2, and l = 1–2 for uncongested traffic.
The above can be described intuitively by noticing that the
predicted acceleration of an object is, directly proportional
to its current velocity, directly proportional to the difference
between its velocity and that of the lead vehicle, and inversely
proportional to the distance between the two.

Let the random variable F p,q
i, j denote the event that the

object represented by track candidate x j
i (t − 1) is following

the one represented by track candidate xq
p(t − 1). We then

write the probability Pf of observing a particular state x j
i (t)

of the i th object, given it is following other objects in its
immediate neighborhoodX ′

i (t), as the joint probability of, (a)
observing similar accelerations from a particular association
and the car following model, and (b) the event that object
under consideration is part of a lead-follow pair:
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Fig. 11 Modeling vehicle following behavior: a tracks of a lead-
following vehicle pair in blue and red resp., b instantaneous accel-
erations plot of lead and following vehicles in blue and red resp. Accel-
erations of following vehicle are remarkably similar to that of the lead
vehicle when shifted left by 1 frame, c illustrates the process of lead vehi-

cle probability computation for all objects near a vehicle, and depends
on similarity of direction (θ), and components of vector between object
locations that are parallel and normal to the velocity vector. Probability
for oppositely moving vehicles is almost 0 (since, cos(θ) ≈ −1) (Color
figure online)

Pf

(
x j

i (t)
∣∣X ′

i (t),Yt

)
= Pf

(
x j

i (t)
∣∣X ′

i (t)
)

=
∑

p∈[1,Tt ]−{i}

∑
q∈[1,Np(t)]

P
(

x j
i (t), F p,q

i, j

)
, (12)

where the right hand side can be decomposed using Bayes
rule as,

P
(

x j
i (t), F p,q

i, j

)
= P

(
x j

i (t)
∣∣F p,q

i, j

)
· P

(
F p,q

i, j

)
, (13)

which can be thought of as a weighted mean of, the prob-
abilities of different accelerations predicted by the car fol-
lowing model (first term), where the weight is given by the
probability that the two cars are indeed a lead-follow pair
(second term). The first term can easily be computed using
the model given by Eq. 11 and using the mean and covari-
ance of the object state’s acceleration. Assuming the para-
meters in Eq. 11 to have values as Δt = 1 frame (0.5 s),
m = 1.5, l = 1, and ρ = 0.25, and using previous notation,
we compute the conditional likelihood for the j th candidate

of the i th object x j
i , given it is following candidate xq

p as,

P
(

x j
i (t)

∣∣F p,q
i, j

)
= N

(
ρ

[
v j

i (t − 1)
]m ·

[
vq

p(t − 1) − v j
i (t − 1)

]

‖pq
p(t − 1) − p j

i (t − 1)‖l
;α

j
i (t),Σi, j (t)

)
. (14)

The idea again, is to evaluate probability of the acceleration
obtained by vehicle following model based prediction, given
how the object’s acceleration (from data-association) is dis-
tributed.

Finally, the probability P
(

F p,q
i, j

)
, of object xq

p, being the

lead vehicle of x j
i , is computed by simply shooting a ray, from

the current location of x j
i , in the direction of current velocity

v j
i , and finding the perpendicular distance of xq

p from the

ray, and distance of point of intersection from x j
i , where the

ray obviously is the current velocity vector, v j
i (see Fig. 11).

123



Int J Comput Vis

Additionally, the similarity between the current directions of
motion of the two objects is also computed, so as to disregard
influence from nearby but oppositely moving vehicles. We
can therefore write,

P
(

F p,q
i, j

)
= 1

2

( −→v j
i • −→v q

p

‖−→v j
i ‖‖−→v q

p‖
+1

)
· exp

{
−(‖−→p j

i −−→v j
i

×−→p q
p‖+‖−→p q

p − −→v j
i × −→p q

p‖
)}

, (15)

where −→p and −→v represent position and velocity vectors
in homogenous coordinates, and ‘•’ and ‘×’ are the dot
and cross products respectively. In other words, the prob-
ability represents the similarity between directions of vec-
tors v j

i and vq
p, coupled with the distance between their

tails. To avoid useless computations, in our experiments,

P
(

F p,q
i, j

)
was simply set to 0 using a gating function, wher-

ever the distance between x j
i and xq

p is greater than 3‖v j
i ‖.

