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Recovering 3D Motion of Multiple Objects
Using Adaptive Hough Transform

Tina Yu Tian and Mubarak Shah, Member, IEEE

Abstract —We present a method to determine 3D motion and structure
of multiple objects from two perspective views, using adaptive Hough
transform. In our method, segmentation is determined based on a 3D
rigidity constraint. Instead of searching candidate solutions over the
entire five-dimensional translation and rotation parameter space, we
only examine the two-dimensional translation space. We divide the
input image into overlapping patches, and, for each sample of the
translation space, we compute the rotation parameters of patches
using least-squares fit. Every patch votes for a sample in the five-
dimensional parameter space. For a patch containing multiple motions,
we use a redescending M-estimator to compute rotation parameters of
a dominant motion within the patch. To reduce computational and
storage burdens of standard multidimensional Hough transform, we
use adaptive Hough transform to iteratively refine the relevant
parameter space in a “coarse-to-fine” fashion. Our method can robustly
recover 3D motion parameters, reject outliers of the flow estimates,
and deal with multiple moving objects present in the scene.
Applications of the proposed method to both synthetic and real image
sequences are demonstrated with promising results.

Index Terms —Multiple-motion analysis, segmentation, structure-from-
motion, robust estimation, adaptive Hough transform.

————————   ✦   ————————

1 INTRODUCTION

MOTION in an image sequence can be produced by a camera
moving in an environment and/or several independently moving
objects. The interpretation of motion information consists of seg-
menting multiple moving objects and recovering 3D motion pa-
rameters and structure for each object. A lot of effort has been
devoted to the egomotion recovery problem, in which scenes of a
static environment taken by a moving camera are analyzed. When
several independently moving objects are present in the scene, the
complete 3D motion estimation is difficult, since each moving
object occupies a small field of view. A robust method for motion
recovery, i.e., a method insensitive to image motion measurement
noise and small field of view, is required to solve this problem.

The most common approach for motion analysis has two
phases: computation of the optical flow field and interpretation of
this flow field. For multiple-motion analysis, the essential part is
segmentation of independently moving objects. One approach to
segmentation is to detect motion boundaries by applying edge
detectors to optical flow field (e.g., [18]). However, the optical flow
at each pixel depends not only on 3D motion parameters but on
corresponding depth, thus, segmentation by applying only edge-
detection techniques to the flow field cannot distinguish between
real motion boundaries and depth discontinuities. Another ap-
proach for segmenting multiple moving objects is based on the set
of coherent 2D motion parameters, independent of depth values.
This approach [2], [4], [12], [22] exploits 2D parametric motion
approximations, such as affine transformation and projective
transformation. However, affine transformation is not always
valid when the moving object is relatively large and close to the

camera. Projective transformation [1] is based on the assumption
that the entire scene consists of piecewise planar surfaces, which is
not always true. These parametric models ignore the higher-order
optical flow information, and thus may yield incorrect motion
segmentation (e.g., over-segmentation). Moreover, using a 2D
motion model to segment a 3D scene might lead to ambiguities.

In this work, we attempt to solve the problem of 3D motion re-
covery given two perspective views for an arbitrary scene which
may contain several moving objects with possible camera motion.
The work described here has the following characteristics:

• No assumption about the scene (e.g., piecewise planar sur-
face, known depth, etc.) or type of motion has been made.

• Since 3D segmentation is preferable to 2D segmentation, in
general, segmentation in this work is determined based on a
3D rigidity constraint.

• Instead of searching the candidate solutions over the entire
five-dimensional translation and rotation parameter space,
only the two-dimensional translation space is examined.
The input image is divided into overlapping patches, and,
for each sample of the translation space, the rotation pa-
rameters of patches are computed by using least-squares fit.
Every patch votes for a sample in the five-dimensional pa-
rameter space.

• For an image patch containing multiple motions, a re-
descending M-estimator is used to compute rotation pa-
rameters of a dominant motion within the patch. The M-
estimation problem is solved using an iterative weighted
least-squares method.

• To reduce computational and storage burdens of standard
multidimensional Hough transform, adaptive Hough trans-
form is applied to iteratively refine the relevant parameter
space in a “coarse-to-fine” fashion.

