
 

 

 
Abstract 

 
    We propose a novel method for automatically discover-
ing key motion patterns happening in a scene by observing 
the scene for an extended period. Our method does not rely 
on object detection and tracking, and uses low level fea-
tures, the direction of pixel wise optical flow. We first di-
vide the video into clips and estimate a sequence of 
flow-fields. Each moving pixel is quantized based on its 
location and motion direction. This is essentially a bag of 
words representation of clips. Once a bag of words repre-
sentation is obtained, we proceed to the screening stage, 
using a measure called the ‘conditional entropy’. After 
obtaining useful words we apply Diffusion maps. Diffusion 
maps framework embeds the manifold points into a lower 
dimensional space while preserving the intrinsic local 
geometric structure.  Finally, these useful words in lower 
dimensional space are clustered to discover key motion 
patterns. Diffusion map embedding involves diffusion time 
parameter which gives us ability to detect key motion pat-
terns at different scales using multi-scale analysis. In ad-
dition, clips which are represented in terms of frequency of 
motion patterns can also be clustered to determine multiple 
dominant motion patterns which occur simultaneously, 
providing us further understanding of the scene. We have 
tested our approach on two challenging datasets and ob-
tained interesting and promising results. 
 

1.  Introduction 
The standard approach for analysis of video sequences 

involves the detection of objects of interest (which are 
mainly moving objects); classification of objects into dif-
ferent categories (e.g. a car, a person); tracking of such 
objects from frame to frame; and recognition of behavior or 
activities performed by the objects.  There has been a lot of 
progress made in each of the modules in the above pipeline, 
and complete end to end systems have even been developed 
for automatic video surveillance and monitoring (e.g. 

KNIGHT [12] for fixed camera surveillance and monitor-
ing, and COCOA [13] for UAV video analysis).  

Several attempts have been made to model and learn a 
scene. In general, scene understanding may involve, un-
derstanding the scene structure (e.g. pedestrian sidewalks, 
east-west roads, north-south roads,  intersections, exits and 
eateries), scene status (e.g. traffic light status, traffic jam), 
scene motion patterns (e.g. vehicles making u-turns, 
east-west traffic and north-south traffic), etc. With the 
knowledge of scene structure, activities and motion pat-
terns, low-level tracking and abnormal activity detection 
(anomalous motion detection) can be improved.  High-level 
activity analysis and video retrieval can be accomplished. 
Most of the previous work [1, 5, 14, 15] used object tracks 
to model the scene. In [5], scene activities are modeled and 
learned by observing the trajectories of objects observed by 
a static camera over extended periods of time. The motion 
patterns of the objects in the scene are modeled as a mul-
tivariate non-parametric probability density function of 
spatio-temporal variables. Kernel density estimation is 
used to learn this model in a completely unsupervised fa-
shion. Wang et al. [1] used location, velocity, and size to 
classify activities. The activities are classified using a 
B-tree based approach called Numeric Iterative Hierar-
chical Clustering method and the co-occurrence statistics in 
the quantized feature space. In some of the other related 
works [15, 2, 3] multiple features of observed tracks are 
used for clustering tracks into the main paths of the scene. 

The performance of all these methods is heavily de-
pendent on the ability to detect, track, and classify moving 
objects. However, in a complicated or crowded scene, it is 
not possible to detect individual objects since the size of 
objects decreases with the density of crowd. Also, it is 
difficult to obtain reliable tracks, since tracks may be bro-
ken due to short and long-term occlusions, and contain 
errors due to clutter.  

There are very few works have been done based on 
non-trajectories video scene understanding. Work done in 
[7] represented activities as bags of event n-grams that 
capture the global structure of an activity using its local 
event statistics. Xiang et al. [6] used DPNs to model com-
plex activities of multiple objects in cluttered scenes. [8] 
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improved LDA and HDP models to capture the 
co-occurrence of words and documents.  