Furthermore, it is made sure that the sum of probabilities

P
(

F p,q
i, j

)
for all possible lead vehicles of x j

i is 1, that is,
∑

p∈[1,Tt ]−{i}
∑

q∈[1,Np(t)] P
(

F p,q
i, j

)
= 1. This normaliza-

tion is omitted in Eq. 15 for clarity. Equations 13, 14, and
15 can now be plugged into Eq. 12 to obtain probability Pf

of a candidate track x j
i (t) according to the vehicle following

model, which can be thought of as an intelligent motion sim-
ilarity constraint for proximal targets. It should be noticed
that the proposed vehicle following model does not actu-
ally choose a single lead vehicle, which is rather difficult
for high density traffic in absence of road orientation esti-
mates and lane information. Instead, all objects in the vicin-
ity are assumed to be the lead vehicles and the corresponding
probabilities are evaluated. The vehicles moving in opposite
direction obviously do not significantly affect the estimate.

5.2 Avoidance of Track Intersection

Another important cue in MTT from nadir views in struc-
tured scenes is that correct tracks do not intersect, at least
not within a small temporal window (Fig. 12). This cue is
often used as a post-processing step to remove tracks that
intersect with other ones (Xiao et al. 2010). However, the
only option at that stage is to either discard detections within
the removed track, or assign it to be under occlusion. One
of the novel contributions of the proposed algorithm is to
bring this post-processing cue into the association likeli-
hood computation, thereby discouraging track intersection
in general, but allowing it in absence of other viable alter-
natives. Furthermore, the relaxation of 1–1 correspondence
constraint may cause problems, e.g., the best candidates for
two nearby tracks may share measurements, while ignor-
ing other valid measurements. The proposed idea implicitly
alleviates this problem as well, because candidates merging

Fig. 12 All possible associations for all candidates of a few objects
in consecutive frames. Track locations in previous frame and observa-
tions in current frame are shown by green square and blue square resp.
Majority of these are infeasible due to intersection with other associa-
tions (Color figure online)

onto the same measurement are penalized, as they intersect
at the measurement. Similarly, measurement wastage is dis-
couraged because measurements associated with fewer can-
didates have a smaller penalty compared to ones associated
with more candidates.

Given the sets of candidates for all objects, the problem
of intersection detection can be defined as an exhaustive test
of intersection between pairs of line segments, such that the
two ends of every line segment correspond to measurements
in distinct consecutive frames. Due to the extremely large
number of measurements in each frame, and the fact that
the number of line segments can possibly be quadratic in
the number of measurements, the simple approach would
require O(N 2) time for N line segments, where N can be
Qt−1 · Qt in the worst case. We employ the efficient Shamos-
Hoey sweep line algorithm (Shamos and Hoey 1976) for
segment intersection testing which runs in O(NlogN ) time.
Notice that we do not require the actual points of intersection,
only a binary result for each segment pair indicating whether
an intersection is present. Let us denote such a result as S,
such that S (i, j, p, q) is 1, if the two candidates x j

i (t) and
xq

p(t) intersect in the past two frames, and 0 otherwise, where
1 ≤ i, p ≤ Tt , i = p, 1 ≤ j ≤ Ni (t), and 1 ≤ q ≤ Np(t).
Moreover, track candidates that carry occlusion nodes in the
past few frames are exempt from this test (S = 0 for these),
since some of them represent vehicles moving under bridges,
etc., and therefore in directions perpendicular to normal traf-
fic, resulting in valid intersections. We now define a function
L , such that,

L
(

x j
i (t), xq

p(t)
)

=
P

(
x j

i (t)|Y1:t
)

P
(
xq

p(t)|Y1:t
)S(i, j,p,q)

, (16)

where L ∈ [P
(

x j
i (t)|Y1:t

)
,∞]. Therefore, the value of L

for two candidate tracks is equal to the probability of the first
if they do not intersect; it is equal to 1 if they intersect and
are equally likely; it tends to the probability of the first as
that of the second reaches 1; and it tends to infinity as the
probability of the second reaches 0. We use this function to
define the following:
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Fig. 13 Effect of track intersection discouragement: Top five candi-
dates for three vehicles travelling right to left in parallel lanes. The two
rows for each track correspond to probabilities Pi and Pm shown by
shades of red, cyan, and green (brighter meaning high probability as

per colorbars). Notice that the disparity among candidate probabili-
ties is much higher for Pm than Pi . Track intersection is minimized by
choosing candidate 1 for each track (Color figure online)