• The method robustly rejects outliers of optical flow esti-
mates by applying a global Hough transform and a robust
estimation technique.

• The method can perform the complete 3D motion recovery
when multiple moving objects are present in the scene.

In the next section, we review some previous work on 3D motion
segmentation. In Section 3, we present a method for motion estima-
tion using the Hough transform. In Section 4, we describe a robust
motion estimation method for multiple objects. Next, we present an
algorithm using Adaptive Hough transform. In Section 6, we dem-
onstrate the proposed method on both synthetic and real images.
Finally, in Section 7, we conclude and discuss limitations.

2 PREVIOUS WORK

The previous work on 3D motion segmentation is divided into
the methods assuming orthographic projection and perspective
projection.

2.1 Orthographic Projection
Thompson et al. [17] combined an orthographic structure-from-
motion algorithm and a least median squares (LMedS) method to
solve for the relative motion of camera and background, rejecting
outliers corresponding to moving objects. Since LMedS regression
assumes that at least half of the data points are inliers, this scheme
cannot be applied to any scene containing more than two moving
objects. Tomasi and Kanade [20] proposed that, under ortho-
graphic projection, the measurement matrix, W, of feature trajecto-
ries can be factored into motion matrix and shape matrix, V, using
singular value decomposition. Under this framework, Gear [7],
and Costeira and Kanade [6] developed the segmentation meth-
ods. Each column of W represents a single feature point tracked
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over M frames. The set of feature points associated with a single
object lies in a four- (or less) dimensional subspace of the 2M-d
space of column vectors. Thus, the task of segmentation becomes
identifying these subspaces and the column vectors that lie in
them. This corresponds to finding reduced row echelon form of W,
by applying Gauss-Jordan elimination to the rows of W with par-
tial pivoting, or QR reduction with column pivoting [7]. In [6], a
“shape interaction matrix,” Q, is constructed as VVT. The element

of Q, Qij, is zero only when feature trajectories i and j belong to
different objects. Thus, segmentation is performed by putting Q in
the block-diagonal form, where each block represents a moving
object.

2.2 Perspective Projection
Torr and Murray [21] proposed a stochastic approach to segmen-
tation using Fundamental Matrix (F) encapsulating the epipolar
constraint. The method begins with generating hypothetical clus-
ters by randomly sampling a subset of feature-correspondences
and using them to calculate a solution, F. All feature-pairs consis-
tent with the solution are included in the cluster by a t-test. Solu-
tions are then pruned or merged. Finally, using an integer pro-
gramming technique, the clusters are partitioned to form a seg-
mentation. MacLean et al. [16] used mixture models to model
multiple motion processes and applied EM algorithm to segmen-
tation from linear constraints on 3D translation and bilinear con-
straints on 3D translation and rotation [13]. The results of cluster-
ing from the linear constraints are then used as an initial guess for
parameter fitting using bilinear constraints. It is difficult to deter-
mine the number of clusters and the initial parameters for the EM
algorithm. Thus, in our work, we determine the dominant object
first, eliminate the object from subsequent analysis, and then re-
peat the same process on the remaining regions to find other ob-
jects. No prior knowledge of number of clusters and initial esti-
mates is required.

Some researchers [3], [1], [5] suggested applying the Hough
transform to motion estimation and segmentation. The advantages
of the Hough transform are that it is relatively insensitive to noise
and more robust, being a global approach, and the multiple local
maxima in the parameter space naturally correspond to independ-
ently moving objects. In Ballard and Kimball’s method [3], the 5D
parameter space of translations and rotations is sampled, and each
optical flow vector votes for all the consistent solution tuples. The
tuples which receive maximal votes are taken as solutions. The
method requires searching the candidate solutions over the entire
five-dimensional parameter space, and also requires known depth.
Using Hough transform on affine model, Adiv [1] identified re-
gions in the image where optical flow is consistent with the
movement of a planar surface. Then, he grouped these regions
according to the consistency for various 3D motions. In general, a
method not requiring planar surfaces is more useful. Bober and
Kittler [5] exploited Hough transform and robust estimation to
estimate optical flow and segment flow field based on an affine
model. In our approach, we search only two-dimensional transla-
tion space, and extend adaptive Hough transform to compute 3D
motion of multiple objects.

