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ABSTRACT

This paper introduces a hierarchical algorithm for the registration
of corresponding images that do not necessarily have strong global
similarity, such as multi-modal images, images with varying illu-
mination (or specular reflection) and images with significant local
motion. The method is based on the global maximization of an
average local correlation measure, without the generation of sim-
ilarity surfaces. Fisher’s Z-Transformation is used to rectify the
correlation coefficient to ensure that additivity between correlation
samples is strictly accurate. As a result, the proposed method can
handle sizable misalignments in rotations, scale and shear. Direct
error functions are also robustified to optimize alignment in the
presence of outliers. The result is a completely autonomous sys-
tem that recovers the global transformation between two images
despite substantial visual differences, including contrast reversals,
local motion and disjoint image features. The algorithm was suc-
cessfully tested with a wide variety of images, particularly where
conventional frame-to-frame alignment algorithms had failed.

1. INTRODUCTION

When two different sensors observe the same scene, dissimilarities
are quite likely to arise between the images captured. Depending
on the degree of difference between the sensors, the dissimilari-
ties may be negligible other than a spatial transformation, as in
the case of human stereo vision, or they may be pronounced, as
in the case of multi-modal measurements. A specific example can
be observed in Infrared and Electro-Optical images, where mea-
surements operate in different wavelength bands, and as a result
features detected in one sensor image may be absent in the other
(disjoint features). Dissimilarity is also often observed in images
taken of the same scene after a large interval of time. An example
of this occurs in the geo-registration of aerial video images with
previously recorded reference imagery. In such a case, artifacts
that change or are absent may exacerbate dissimilarity already ex-
istent due to photometric differences. Even within frame-to-frame
alignment of images acquired by the same sensor, the presence of
local motion or specular reflection can cause dissimilarity between
two consecutive frames. Of course, dissimilarity may distort the
image beyond recognition, but the premise of aligning two dissim-
ilar images in this paper is that enough correlation exists between
the two images, locallyor globally, to allow alignment between
them. Aligning images in the presence of local motion and/or illu-
mination variations has been recognized as an important problem
in computer vision research and while algorithms have been de-
veloped to robustly align two similar images, existing approaches
fail in aligning two images thus defined to be dissimilar. These

algorithms usually make assumptions of brightness constancy or
of strong global similarity - assumptions often severely violated
in the situations already described. The global relationship be-
tween intensity values of corresponding pixels of two dissimilar
images is usually complex and may even be non-existent, caused
by phenomena such as local contrast reversal, disjoint features or
multiple-intensity to single-intensity projection. Evidently, meth-
ods are needed that rely on a ‘stronger’ similarity metric, and that
have an effective means of suppressing dissimilarities and em-
phasizing similarities. Furthermore, handling outliers is a central
problem in such matching. Aligning despite local motion, in par-
ticular, can be thought of simply as a problem of handling outliers
robustly. Since locally moving objects can be considered as a set
of pixels with outlier motion, if outliers are handled appropriately,
images can be aligned despite local motion. Thus, the challenges
for aligning dissimilar images can be summarized as being three-
fold: (1) finding effective measures of similarity, (2) using a rep-
resentation that suppresses dissimilarities and emphasizes similar-
ities, and (3) employing an effective method for handling outliers.
We formulate the problem as follows: For each imageI1 there are
allowable transformsT (x;~a), where~a denotes the model param-
eters of global motion andx = (x, y) are the pixel coordinate of
the image. Parametric alignment is a search over the transforma-
tion parameters,~a, that maximizes some global measure of ‘fit’ or
similarity, S, between the source image,I1, and the goal image,
I2,

max S(I1(x), I2(T (x;~a))). (1)

The remainder of the paper is structured as follows: Section
2 provides a brief examination of previous work and an overview
of the proposed approach, Section 3 discusses an appropriate rep-
resentation of images and reviews various models of transforma-
tions that can be used with the proposed algorithm. In Section 4,
measures of similarity are discussed and compared briefly, and the
choice of normalized cross correlation as a similarity metric is jus-
tified. The algorithm itself is outlined in Section 5, followed by
results and the conclusion in Sections 6.