Pm

(
x j

i (t)
∣∣X ′

i (t),Yt

)

=

∑
p∈[1,Tt ]−{i}

∑
q∈[1,Np(t)]

L
(

x j
i (t), xq

p(t)
)

∑
j ′∈[1,Ni (t)

∑
a∈[1,Tt ]−{i}

∑
b∈[1,Na(t)]

L
(

x j ′
i (t), xb

a(t)
) . (17)

In other words, if two candidates intersect within last two
frames, the intersectee candidate’s likelihood changes by
a factor of the intersector candidate’s likelihood, and vice
versa. Consequently, the candidate that intersects or shares
detections with the least number of tracks, has the highest
probability according to this cue, where the increased prob-
ability is a function of its own and the intersecting tracks’
probabilities. It should be noticed that dependence of Pm on

Yt is a manifestation of using the posterior, P
(

x j
i (t)|Y1:t

)
,

in the function L . Notice also that evaluation of Pm requires
computation of all object-centric likelihoods for the current
frame, and is therefore part of a second loop over the tracks.
An effect of this important cue can be seen in Fig. 13, which
alone is helpful in the following ways:

• Mitigating negative consequences of allowing detection
sharing between objects,

• Discouraging overzealous merging of track candidates
(and eventually tracks) onto a single measurement,

• Implicitly imposing a local velocity similarity constraint
by penalizing intersecting candidates,

• Encouraging candidates with hypothetical measurements
in case of measurement merging (i.e., merged blobs),
by penalizing intersection, i.e., distinct track candidates

associating with the same measurement (see Fig. 10 for
an example of this scenario) and,

• Allowing intersection and merging of tracks in absence
of better options, instead of treating them as impossible.

It should however be noticed that the convergence of two
distinct tracks onto a single ‘correct’ detection will almost
never result in the best candidate. An example of such a
scenario can be seen in Fig. 10, where it makes sense to
allow detection sharing, since it is indeed a merged detec-
tion, but it is unlikely that a hypothetical detection will get
a lower overall probability, given higher values from motion
model, vehicle following, as well as track intersection cues.
If on the other hand the hypothetical detection has low mean
gray area (e.g., due to permanent occlusion like an overpass),
the eventual probability after insertion of a few hypothetical
detections, and subsequent actual ones, will be higher for
the correct candidate due to better adherence to the motion
model and intersection avoidance.

Even though it is rare, the merging of two distinct object
trajectories to a single detection is still a possibility and
within the tracking process, there is no constraint to pre-
vent it (i.e., 1–1 correspondence). If such a case arises, the
final decision (Eq. 2) favors the optimal candidate of the
track with the higher likelihood or lower overall cost. For the
other track, the next best candidate is selected as the opti-
mal one. The scenario under consideration, i.e., two tracks
merging for one or more detections, is detected by computing
the number of non-hypothetical detections (e.g., the merged
detection in Fig. 10) that are shared between the two tracks,
normalized with respect to the respective track lengths. The
tracks are considered to be merged if more than 40 % of the
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Fig. 14 Object tracking across cameras for two objects shown in each row. Trajectory is shown as a red line, and object’s current location as a
blue rectangle (Color figure online)

non-hypothetical detections of each are identical. A few
quantitative remarks about the frequency of occurrence of
this scenario are made in Sect. 7.

6 Multiple Camera Tracking

Wide area aerial data often benefits from simultaneous image
capture by multiple cameras, as is the case in the CLIF data
(USAF 2006), where six high resolution cameras capture
data at every frame. Although the inter-camera transforma-
tions are easily computable due to reasonable overlap in their
FOVs, and remain fixed over time, multiple camera tracking
is still challenging due to a number of reasons. First, the size
of the resultant mosaic image at every frame (>70 million
pixels) itself prohibits sophisticated object detection algo-
rithms. Moreover, the difference in camera gains and contrast
imply the requirement of gain adjustment or histogram equal-
ization preprocessing before background model learning or
frame differencing. Second, even the minor residual errors
in transformation computation and image warping steps are
significant enough to throw off the tracker, e.g., detections
expected on the road may now appear in the opposite lane
of traffic, etc. Although the tracking algorithm’s multiframe
association probability computation mitigates the latter prob-
lem to some extent, the former still requires computationally
expensive preprocessing, e.g., Reilly et al. (2010) performed
gain and brightness equalization across cameras to stitch
a mosaic before performing object detection at the mosaic
level.