3 MOTION ESTIMATION USING HOUGH TRANSFORM

In this section, we describe a technique for computing 3D relative
motion for each moving object given an optical flow field. Since
we allow both camera and object motion, the effective motion for
each object is the relative motion between the camera and the
moving object.

Let P = (X, Y, Z) denote a scene point in a camera-centered co-
ordinate system, and let (x, y) denote the corresponding image
coordinates. The image plane is located at Z = f (the focal length).

Under perspective projection point P = (X, Y, Z)t projects to p =
(x, y)t in the image plane,

x f
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The scene point P moves relative to camera with translation T =
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t and rotation : = (:x, :y, :z)

t. We assume that T � 0,
otherwise, depth Z cannot be determined. The relative motion of P
can be expressed as
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Since depth, Z, and translation, T, can be determined only up to
a scale factor, we only solve for the translation direction and rela-
tive depth. Let the scale factor s = iTi, speed. Consequently, we
now let T denote a unit vector for translation direction and let Zs
denote the relative depth, Z/s. Unit vector T can be represented by
spherical coordinates in terms of slant, T, and tilt, I: (sin T cos I,
sin T sin I, cos T)t. Only half of the sphere must be considered,
since solutions on the front and back halves are the same. Conse-
quently, T varies from 0o to 90o, and I varies from 0o to 360o. There
are five unknowns (T, I, :x, :y, :z) associated with each moving
object, and one unknown (Zs) associated with each image point.
We can eliminate depth Z from (3 and obtain:

c(T): = q(T), (4)

where

c(T) = [fTzx + Tyxy ��Tx(f2 + y2), fTzy + Txxy � Ty(f2 + x2), fTxx +

             fTyy ��(x2 + y2)Tz],

q(T) = �fTxv + fTyu + Tz(xv � yu).

We collect N equations of (4) into the matrix form:

C(T): = q(T), (4)

where
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At least three image points are needed to solve for the rotation
parameters in :. We compute a least-squares estimate of rotation
for a fixed choice of T:

:�= (C(T)tC(T))�1C(T)tq.      (6)

In order to deal with multiple moving objects, we partition the
entire image into patches. Within each patch, we compute a least-
squares estimate of the rotation (6) for a given sample of T, and
count the corresponding vote for a sample in the five-dimensional
parameter space. Within the framework of the standard Hough
transform, instead of evaluating the entire five-dimensional pa-
rameter space, we only examine the two-dimensional translational
parameter space from which we compute the corresponding opti-
mal solution for three rotation parameters.

In a scene containing multiple moving objects, some image
patches contain multiple motions. When estimating 3D motion pa-
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rameters, the larger the field of view, the more accurate the esti-
mates. The larger patches are, therefore, less sensitive to noise, but
more likely to contain multiple motions (in our experiments, we
used 35 � 35 patches). The least-squares estimation is computation-
ally efficient, but not robust, particularly for multiple motions.

4 ROBUST MOTION ESTIMATION OF MULTIPLE
OBJECTS

In this section, we present a robust method for multiple motion
estimation. Multiple motions within a patch can be treated as out-
liers with respect to a dominant motion. M-estimators are able to
handle outliers and Gaussian noise in optical flow measurements
simultaneously, so, we use a redescending M-estimator in our
scheme. For a fixed T, the rotation estimate of a dominant motion
within a patch is estimated using an M-estimator; the other minor
motions are rejected as outliers.