In this paper, we propose a novel framework which 
provides a principle way to automatically detect multi-scale 
key motion patterns in complex scenes. Key motion pat-
terns essentially group pixels with similar motion into 
spatiotemporal regions, and can provide a coarse abstrac-
tion of a scene, which can be very useful for later 
processing such as tracking of an individual in a crowded 
scene, detection of an unusual behavior, and unsupervised 
learning and recognition of a particular activity or action. 
We follow a bottom-up approach, which starts with divid-
ing a video into smaller clips, and compute pixel-wise 
optical flow between consecutive frames of each clip as our 
low level features. Flow vectors with small magnitude, 
which may be due to some noise, are removed and optical 
flow directions are quantized into four directions: North, 
South, East and West. A clip is divided into small special 
cuboids. The local histogram of four motion directions is 
then computed for each cuboid in the clip, where each local 
histogram has an associated implicit spatial location of the 
cuboid. These local optical flow direction histograms are 
concatenated into one long vector to represent a clip. Each 
quantized direction of a given cuboid is the smallest poss-
ible unit of representation of a clip, which is similar to a 
word in a document. The long vector representation of a 
clip is essentially a bag of those words (motion directions 
observed at specific locations in the scene). Since these 
vectors reside in a high dimensional space, we propose to 
use the diffusion map embedding [4, 9, 10] to embed them 
into more discriminative and compact manifolds, and to 
perform clustering in order to obtain motion patterns in the 
scene.  
     Diffusion maps (DM) framework embeds the manifold 
points into a lower dimensional space while preserving the 
intrinsic local geometric structure. The diffusion process 
begins by organizing the data points into a weighted graph, 

which is a meaningful way to represent the complex rela-
tionships between the feature points, where the weight 
between two feature points is the feature similarity. Once 
we normalize the weight matrix which is symmetric and 
positive, we can further interpret the pairwise similarities as 
edge flows in a Markov random walk on the graph. In this 
case, the similarity is analogous to the transition probability 
on the edge. Then utilizing the spectral analysis on the 
Markov matrix of the graph, we can find the dominant α 
eigenvectors as the coordinates of the embedding space and 
map the feature points to the low dimensional space while 
preserving their local geometric structures.  

One of the advantages of DM is that the definition of the 
weight is totally application driven. It can measure the 
similarities between low-level features based on the com-
bination of different semantic information, whereas [8] 
only capture the co-occurrence similarity. In addition, by 
adjusting the diffusion time t of the Markov chain, DM can 
be also used to employ multi-scale analysis on the scene 
data. If we consider the embedding process as clustering, 
DM embeds the semantically similar features into the same 
cluster. The size of the cluster is determined by the diffu-
sion time. A larger diffusion time corresponds to a bigger 
cluster, which means a larger group of correlated motion 
patterns. For instance, in our case, motion pattern “vehicle 
coming to the intersection and stopping from east to west” 
can be described as ”vehicle moving along east-west road” 
at a larger scale, or as ”east-west traffic” at a even larger 
scale. With the multi-scale data analysis, we can easily 
analyze the motion patterns in a scene at different scales. 
We believe DM is more suitable for scene understanding 
since the low-level features seem to have better manifold 
structure. Our results in this paper confirm this point. We 
show that the motion patterns can be automatically dis-
covered at different scales from videos of the scenes. 

 
  

Figure 1: Flowchart of our approach. To extract key motion patterns, we first extract low-level motion features through computing 
optical flow. These motion features are then quantized into video words based on their direction and location. Next, some video 
words are screened out based on the entropy over all clips for a given word. Key motion patterns are discovered automatically using 
diffusion maps embedding and clustering. 
 



 

 

2. Our Proposed Framework 
    In this section, we describe each step of our method in 
detail. Given a long video, our goal is to automatically 
detect and learn key motion patterns occurring there-in, and 
apply the learned model to clip categorization. Our 
framework is illustrated in Figure 1.    

2.1.  Low-level feature quantization  
   We first divide the video into clips and estimate a se-
quence of flow-fields. The optical flow between two 
neighboring frames is computed with each pixel denoted as 
p = (x, y, v, θ), where (x, y) is its spatial location, and (v, θ) 
is the optical flow magnitude and direction. A threshold on 
the magnitude of the pixels is used to remove pixels due to 
slight camera motion and variations in illumination. Each 
clip is split into spatiotemporal cuboids (3D patches of 
dimension NxNxL, where N by N patches at a given loca-
tion in L frames of clips are used), and the motion of a 
moving pixel is quantized in four directions – North, South, 
East and West. For each cuboid in a clip, a 4 - bin histogram 
is computed. Each bin in a histogram of a given cuboid 
corresponds to one of the four motion directions at the 
location of the cuboid, and can be considered as a video 
word representing the clip. These local histograms for all 
cuboids in a clip are then concatenated into one long vector 
denoted by X.  If the size of each image in a clip is (m x N) x 
(n x N), then the size of the vector X is m x n x 4 (m x n is the 
number of cuboids), where 4 represents the directions of 
motion of the pixels. Each bin of X is a codeword, resulting 
in a codebook of size m x n x 4. This is essentially a bag of 
words representation of clips. Each pixel is assigned a word 
from the codebook, which specifies a rough location and 
motion direction. Once a bag of words representation is 
obtained, we proceed to the screening stage, using ‘condi-
tional entropy’, which is described next. 