2. PREVIOUS WORK

Previous work may be broadly categorized into three approaches.
The first approach handles violations to the brightness constancy
through image preprocessing techniques, such as band-pass filter-
ing or contrast gain normalization. Unfortunately, these techniques
account forspecifictypes of brightness constancy violations and
are unable to handle complex (and unmodelled) violations. The
second approach models such violations as statistical outliers, [4],
[3], [19]. However, such approaches assume strong global statis-



tical similarity, and as a result are unable to address local dissimi-
larities like local contrast reversal and/or disjoint features, within a
single framework. The third approach explicitly maximizes mea-
sures of similarity to estimate motion. In [10] an iterative algo-
rithm is presented that uses normalized cross correlation locally
on an invariant representation, generating similarity surfaces by
translating a template around a radius and then searching over the
sum of the similarity surfaces for the optimal parametric transfor-
mation. There are two limitations of this approach. First, the use
of such similarity surfaces impedes the alignment of strong rota-
tions or of projective foreshortening, since the translated template
can only approximate small scaling and rotations as progressive
translations. Second, similarity surface values (normalized cross
correlation scores), are summed directly. Since the value of the
correlation coefficient is not a linear function of the relationship
between the images [23], it is misleading to directly sum corre-
lation coefficients. In cases where an average or sum of correla-
tions is required: a conversion into additive measures has to be
performed. This will be explored in depth in Section 4. Other
approaches address the problem by maximization of mutual infor-
mation [22], an invariant similarity measure. Since this method
presumes global statistical similarity between the two images, it is
liable to fail where global similarity cannot be assumed. Further-
more, these methods cannot be executed in a coarse-to-fine man-
ner and it is therefore difficult to come up with an efficient search
strategy.

We propose an algorithm that uses local similarity measures,
and utilizes them to directly estimateglobal similarity. However,
since we do not generate similarity surfaces, our method can re-
cover larger rotation, shear and scaling and does not degenerate
when higher order parametric models of motion are used. Fur-
thermore, we correct the correlation coefficients to validate their
addition by the use of Fisher’s Z-transform. Finally, we robustify
the constructed error function, to allow optimal registration in the
presence of outliers caused by dissimilarity in data.

3. REPRESENTATION AND MODELS

When working with dissimilar images taken from different modal-
ities particularly, (e.g. Infra-Red (IR) images with Electro-Optical
(EO) images), it is necessary to represent the images in a fashion
that suppresses individual information and emphasizes joint infor-
mation. Multi-sensor image pairs are correlated predominantly at
higher spatial frequency [10], where thestructureof a scene is cap-
tured. There is both biological and computational support for the
use of a bank of oriented bandpass filters to extract such structural
information ([6], [15]). To capture the structural information we
employ a log-Gabor pyramid oriented in four directions. In order
to make the representation invariant to contrast reversal, we take
the absolute values of the log-Gabor response. Such a represen-
tation has the advantage of preserving directional and structural
information, while remaining non-sparse. In theory any bank of
oriented bandpass filters could be used, like a Laplacian Energy
Pyramid (as in [10]), but it was empirically found that the Log-
Gabor pyramid best emphasized the coherent structural informa-
tion.

3.1. Models of Transformation

When the displacement between an image pair is small relative to
the displacement from the scene or the optical center is station-

ary, an assumption of scene planarity holds for the situation. In
such cases, where a plane can approximate the scene, a parametric
transformation can model the displacement field(u, v) between
two images. A taxonomy of motion models in general can be
found in [2] and a detailed classification of linear and non-linear
parametric transformation models can be found in [16]. The al-
gorithm proposed in this paper can be applied to all the speci-
fied parametric motion models. Two frequently used models are
the affine and projective models. The allowed set of transforms
T (x;~a) can be used to recover mapping for each coordinate,

T (x;~a) =

[
x + u(x, y)
y + v(x, y)

]
(2)

whereu andv are the optical flow vectors at each pixel coordinate.
For the use of a linear transformation model, affine transformation
can be estimated as

u(x, y) = a1x + a2y + a3

v(x, y) = a4x + a5y + a6,
(3)

in terms of the six affine parameters~a, [a1 a2 a3 a4 a5 a6]. For
the general projective transformation between images, the optical
flow vectors are expressed as

u(x, y) = a1x+a2y+a3
a7x+a8y+1

v(x, y) = a4x+a5y+a6
a7x+a8y+1

,
(4)

where~a, [a1 a2 a3 a4 a5 a6 a7 a8] are the eight projective
parameters. Since the proposed algorithm does not generate sim-
ilarity surfaces based on translating a template, transformations
involving rotation, scaling and shear do not cause degeneracy in
alignment, and as a result any linear or non-linear parametric trans-
formation can be applied in general. The algorithm has been im-
plemented with both affine and projective models.