Our proposed framework employs a simpler approach,
possible due to the inherent detection sharing capability.
Instead of preprocessing and camera to camera image warp-
ing before detection, objects are first detected in each cam-
era using the proposed two-frame difference approach. The

detections obtained in all camera frames at a particular time,
are then transformed to a single camera’s reference at that
frame, bypassing camera-camera image warping. The resul-
tant set of detections now contain duplicate detections in the
regions visible in multiple cameras’ fields of view. This draw-
back however poses no significant limitations on the tracking
performance. In the rare case that the duplicate detections of
a particular object spawn multiple candidate tracks, one of
them will attain a higher probability, even if marginally so.
Two examples of camera handover during tracking are shown
in Fig. 14.

7 Experiments and Results

The proposed method has been tested on the challenging
CLIF dataset (USAF 2006). CLIF stands for Columbus Large
Image Format, and consists of sequences captured from a
UAV around the OSU campus. The sequences are captured
from an altitude of about 7,000 ft (2.1 km) at a rate of 2 frames
per second. The sensor consists of six cameras arranged in
a 2 × 3 array (see Fig. 1, top). The typical resolution per
frame per camera is 4,008 × 2,672 but the high platform
altitude results in very few pixels on target. Also notice that
all CLIF imagery is grayscale, making appearance cues much
less discriminative. The candidates for each track are pruned
to ten candidates (Ni ≤ 10), but only after track length is at
least 5. No pruning is performed for shorter, new tracks so
the acceleration estimates are established. All experiments
reported were ran using Matlab implementation on a quad
core machine. In terms of speed, the tracking part of the
proposed approach ran 7.6483 s per frame, or 0.13 frames
per second. Using the same set of detections, bipartite graph
matching (using (Munkres 1957) took an average of about
57 s per frame. There is potential to optimize the algorithm

123



Int J Comput Vis

for improved speed but our approach is significantly faster
than simple linear assignment based association. Similarly
the storage requirements of our algorithm were also reason-
able at 20.4986 MB per frame. Sequence specific numbers for
run times and memory requirements are reported in Table 1.

The frames in the data set were divided into several
sequences by selecting frames such that a high percentage
of visible objects persist in the camera view for a max-
imum number of frames, so that the tracking results are
meaningful. This is because the UAV platform has a much
greater speed than the speeds of objects, and it is difficult
to generalize performance if objects are not visible for more
than a few frames. Detailed specifications of the sequences
are listed later along with performance analysis for each
sequence.

The idea behind the choice of frames for each of the four
sequences is that the frames chosen should have at least one
major road or highway, in addition to obviously a large num-
ber of smaller streets, parking lots, and intersections, etc.
This is important for two main reasons:

(1) Quite a few novelties in terms of data association, object
detection, as well as specific steps geared towards bound-
ing the computation and memory requirements, come
into play only when there is a large number of point corre-
spondences to be established. If the sequences had fewer
objects, some of the existing techniques may have been
able to perform adequately. It should be noticed however,
that the chosen sequences are by no means devoid of low
density traffic, or singular targets moving without other
objects in context.

(2) The high platform speed implies that objects do not per-
sist in the field of view for more than a couple of tens of
frames. The choice of frames with high density traffic at
least allows us to test the proposed approach for tracking
a large number of objects within a few frames. Objects
with few or no spatially proximal confuser objects are
obviously easier to track, and given that they will be vis-
ible for only 10–20 frames, the problem would be much
easier for regions of low traffic density.

Some explanatory numbers for one of the four sequences
(sequence # 3) are computed for additional insight and
reported in Fig. 15. Figure 15a shows the very large num-
ber of detections per camera for each frame in the sequence.
An obvious observation in this plot is the abruptness with
which the number of detections change over time. This is due
to two main reasons. First, the sequence consists of frames
where the airborne camera traverses a busy highway result-
ing in a sharp increase and subsequent decrease in the num-
ber of objects detected. More importantly however, the fixed
threshold γ applied to the adaptive frame difference (Eq. 9),
is sometimes not optimal due to the difference in camera gain
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Fig. 15 Explanatory quantitative figures computed for sequence 3: a
number of objects detected in each camera for sequence 3, b average
number of viable candidates per track at each frame of sequence 3. The
red line is drawn at 10, which is the maximum number of propagated
candidates after pruning (Color figure online)