2.2. Obtaining useful words 
    The frequency of each video word in different clips is 
summarized in a 2-D matrix (see figure 2). This matrix is 
normalized to obtain probabilities. The entropy over all 
clips for a given word is used as a measure to determine 
which words (elements) in the bag (vector X) are useful for 
motion pattern detection. The conditional entropy is de-
fined as  
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and nc,w is the number of times word w appears in clip C. 
    Words with low entropy correspond to abnormal events 
such as a pedestrian crossing a street in a direction per-
pendicular to the flow of traffic in a no-crossing zone, and 

are not good descriptors of a normal scene. High entropy 
words can be equally uninformative since they are indica-
tors of a static scene or noise in the optical flow, which 
were not discarded by the threshold used. Normal dynamic 
parts of the scene, such as roads, are therefore represented 
by words with intermediate entropy. We use this measure to 
our advantage in two ways. First, the words with interme-
diate entropy are retained and used to discover key motion 
patterns, while the rest are discarded. Second, the words 
with low entropy are helpful to detect abnormal behaviors.  
   Video words corresponding to the same kind of motion 
pattern often co-exist in video clips. To detect these motion 
patterns, we cluster video words based on their 
co-occurrence in the clips using the diffusion map embed-
ding. 

2.3. Diffusion maps embedding  
   Clustering is a common technique for statistical data 
analysis, which is used in many fields, including machine 
learning, pattern recognition, and image analysis. Parti-
tioning a large set of data points into homogeneous clusters 
is a fundamental operation in machine learning. Although 
some algorithms like k-means are well suited for clustering, 
the quality of the clustering is sensitive to the length of 
feature vectors and long feature vectors contain redundant 
information. Also, clustering criterion is typically based on 
appearance similarity, and, hence, k-means is unable to 
capture the co-occurrence relation between features. Be-
sides, the affinity between feature vectors is measured 
using the Euclidean distance while most of the long feature 
vectors lie in manifold-space instead of a linear space.  
Therefore, we propose to use Diffusion maps embedding to 
handle high-dimensional data points contained in a 
non-linear manifold. 
    We first compute the Point-wise Mutual Information 
(PMI) between the clips c and words w using  

                 𝑚𝑚𝑐𝑐 ,𝑤𝑤 = log( 𝑓𝑓𝑐𝑐 ,𝑤𝑤
∑ 𝑓𝑓𝜀𝜀 ,𝑤𝑤𝜀𝜀 ∑ 𝑓𝑓𝑐𝑐 ,𝑤𝑤𝑤𝑤

),                           (3) 
where fc,w= nc,w/Nw., nc,w is the number of times word w 
appears in clip c, and Nw  is the number of useful words. We 
can then represent each word in terms of an Nc dimensional 
feature vector as 

                    
.],...,[ ,,2,1 ′= iNiii c

mmmx      (4) 

Figure 2 the 2-D matrix captures the frequency of each word for 
a given clip. nc,w is the number of times word w appears in clip c, 
Nc is the number of clips, Nwb represents the number of words 
before screening, Nw  is the number of useful words. 
 



 

 

   To find a low dimensional embedding, we first construct 
a graph G (Ω, W) with n (where n is number of words) 
nodes in set Ω, where W= {wij (xi, xj)} is its weighted ad-
jacency matrix that is symmetric and positive. The defini-
tion of W is totally application-driven, but it needs to 
represent the degree of similarity or affinity of two data 
points (words). We weight the distance between two nodes 
with a Gaussian kernel function, leading to a matrix with 
entries 

                  𝑤𝑤𝑖𝑖𝑖𝑖 �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 � = 𝑒𝑒
−�𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖 �

2

2𝜎𝜎2 ,                 (5) 
 
where σ 2 indicates the variance of the Gaussian. This graph 
G (Ω, W) represents our knowledge of the local geometric 
relationships between the nodes of the graph. We then 
define a Markov random walk on the graph G, by treating 
the normalized edge weight as the transition probability 
between them. As a result, we form matrix P (1) = {pij 

(1)} by 
normalizing the matrix W such that its rows add up to 1. 