4. MEASURING SIMILARITY

The correlation between two variables represents the degree to
which signals are related. As the problem was formulated, align-
ment is to be achieved by transforming the source image in such a
way that a measure of similarity between the two images is maxi-
mized. A conventional measure of similarity between images is the
sum of squared differences (SSD), however similarity measures
based on SSD do not consider linear relationships between two
images. Since photometric differences can induce large changes
in illumination, it is imperative to use a measure of similarity that
doestake linear relationships into account. Although the algorithm
presented here is not strictly dependent on any single similarity
measure within the framework, Normalized Cross Correlation is
our metric of choice since it inherently detects linear relationships.
For any pair of imagesI2(x) andI1(x), the correlation coefficient
rij between two patches centered at location(xi, yj) is defined as

rij =

∑
wx

∑
wy

(φ2)(φ1)√∑
wx

∑
wy

(φ2)2
∑

wx

∑
wy

(φ1)2
(5)

where

φ1 = I1(x + [wx wy]T )− µ1 (6)

φ2 = I2(x + [wx wy]T )− µ2 (7)



andwx andwy are the dimensions of the local patch around(xi, yj),
andµ1 andµ2 are the patch sample means. Correlation is mea-
sured locally between patches around each pair of corresponding
pixels, and this local correlation is then summed to get aglobal
estimate of similarity. However, before such an addition is per-
formed, Normalized Cross Correlation has to be converted into an
additivemeasure. Additivity implies that the average of similarity
coefficients in a number of samples represents an ‘average corre-
lation’ in all those samples. This condition has two consequences.
First, that the similarity magnitude rather than the similarity mea-
sure is used (hence avoiding a cancelling effect on summation of
negative and positive measures), and second, that the similarity
measureshould vary linearly with the magnitude of correlation.
This requirement is often ignored while summing correlation mea-
sures, resulting in inaccurate assessments of average similarity.

4.1. Fisher’s Z-Transform

The Normalized Cross Correlation coefficient is not a linear func-
tion of the relational magnitude between the images [23], and as
a result, correlation coefficients cannot simply be averaged. As a
statistic,r has a sampling distribution. (Ifn sample pairs from two
signals were correlated over and over again the resulting distribu-
tion of r scores would form a sampling distribution.) This distri-
bution has a negative skew, which is the sampling distribution of
r. It can be observed that although no value ofr ever exceeds1.0,
there is a bias towards lower values ofr. A transformation called
Fisher’s Z-transformation convertsr to a value that is normally
distributed and is defined as

zij =
1

2
(ln(1 + |rij |)− ln(1− |rij |)). (8)

As a result of having a normally distributed sampling distribution,
there is an equal probability of detecting any correlation score and
hence they can be meaningfully added.

4.2. Robust Estimation of Similarity

Disjoint features, local motion and photometric ambiguity may all
contribute to causing outliers. It is, therefore, important to have
mechanisms that ensure robustness in the presence of outliers. To
that end we incorporate an M-estimator into our framework. An
M-estimator minimizes an expression of the form

∑
i

ρ(fi(xi, ~θ); σ), (9)

where~θ are the parameters of the model being fit (in our case the
transformation model parameters,~a), andfi is the residual error
of the model on theith data point (in our case the corrected cor-
relation coefficient,zij). Manyρ functions have been used for M-
estimation, such as the Geman-McLure function [19], the Sigmoid
function or the Sum of Absolute Difference. Through experimen-
tation we found that a sigmoid based estimation function produced
the most desirable results and consequently incorporated it into our
framework. The sigmoid function is

ρ(z) =
1

1 + exp(− z
c
)

(10)

wherec is parameter controlling the sensitivity noise. We can thus
define a final robust similarity measure in terms of the correlation

coefficient as

η(xi;~a) =
1

1 + (
1−|rij |
1+|rij | )

c
2

. (11)

5. ALIGNING THE IMAGES

For successive images acquired by a single camera, the photomet-
ric transformation is usually negligible, but for dissimilar images,
particularly those captured by multi-modal sensors, this relation-
ship is often complex and unmodelled. As a result, the two images
are not often globally correlated. Even statistical correlation may
not be distinctively strong between two such images. However, lo-
cally, within small patches containing corresponding information,
statistical correlation is observed to be significantly higher, and
as a result local similarity measures are powerful cues to estimate
global alignment between dissimilar images. In this work, a mea-
sure of global similarity is estimated based on an average of local
similarities, which is then maximized using numerical optimiza-
tion.

5.1. Global Similarity Estimation

To utilize the strengths of any arbitrary similarity measure within
the framework of direct registration, a global function of error is
defined at each pixel(xi, yj) over a local neighborhood. The coef-
ficient defined in (11) is used as the similarity measure with a pro-
jective transformation model, though extension to different models
and different similarity measures is straightforward. It should be
noted that correlation surfaces arenot being calculated here. At
every pixel(xi, yj), a similarity score,η(xi;~a) is calculated be-
tween two patches of sizewx×wy centered around(xi, yj). Since
the similarity score is additive, the global similarity measureH(~a)
is then defined summing for all(i, j) as

H(~a) =
∑

i

η(xi;~a) (12)