in consecutive frames. This is precisely the reason that dis-
crete, thresholded, binary detections, Yt , are primarily used
for initialization only, and the hypothetical detections cater
for the false negative detections. False positives are respon-
sible for track initializations but such tracks cannot continue
for more than a couple of frames due to multiple reasons.
First, the false positives are often very intermittent and get
low confidence for subsequent corresponding hypothetical
detections. Second, even for relatively persistent false posi-
tives, such as regions on the edges of roads, a low confidence
is obtained for vehicle following due to inconsistency with
respect to motion of spatially proximal objects. False posi-
tives seldom affect targets that have been correctly initialized
because over a few frames after a candidate is associate with
false detection, the process needs to be discontinued for that
candidate. Multiple examples of this scenario can be seen in
Fig. 16.

Figure 15b shows the corresponding average number of
candidates per track being retained at each frame. First, notice
that the number of candidates for frames 10–15 are not plot-
ted. The reason is that these are potentially large number of
candidates during a time when the candidate pruning process
has not started yet. As mentioned earlier, candidates are not
discarded until the track is at least 5 frames long. The second
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Fig. 16 Top 10 candidates for eight tracks. The relative probability of
each is represented by its color according to the color bar. Observed
detections are shown as filled square, and hypothetical as filled trian-

gle. Notice that the correct candidate usually has the highest likelihood
(dark red), and occlusions are handled implicitly by incorporation of
hypothetical detections, filled triangle (Color figure online)

point to note in this plot is that despite the very large num-
ber of objects, aggressive pruning makes maintenance of per
object candidates possible, and keeps the computational and
storage requirements under control.

Quantifying false positive detections As listed in Table 1,
only a few (30–100) objects have been manually ground-
truthed in each of the sequences, while it can be observed that
each frame of video contains thousands of objects. Computa-
tion of mis-detections is possible if only the ground-truthed
objects are taken into account. The detection rate obviously
considers the number of objects that were present but could
not be detected. False detection rate on the other hand,
requires manual counting of each object that was falsely
detected. Given the large number of true objects (and detec-
tions), computation of such statistics for all video sequences
is a prohibitively laborious task.

We have however performed such manual labeling for
a small region (918 × 655 - 1/18th of a frame) in a sin-
gle frame for one of the four video sequences, as shown
in Fig. 17. It can be easily observed that performing such
quantitative evaluation for all the four sequences will be
a daunting task. Manually performed quantitative evalua-
tion indicates that a total of 110 moving vehicles have been
detected correctly as single objects (true positives), while 18
have been mis-detected (false negatives). Despite the large
background regions with strong gradients, there are only 8
false positives. There were 7 additional detections which are
correct, but contain multiple vehicles within the bounding
box. This however is not a significant problem in the pro-
posed approach (see Fig. 10 for an example of handling of
merged detections).

In any case, the influence of hard detection thresholds
in the proposed approach is very minimal, due to the use

Fig. 17 Quantifying object detection performance in a small 918×655,
region of frame 318 of the CLIF dataset. Detections are shown as red
bounding boxes. Performance numbers are reported and explained in
text (Color figure online)

of state and observation joint probability in the final like-
lihood score, instead of the traditional conditional as men-
tioned in the paper. In other words, the actual detections are
used solely for track initialization. False positives can be
greatly reduced by keeping a high detection threshold, while
the resulting mis-detections are easily mitigated by using the
detection confidence, i.e., the mean gray area. That is the rea-
son why the proposed framework emphasizes computation of
a clean, crisp, and adaptively filtered two-frame difference.
Instead of relying on sophisticated but possibly unreliable
thresholds to strictly divide the observed imagery into back-
ground and foreground regions, the idea is to instead rely
directly on the observed difference, which is diluted using the
image gradients to reduce effects of alignment residue and
noise. It can also be observed that although we could achieve
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Fig. 18 Quantitative results obtained for four sequences: a average
number of objects detected per frame; b object detection rate consider-
ing the ground truthed objects; and c average point to point Euclidean

distance between ground truth tracks and tracks obtained using bipartite
graph matching and the proposed method. Actual numbers are reported
in Table 1

perfect ODR by decreasing detection threshold, the resulting
increase in the number of false positives will adversely affect
tracking metrics including fragmentation and completeness.
These quantitative measures of tracking are therefore indi-
rect indication of the low number and minimal effect of false
positive detections.