The M-estimators minimize the sum of a symmetric, positive-

definite function U(ri) of the residuals ri, with a unique minimum

at ri =  0.�U functions have been designed to reduce the influence of
the large residual values of the estimated fit. The influence func-

tion, \, is defined as the derivative of U, y
r

( )
( )

ri
d ri

dri
= . When the

residuals are large, the \ increases with deviation, then starts de-
creasing to zero, so that very deviant points—the true outliers—
are not used in the estimation of the parameters. There are several
possible choices for U function listed in [8]. In problems of nonlin-
ear model fitting (e.g., [4]), where initial estimates are not avail-
able, M-estimators (e.g., Lorentzian estimator) can be desirable,
whose influence functions are continuous and “redescend” to
nearly zero outside the central region, while all data points affect
the estimation. But M-estimators (e.g., Beaton and Tukey’s esti-
mator), whose influence functions beyond a certain threshold re-
duce to zero, are inappropriate for the problems requiring initial
estimates. In our problem, however, since we fit a linear model (4),
which does not require initial estimates, both of the above M-
estimators methods are applicable. In our implementation, Beaton
and Tukey’s biweight function is used:
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where r is residual, and CB is a turning constant. Holland and
Welsch [10] recommended CB = 4.685 to achieve superior perform-
ance for Gaussian noise. Since we are dealing with the patch which
may contain multiple motions, a smaller turning constant should
be used.

M-estimation problems are usually solved using an iterative
weighted least-squares method [10], in which a weight is computed
for each data point based on the residual error of the previous esti-
mate. Initially, the weights are all one. After the vector : (denoted
by $W0 ) is computed with the contribution of all data points in the
patch, the weights are updated according to the following:
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The vector : is refined through iterations:
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where < > denotes an N � N diagonal matrix, and V is a scale pa-
rameter which can be estimated by

V = 1.4826 med |ri � med ri |,         (8)

where i denotes feature i and med denotes the median taken over
the entire patch, V � 0.

However, M-estimators can only allow at most 1/(m + 1) of
contamination for the data, where m is the number of parameters
in the least-squares estimation. To reduce this effect, we use the
scheme of dividing image into overlapping patches. We use the
following measure to determine the convergence of the algorithm:
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where l denotes the iteration number, and n denotes the number of
nonzero weights corresponding to the number of inliers, which
contribute to the robust estimate.

5 ADAPTIVE HOUGH TRANSFORM

The Hough transform involves representing the continuous pa-
rameter space by an appropriately quantized discrete space. The
fineness of quantization is crucial to the accuracy in the determi-
nation of parameters. It also requires the identification of signifi-
cant local maxima in the number of votes within the accumulator
array. Using a large accumulator array is not practical in many
respects. In our problem, if translation parameter ranges are
quantized to 0.5o per interval and each rotation parameter range of
(�6o, 6o) is quantized to 0.1o per interval, O(1011) (720 � 180 � 120 �
120 � 120) elements are required for storage. A large accumulator
array also requires large computations, since it requires that many
parameter cells have to be tested, and this huge array has to be
searched to locate local maxima. Even searching for the 2D trans-
lation parameters would require testing O(105) cells. In this sec-
tion, we describe the technique to reduce these computational and
storage burdens by using Adaptive Hough transform (AHT). We
extended the original AHT proposed by Illingworth and Kittler
[11] to deal with this particular five-dimensional parameter space.

The AHT uses a small accumulator array and iterative “coarse-
to-fine” accumulation and search strategy to identify significant
peaks in Hough parameter space. The technique begins with the
coarsest quantization of the original parameter range, accumulates
the HT in a small size accumulator array, and uses this informa-
tion to refine the parameter range so that interesting areas can be
investigated in greater detail through the finer quantization. The
process continues until parameters are determined to a pre-
specified accuracy. The located parameters are used to identify the
object moving with these motion parameters. Then, a search for
another object is initialized at the coarsest resolution in the re-
maining image regions. Images containing multiple objects can,
therefore, be processed until the parameter space contains no sig-
nificant structure.