                     𝑝𝑝𝑖𝑖𝑖𝑖 (1) =
𝑤𝑤𝑖𝑖𝑖𝑖

∑ 𝑤𝑤𝑘𝑘 𝑖𝑖𝑘𝑘
.                           (6) 

    In other words, the quantity   𝐏𝐏(𝐭𝐭) reflects the intrinsic 
geometry of the dataset defined via the connectivity of the 
graph in a diffusion process and the time t of the diffusion 
plays the role of a scale parameter in the analysis. 
   We define the diffusion distance D using the random 
walk forward probabilities 𝑝𝑝𝑖𝑖𝑖𝑖

(𝑡𝑡) to relate the spectral prop-
erties of a Markov chain (its matrix and its eigenvalues and 
eigenvectors) to the geometry of the data. 

               [𝐷𝐷(𝑡𝑡)(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 )]2 = ∑
(𝑝𝑝𝑖𝑖𝑖𝑖

(𝑡𝑡)−𝑝𝑝𝑖𝑖𝑖𝑖
(𝑡𝑡))2

𝜑𝜑(𝑥𝑥𝑖𝑖 )(0)𝑖𝑖∈Ω ,                 (7) 

where 𝜑𝜑(𝑥𝑥𝑖𝑖)(0) is the unique stationary distribution which 
measures the density of the data points. It is defined by  
𝜑𝜑(𝑥𝑥𝑖𝑖)(0) = 𝑑𝑑𝑖𝑖

∑ 𝑑𝑑𝑖𝑖𝑖𝑖
 , where 𝑑𝑑𝑖𝑖  is the degree of node 𝑥𝑥𝑖𝑖  de-

fined by 𝑑𝑑𝑖𝑖= ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 .  
   The diffusion distance can be represented by the first 𝛼𝛼 
right eigenvectors (𝜈𝜈𝑠𝑠 ) and eigenvalues ((𝜆𝜆𝑠𝑠𝑡𝑡 ) of matrix 
 𝐏𝐏(𝐭𝐭); we only need a few terms in the above sum for certain 
accuracy because of the decay of the eigenvalues: 

[𝐷𝐷(𝑡𝑡)(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 )]2 ≃�(𝜆𝜆𝑠𝑠𝑡𝑡 )2
𝛼𝛼

𝑠𝑠=1

(𝜈𝜈𝑠𝑠(𝑥𝑥𝑖𝑖) − 𝜈𝜈𝑠𝑠(𝑥𝑥𝑖𝑖 ))2, 

 where 𝜆𝜆𝛼𝛼𝑡𝑡 > 𝛿𝛿𝜆𝜆1
𝑡𝑡 .  

    Hence, we introduce diffusion map embedding and the 
low-dimensional representation is given by 
    Πt : 𝑥𝑥𝑖𝑖 ⤇ {𝜆𝜆1

𝑡𝑡 𝜈𝜈1(𝑥𝑥𝑖𝑖)   𝜆𝜆2
𝑡𝑡 𝜈𝜈2(𝑥𝑥𝑖𝑖) … 𝜆𝜆𝛼𝛼𝑡𝑡 𝜈𝜈𝛼𝛼(𝑥𝑥𝑖𝑖)}𝑇𝑇 .                 (8) 

  The link between diffusion maps and distances can be 
summarized by the spectral identity 
       �Πt(𝑥𝑥𝑖𝑖) − Πt(𝑥𝑥𝑖𝑖 )�2 = [𝐷𝐷(𝑡𝑡)(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 )]2 ,                      (9) 
which means that the diffusion map embeds the data into a 
Euclidean space in which the Euclidean distance is equal to 
the diffusion distance in the original space.  

2.4. Motion patterns detection at different scale 
    After embedding, the data points reside in much lower 
dimensional and meaningful manifold space and can be 
clustered to obtain relevant motion patterns. From a data 
analysis point of view, the reason for studying this Markov 
chain is that the matrix P contains geometric information 
about the data set Ω. Indeed, the transitions that it defines 
directly reflect the local geometry defined by the immediate 
neighbors of each node in the graph of the data. One of the 
main ideas of the diffusion framework is that running the 
chain forward in time, or equivalently, taking larger powers 
of P, will allow us to integrate the local geometry and 
therefore will reveal relevant geometric structures of Ω at 
different scales.  
   So, different values of σ and t can be used to perform 
different embeddings and motion patterns at different 
scales can be discovered. Therefore, in contrast to tradi-
tional methods, our proposed approach is capable of de-
tecting motion patterns at different scales, through mul-
ti-scale analysis. The proposed multi-scale analysis is re-
miniscent of multi scale edge detection using different 
values of σ in Gaussian smoothing. Multi scale analysis is 
prevalent in many areas. For instance, in NLP (Natural 
Language Processing), “sport” is on a larger scale than 
“baseball” and “football”, and “baseball” is on a larger 
scale than “team”. 
   We employ and validate the multi-scale analysis both on 
our synthetic dataset and on real scene datasets. Results of 
real scenes is shown and illustrated later in the experiments 
section. The results of the synthetic dataset are shown in 
figure3. 
   We generated a swiss roll of 1000 points in 2-D. From 
this set, we built a graph using equation 5, where  𝜎𝜎 = 2, and 
formed the corresponding Markov matrix P. In the figure 
we plot results obtained using two powers of the matrix P, 
namely t = 2 and t = 9. For t = 2, the set appears to be made 
of four distinct clusters. For t = 9, the two closest clusters 
have merged, and the dataset appears to be made of only 
two clusters. From a random walk point of view, the key 
idea in this example is that a cluster is a region for which 
the probability of escaping this region is low. The higher 
the value of t, the higher is the probability that a data point 
can be diffused with other points which are further away 
from it.  