This function is then maximized over the parameters of transfor-
mation using Quasi-Newton Optimization. This algorithm iter-
atively builds up curvature information to formulate a quadratic
model problem. Gradient information is required, which is pro-
vided using numerical differentiation methods (finite differences).
Finite differences involve perturbing each of the projective param-
eters, and calculating the rate of change of the objective function.
In order to capture large motions efficiently and to counter the ef-
fects of local minima, the algorithm was implemented in a hier-
archical fashion over a Gaussian pyramid. Typically, three major
iterations are performed at each level of a four level pyramid. The
steps of the algorithm may be summarized as follows:

1. For each coordinate position(i, j) calculate the local sim-
ilarity η(xi;~a) between the two5 × 5 cell aroundI1(x)
andI2(T (xi;~a)) using normalized cross correlation. Sum
η(xi;~a) for all (i, j) to evaluate the global measure of sim-
ilarity.

2. Calculateδ~a, the update for~a, using Quasi-Newton Maxi-
mization of the objective function,H(~a).

3. Update~a′ = δ~a · ~a. Return to step one and repeat until exit
condition is fulfilled.



Fig. 1. Registered Aerial Image (a) Aerial Video Frame (b)
Perspective-Projection of Area Reference Image (misaligned due
to noisy meta data) (c) Striped display before alignment (d) Check-
ered Display after alignment

Since setting an error condition on the basis of error tolerance
depends on the degree of dissimilarity between two images, in-
stead we can set an upper limit on the number of function evalu-
ations or whether the magnitude ofδ~a is below a threshold as an
exit condition.

6. RESULTS AND CONCLUSION

The proposed algorithm was tested on a diverse set of images,
since dissimilarity may manifest itself in a variety of ways. The
context of the first set of experimentation was the alignment of
aerial video images with a reference image (perspectively pro-
jected using noisy meta-data). Since there is a sizable lapse in
time between the capture of the two images, and due to the in-
trinsic differences in the sensors, there are large visual differences
between the two images, including contrast reversal and disjoint
features. Despite the substantial illumination change to the ex-
tent of contrast reversal, examination of the results shows a precise
pixel-wise alignment. Quantitative analysis was carried out on two
aerial video clips. On the first clip, a pre-registration average er-
ror of 47.68 pixels with a standard deviation of12.47 and a post-
registration average error of4.34 pixels and standard deviation of
3.19 per frame was recorded. On the second clip, a pre-registration
error of51.43 pixels with a standard deviation of14.66 and a post-
registration average error of3.46 pixels and a standard deviation
of 2.91 was recorded. As ground truth was not available to as-
sess the error automatically, manual measurement was performed
per frame. Figure 1 and Figure 2 show an example of the initial
Video Frame and Reference Imagery before and after registration.
In Figure 1, significant rotation was compensated for despite the
degree of visual difference. Results are far more dramatic when
seen dynamically overlaid.

The second set of experimentation tackled was the alignment
of multi-modal images. The successful registration of IR images
with EO images shown in Figure 3. In this type of imagery con-

Fig. 2. Registered Aerial Image (a) Aerial Video Frame (b)
Perspective-Projection of Area Reference Image (misaligned due
to noisy meta data) (c) Striped display before alignment (d) Check-
ered Display after alignment.

trast reversal and disjoint features are quite common. This data
set tested the algorithm’s capability of handling contrast reversals,
and outliers caused by the disjoint features. Notice that a large
translation and scaling was recovered successfully. Fig 4 are also
shown for the registration of a CT-Slice with an MR-Slice Image.
A rotation of almost40◦ was compensated for.

The third set of experimentation involved testing the method
for alignment despite local motion. Figure 5 shows a pair of mo-
saics constructed despite large local motion in an opposite direc-
tion to the ego-motion of the camera. Alignment for the sequence
failed using the frame-to-frame alignment algorithm of [16].

The method was tested successfully for two different motion
models (affine and projective) and tested with normalized cross
correlation as a measure of similarity. A high degree of accuracy
was observed, despite the challenging and diverse data-set. As an
implementation detail, it should be noted that while using Normal-
ized Cross Correlation a special case needs to be handled: uniform
patches, where all pixels have equal intensity. Since such patches
contain no information and cause a divide-by-zero error: the simi-
larity measure for such a case is treated as nil.

In conclusion, an algorithm has been proposed that aligns two
images despite visual dissimilarities that may exist between them.
In the absence of strong global similarity, an average of local sim-
ilarity is maximized using normalized cross correlation to recover
alignment parameters. The notion of considering pixel identities
rather than pixel intensities allows direct alignment despite outlier-
inducing characteristics like disjoint information, local motion, and
photometric distortion etc. Future direction of this work includes
the use of multi-frame information to improve similarity measure-
ments.
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