In this work, we chose a 9 � 9 � 9 � 9 � 9 accumulator array to
provide enough samples of parameter space and also to keep the
accumulator array as small as possible. Adaptively searching for
the 2D translation parameters requires testing O(102) cells. The
crucial part is to reset the parameter range in the vicinity of sig-
nificant peaks for the next iteration. The detection of significant
maxima can be achieved using a scheme which binarizes the ac-
cumulator array and labels connected components in this binary
array. Since it is difficult to sequentially compute connected com-
ponents in 5D space, we chose to compute only the connected
components in the corresponding 2D translational accumulator
array. To redefine the translation range, we first combined the votes
from rotation space corresponding to each translation sample, and
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then used a connected component algorithm [14] to determine the
parameter range which produces maximal votes. The actual
translation parameters must exist within this range. The criteria
used to identify the best peak from the set of connected compo-
nents is the density of the connected component, i.e., number of
votes/number of bins in the 5D accumulator array. The parameter
range is adjusted according to the location and extent of the best
peak. Once the translation parameter range is redefined, the rota-
tion parameter range is also adjusted to a new extent at a finer
resolution, corresponding to the new translation range. This proc-
ess is repeated until the adjusted translation parameter ranges are
very small. Then, the sample point in the current 5D parameter
space having the maximal vote determines the motion parameters.
The 3D rigidity constraint contained in (4) is used to identify the
image points which belong to the corresponding moving object.

6 EXPERIMENTAL RESULTS

This section describes experiments using synthetic images and real
images. In practice, optical flow cannot be reliably computed for
each pixel of the entire image due to the noise in the image and the
“aperture problem.” Thus, we only rely on the optical flow in the
textured regions. We measured the flow field using Tomasi and
Kanade’s algorithm [19]. In our experiments, entire images were
divided into overlapped patches of 35 � 35 to provide a relatively
large field of view for motion estimation within each patch.

6.1 Synthetic Images
Fig. 1a shows a frame of a computer graphics generated sequence
of a flight through Yosemite Valley. In this sequence, both the

camera and clouds are moving. Fig. 1b shows the flow field com-
puted from two consecutive frames. This optical flow field was
used as input to recover 3D motion parameters, and to segment
the scene. The actual translation direction was T = (0.0077, �0.1828,
0.9831), and the actual speed of motion was 34.7 (in unit of pixels).
The actual rotation axis was (0.0250, 0.9798, 0.1985) and rotation
rate was 0.0961o/frame. Our method recovered the motion pa-
rameters with 0.46o of the translation error, 4.24o of the rotation
axis error, and 0.003o of the rotation rate error. The error in motion
estimates is due to the error in optical flow estimates and quanti-
zation of the motion parameter space. Fig. 1c shows the segment of
Yosemite Valley using the recovered 3D motion parameters,
where four features of clouds were incorrectly segmented into
Yosemite Valley, due to the ambiguity between depth and 3D
translation in a monocular sequence. This ambiguity can be re-
solved by imposing the positive depth constraint, which implies that
each visible point lies in front of the camera. Depth values for Yo-
semite Valley were computed using recovered motion parameters.
The recovered depth values were close to true depth values.
Fig. 1d shows the remaining image region, clouds segment. In this
sequence, the clouds in the background change their shape over
time; the clouds undergo a nonrigid motion. Thus, we make no
attempt to solve for 3D motion of the clouds.

We compared the performance of our algorithm with other ego-
motion methods. Table 1 summarizes the errors in the motion pa-
rameters estimated by E-matrix method [23], subspace method [9],
and the proposed adaptive Hough transform (AHT) method for
Yosemite sequence. Our algorithm performs better because we ex-
plicitly take the outliers of the flow estimates into account, so that
only the reliable flow estimates contribute to 3D motion estimation.

               
(a) (b)

              
(c) (d)

Fig. 1. Results for Yosemite sequence with camera and clouds motion. (a) Frame 1. (b) Measured optical flow field overlay with Frame 1. The
vector lengths are scaled by 2.0. (c) Segmented Yosemite Valley. Four features of clouds were incorrectly segmented into Yosemite Valley, due
to the ambiguity between depth and 3D translation in a monocular sequence. They can be eliminated from the segment of Yosemite Valley due to
their negative depth estimates. (d) Segmented clouds.
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TABLE 1
ESTIMATION ERRORS WITH E-MATRIX, SUBSPACE, AND AHT METHOD

FOR YOSEMITE SEQUENCE WITH UNIFORM BACKGROUND

Method Translation Rotation Rotation
error axis error rate error

E-matrix 4.8
o

25
o

0.016
o

Subspace 3.5
o

44
o

0.15
o

AHT 0.46
o

4
o

0.003
o

The translation error was measured by the angle between the actual and re-
covered translation direction. The rotation error was measured by the rotation
axis error (i.e., the angle between the actual and recovered rotation axis) and
the rotation rate error.