Quantitative comparison We compared the performance of
our approach with a conventional multiple target tracker,
which optimizes greedy nearest neighbor search using bipar-
tite graph matching. The linear assignment problem is solved
using the Hungarian algorithm (Munkres 1957). The base-
line tracker uses constant velocity model, where velocities are
initialized to be 0 (therefore simple nearest neighbor assign-
ment at first frame). A number of quantitative metrics are
used to gauge performance in terms of quality of detection
and tracking, viability of the proposed approach and compu-
tation time. Most of these are based on tracking performance
metrics used in (Perera et al. 2006). These include,

• object detection rate (ODR), which is the number of cor-
rect detections normalized by number of ground truthed
objects. In our experiments, a correct detection is defined
as one where the detection has at least a 30 % overlap with
the ground truth bounding box,

• average detection overlap (ADO) represents the mean
overlap for only the correct detections, and is at least 0.3,

• point to point error (PPE) is the mean Euclidean distance
between corresponding points in actual and ground truth
tracks, regardless of label switching,

• track fragmentation (TF) counts number of points on a
track that actually belong to another track, without nor-
malizing with respect to track length, and

• track completeness factor (TCF), which measures the
percentage of detections that were correctly associated

with the corresponding track, and can at most be equal
to the object detection rate.

Figure 18a reports the average number of detections per
frame for each of the four sequences used in the experiments.
The very high number of detections essentially reiterates our
previously emphasized point about computational infeasibil-
ity of existing approaches, and especially the optimization
algorithms. Figure 18b illustrates the average object detec-
tion rates for each sequence and verifies the feasibility of the
proposed approach used in our framework. Detection rates of
more than 90 % were obtained for all sequences. It should be
noticed however, that these performances measures are com-
puted by considering the manually ground-truthed objects
only. In other words, the false positive detections are not
considered in the measure. The reason for this omission is
obvious, i.e., counting of false positives requires ground-
truthing of each and every object in each frame manually,
which is prohibitively cumbersome. It should also be men-
tioned that although there are some mis-detections using the
proposed approach, they do not negatively affect the track-
ing performance significantly. This is due to the inclusion of
detection confidence into the association probability. There-
fore, even objects that were mis-detected, but had a non-
trivial mean gray area, gk , (frame difference), can achieve
an association likelihood close to or higher than observed
detections.

Not withstanding difficulties with detection, probably
the most prevalent problem in tracking of large number of
objects in dense scenarios is the label switching, i.e., associ-
ation of detections to wrong tracks. A reasonable metric for
performance evaluation measuring label switches is Track
Fragmentation. We computed track fragmentation for each
ground-truthed track, for each video sequence, and summa-
rized the results in Fig. 19. The figure also illustrates com-
parison with the baseline Hungarian algorithm tracker, as
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Fig. 19 Influence of context-aware tracking terms, quantified using
average track fragmentation for each sequence using: proposed method;
bipartite graph matching; and proposed method without vehicle follow-
ing model, and intersection avoidance. Although the vehicle following
term does not drastically improve performance over Hungarian cor-
respondence, the removal of intersection avoidance term significantly
increases track fragmentation. See Table 1 for actual values of fragmen-
tation

well as the influence of each of the context-aware tracking
cues proposed in this work. First, it can be noticed that the
proposed multiframe nearest neighbor tracker significantly
outperforms 1–1 instantaneous correspondence algorithm

across all sequences. Moreover, it is shown quantitatively
that both the context-aware constraints improve performance
since when these are removed from the final posterior prob-
ability, the number of label switches increases. The vehicle
following term, Pf , however, does not seem to make as large
an improvement as the track intersection and merging avoid-
ance term, Pm , does. This is intuitive since the intersection
and merging avoidance cue performs several functions, not
the least of which is to mitigate negative effects of the pro-
posed detection sharing idea, as detailed in Sect. 5.2. As
reported in Figs. 18c and 19, the proposed algorithm signifi-
cantly outperforms bipartite graph matching. Moreover it is
also faster by a factor of ∼7. More tracking results and videos
are included in supplemental material, showing objects being
tracked through occlusions, such as bridges, etc. Occlusions
typically persist for about 5–10 frames. Also, many tracked
objects do not follow straight or curved constant velocity
paths, e.g., vehicles entering or exiting the highway through
ramps. The videos show multiple examples of the scenario
of abrupt starting and stopping of vehicles when encounter-
ing congestion (wave nature of traffic), which is adequately
handled by our method. The majority of objects exhibiting