6.2 Real Images
The real images in this section were taken by a SONY 25-mm CCD
camera (field of view is about 30o). The focal length and aspect
ratio of the camera are calibrated, but no effort has been made to
correct the geometric distortion.

6.2.1 Egomotion
Figs. 2a and 2b show two frames of a sequence in which the cam-
era is moving in front of a static planar surface. Fig. 2c shows the
flow field computed from two consecutive frames. The actual
translation direction was T = (0, 0, 1), and the actual rotation was
(0o, �0.2o, 0o). The recovered translation direction was (0.02, 0,

0.9998), which has error of 1.23o. The estimated rotation was (0.02o,
�0.22o, 0.01o). The angle between actual and recovered rotation axis
was 5.8o, and rotation rate error was 0.02o. It can be observed that
the measured flow field for this sequence contains a number of
outliers due to noise in the input images. However, our method
can still robustly recover the motion parameters, rejecting these
outliers.

6.2.2 Two Moving Objects
Fig. 3a shows a frame of a sequence in which both the camera and
the right toy-house are moving. The camera is translating towards
the scene along z-axis, and rotating around y-axis by 0.1o/frame.
The toy-house is translating to the left and rotating around y-axis
in the opposite direction to the camera rotation. Fig. 3b shows the
measured flow field. The actual translation direction of the camera
was T = (0, 0, 1), and the recovered translation direction was (0, 0,
0.999997), with error of 0.13o. The estimated rotation of camera
was (0o, �0.1o, 0.009o). The recovered effective translation direction
and rotation of the right toy-house was (0.17, 0, 0.985) and (0o, 0.3o,
�0.03o), respectively. Here, we recovered the relative motion be-
tween the camera and the moving object. Figs. 3c and 3d show the
segmentation results using the recovered 3D motion parameters.

7 DISCUSSION

In this paper, we have proposed a method to determine 3D motion
for multiple objects from two perspective views, using adaptive

                   

(a) (b) (c)

Fig. 2. An egomotion sequence in which the camera is translating and rotating in front of a static planar surface. (a) Frame 1. (b) Frame 2. (c)
Measured optical flow field overlay with Frame 1. The vector lengths are scaled by 2.0.

                                          

(a) (b)

                                         

(c) (d)

Fig. 3. Results for a sequence with camera and right toy house moving. (a) Frame 1. (b) Measured optical flow field overlay with Frame 1. The
vector lengths are scaled by 2.0. (c) Segmentation result for Object 1: the background. (d) Segmentation result for Object 2: the right toy house.
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Hough transform and robust estimation techniques. Segmentation
is determined based on a 3D rigidity constraint. We explicitly take
the outliers into account, so that only the reliable flow estimates
contribute to 3D motion estimation, thus, our method can robustly
recover 3D motion parameters, rejecting the outliers in optical
flow estimates. Applications of the proposed method to both syn-
thetic and real image sequences have been demonstrated with
promising results. Our implementation of the algorithm in C can
be accessed at ftp://eustis.cs.ucf.edu/.

There are some limitations of this algorithm. First, in AHT, to
detect significant maxima of votes in accumulator array, we com-
pute only the connected components in the corresponding 2D
translational accumulator array, by first combining the votes from
rotation space corresponding to each translation sample (since it is
difficult to sequentially compute connected components in 5D
space). Since segmentation is performed solely based on transla-
tion direction, the algorithm fails when objects move in the same
translation direction. Second, some heuristics are introduced to
identify the best peak from the set of connected components. This
may involve parameter tuning, otherwise, algorithm may get into
local minimum. Third, (2) is an instantaneous approximation for
small rotations. It is shown in [9] that the errors introduced by the
instantaneous approximation are quite small when the rotation
rate is less than three degrees. When rotation rate is large, discrete-
time motion model is more accurate.
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