Table 1 Data set specifications
and quantitative analysis Sequence # 1 2 3 4

Camera # 5 4 1, 3 0

Frames 317–416 317–400 10–90 815–915

# GT objects 34 107 50 50

Av. detections/frame 2033 905 1506 1815

Object detection rate 0.9112 0.9837 0.9811 0.9561

Av. detection overlap 0.7913 0.8801 0.7213 0.9571

Point to point Euclidean error (PPE)

Munkres (Munkres 1957) 26.3057 19.1389 16.1197 21.0928

MHT (Cox and Hingorani 1996) 23.8147 19.9058 11.1270 16.9134

Proposed approach 11.9197 8.1462 7.7572 5.2679

Track completion factor (TCF)

Munkres (Munkres 1957) 0.4495 0.6943 0.5885 0.4784

MHT (Cox and Hingorani 1996) 0.4763 0.7109 0.6627 0.4954

Proposed approach 0.6430 0.8704 0.7266 0.7889

Track fragmentation (TF)

Munkres (Munkres 1957) 7.7252 6.7095 6.1538 3.8173

MHT (Cox and Hingorani 1996) 6.9572 6.4854 6.1003 3.1218

Proposed approach 3.7202 1.8648 1.1533 1.4387

Proposed without vehicle following (Pf ) 4.0197 2.1837 1.6028 1.9647

Proposed without intersection avoidance (Pm ) 6.8194 4.6586 5.3417 3.3327

Computation time/memory

Time per frame (s) 6.3873 7.6555 8.6281 8.1051

Time per track (ms) 14.9830 9.6873 9.5668 12.2012

Time per candidate (ms) 1.1939 0.6318 0.8735 1.5431

Memory per frame (MB) 19.9623 19.2920 21.6109 21.1410
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motion in the scene are successfully detected and tracked
throughout the sequences.

We also compared our approach to the well known
MHT (Cox and Hingorani 1996) and quantified the results
which are reported in Table 1. This evaluation used the
same sequences, experimental settings, ground truth, motion
model, and detection method, as the proposed framework. At
each frame, only the top 10 global hypotheses were retained.
As can be seen from the results, the proposed method out-
performs MHT in all sequences using all tracking metrics.
It does however perform better in one sequence (less Track
Fragmentation), if the proposed approach doesn’t employ
the track intersection and merging avoidance cue (Pm). In
general, the performance of MHT is comparable to that of
simple bipartite graph matching (Munkres 1957), which is
most likely due to the fact that both impose a 1–1 corre-
spondence constraint on tracks and measurements. The main
difference between these methods and the proposed approach
therefore, is the enumeration of global versus local (object-
centric) hypotheses, not one versus multiple hypotheses.

We also attempted to explicitly find the rank of the cor-
rect global hypothesis using MHT. For this experiment, we
used the correct (ground truth) initialization for the 241
ground-truthed objects, and propagated the corresponding
tracks for the first five frames using the true locations, so
as to establish the best possible motion model parameters.
We observed that the 50 best global hypotheses at the sixth
frame did not include the correct associations for all 241
objects. Moreover, the actual best hypotheses (as per the
ground truth) for each of the four sequences were ranked 37,
22, 23, and 14 respectively. The “actual best” hypothesis was
computed as the one with the maximum number of correct
associations.

It should be kept in mind that for each sequence, all
detected objects (along with false positive detections) were
being tracked, not just the ground truth objects. This is exactly
the reason we argue against 1–1 correspondence constraint
for tracking in such high density traffic, i.e., the influence of
spurious wrong associations in a global hypothesis is diffi-
cult to contain, and propagates to neighboring objects, and
so on.

Moreover, as mentioned earlier, for this particular experi-
ment, the first five points on the trajectories of ground-truthed
objects were manually corrected to avoid disadvantage to
the MHT owing to incorrect initialization of motion mod-
els. Even though we did not verify these results for all the
tracked objects, it is reasonable to conclude from the results
of 241 objects that in order to retain the optimal hypothesis,
a prohibitively large number of hypotheses will have to be
propagated to subsequent frames, as compared to only ten
candidates per object in our method. Even large storage and
computation power may not completely alleviate the limi-
tations of 1–1 correspondence, because it is not enough to

Fig. 20 Example scenarios of vehicles accelerating from rest, making
turns, and decelerating and stopping

enumerate and retain the correct global hypothesis. It also
needs to rank high among the list of possible hypotheses.

Tracking in traffic jams and parking lots The constant accel-
eration motion is greatly helpful in handling move-stop-move
scenarios, e.g., in traffic jam scenarios. Tens of examples of
almost complete stopping scenarios are shown in the videos
uploaded as supplemental material, e.g., in the uploaded
video “Sequence1.avi”. It should be noted that the videos
are being played at 10 fps, which is actually five times the
real time speed, since CLIF data is recorded at about 2 fps.
Therefore the duration of deceleration and stopping scenarios
is longer than it seems.

The scenario where a moving vehicle eventually comes
to a halt, e.g., traffic light, is also handled adequately well,
again owing to the constant acceleration model, along with
hypothetical detection insertion at predicted locations. The
maximum number of consecutive hypothetical detections is
however restricted, therefore vehicles stopping for longer
durations of time are not reacquired. This scenario is actually
difficult to observe or test in CLIF imagery since the platform
motion precludes persistent observation for long enough peri-
ods of time. We do however observe some cases where vehi-
cles initially at rest start moving, e.g., from a parking lot, and
enter the road, etc. These scenarios are especially difficult
to handle because the vehicles move at very low speeds and
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Fig. 21 Tracks obtained by the proposed method shown as sequences
of same color squares, for three small regions of sequence 2. Notice that
tracks are obtained even for vehicles undergoing very long occlusions

when driving under the horizontal highway (left and middle regions).
All tracks generated for the sequence are not plotted for clarity (Color
figure online)

frequently decelerate or stop before making turns or while
waiting to join traffic on the street. Two examples of these
cases are shown in Fig. 20.

The case of non-moving vehicles, e.g., parked vehicles,
cannot be handled by our method, since the object detection
output as well as detection confidence is based on motion
(frame difference). Very accurate and computationally effi-
cient vehicle detection algorithms applicable to single images
will be required in this case.

Track merging due to detection sharing We also quanti-
fied the frequency of occurrence of track merging. For the

ground-truthed tracks, the percentage of occurrence of merg-
ing, averaged over all 241 objects was 0.83 % (2 out of 241
objects). In the first case, the second candidate for the second
track was chosen, and was mostly correct. In the second case,
the third candidate for the second track was chosen, because
both of the first two candidates merged with the optimal can-
didate of the first track. This selection process is completely
automated, and free of any parameters or thresholds. For all
objects detected and tracked in the four selected sequences,
the percentage was slightly higher at 1.79 %. These num-
bers give a coarse estimate of how infrequent eventual track
merging is.
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Fig. 22 A few example tracks obtained in Sequence # 3. Each image shows track of only one object as a sequence of red rectangles. See
supplemental material for video (Color figure online)

Finally, to give a bird’s eye view of the spatial extent of the
scene under consideration, the density of traffic, the variabil-
ity in object motion, and the duration of object persistence,
some of the tracks obtained for two sequences are shown in
Figs. 21 and 22.

8 Conclusion

One drawback of the approach is the absence of an explicit
1–1 matching constraint. While we argue that many–many
matching provides distinct advantages, the permission of
detection sharing sometimes has unexpected consequences.
For example, measurement waste is not explicitly forbidden.
In other words, some particular candidates of two distinct
tracks can start tracking the same object early on during
the process, which makes their probabilities from all cues
essentially very similar. Even though the track intersection
and merging cue kicks in in such scenarios, and the adverse
effects were observed to be minimum and rare, the best can-
didates in distinct tracks having similar probabilities means
they will reduce each other’s influence by similar amounts.
Sometimes this problem may result in duplicate tracks and
detection wastage. Such cases are handled during final selec-
tion of best candidate.

We also observe that for object-centric hypotheses adverse
effects of detection sharing are significantly mitigated due to
discouragement of track intersection. One of the directions
for future research is to devise an optimal association algo-
rithm that explicitly prohibits intersection.

In conclusion, we have presented novel methods of motion
detection and MTT of large number of objects in low frame
rate, high altitude aerial sequences. Our approach is general
and can be applied to any scenario requiring object detection
and MTT, which has been validated from experiments on

the most challenging aerial surveillance data set available.
Our work provides an alternative to global cost minimization
frameworks, and is also novel in terms of difficulty of the data
set used which is one of the very few publicly available wide
area aerial surveillance sequences.
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