Figure3: Multi-scale analysis on our synthetic dataset.  
Left: when t=2, σ=2, there are 4 clusters; Right: increasing t to 9, 
four clusters merge into 2 clusters. 
 



 

 

3. Experimental results and discussion 
   We use two challenging traffic datasets: the NGSIM 
dataset [11] and the far-field traffic scene dataset from [8]. 
Both of them contain multiple motion patterns and also 
include illumination changes, occlusions, a variety of ob-
ject types, and different environmental effects.  

3.1. Experiments on NGSIM dataset 
    We first employ our method on the NGSIM traffic scene 
dataset, which is almost 19 minutes long. The video is 
divided into 224 clips. Each clip is 5 seconds long with 
image size of 420x600, and contains 50 frames. Each clip is 
split into 10x10x50 cuboids.  The optical flow between 
consecutive frames is computed and quantized in to 4 di-
rections. Therefore, our codebook size is 42x60x4.  
   Considering a real traffic scene, it is unlikely that a ve-
hicle will drive from south to north on an east-west road. In 
other words, a video word whose position is on an east-west 
road, and whose motion direction is south rarely appears in 
the video. We can consider these words corresponding to 
rarely happening motion as abnormal words. According to 
information theory, these kinds of words are distinct and 
have high information content, which can be used for ab-
normality detection. Similarly, if a word always occurs in 
most of clips, it brings us little information to distinguish 
one clip from others. Therefore, both of the words men-
tioned above are useless for us to capture the normal mea-

ningful motion patterns in the scene. To screen out useless 
words, we compute entropy over all clips for a given word 
and obtain 2280 useful words with entropy between 2<H<5. 
Figure 4 shows the useful words after we discard most of 
the useless words applying the threshold on the entropy. 
The results are meaningful and coincide with our common 
sense understanding.  
   After screening we obtain 2280 words to represent each 
clip. Next, we cluster these words using the method de-
scribed in section 2. Note that each word is represented by a 
224 dimensional vector, where 224 is the number of clips in 
the video. As we described in the previous section, we put 
useful words into diffusion maps framework using t = 2 and 
σ = 8, and detected 30 motion patterns shown in figure 6(a). 
As illustrated, key motion patterns at a low level are de-
tected, such as: Vehicle moving along west-east road un-
hindered, coming to the intersection and stopping, making 
left or right turn. These key motion patterns capture general 
movement and location of objects. E.g. ‘vehicles moving 
from east to west’ is split into ‘vehicles crossing the inter-
section unhindered’, ’vehicles coming to the intersection 
and stopping due to red light’ and ’vehicles crossing the 
intersection but stopping because of the red light of next 
intersection’.  Further, to verify that diffusion maps em-
bedding does help to cluster words which may lie in a high 
dimensional space, we compare the motion pattern detected 
by using proposed diffusion maps approach and standard 
k-means directly. From figure 5 we can see that k-means 
cannot capture the meaningful motion patterns of video 
scenes, especially when the data lie in a high dimensional 
space. 
    In the next experiment, we detected the motion patterns 
at a larger scale using t = 4, and σ = 6. We obtain 10 motion 
patterns. Some motion patterns are merged together, e.g.: 
“vehicles moving from east to west unhindered” and “ve-
hicles coming to the intersection and stopping” merge into 
“traffic from east to west”; the motion patterns corres-
ponding to “vehicle on east-west road  coming and stop-
ping” and “vehicles moving along north-south road” are 
detected as a single motion pattern indicating  “north-south 

Figure 4: We show useful video words with 4 colors corresponding 
to four directions. Words with green, red, cyan and blue color 
correspond to vehicle movement from roughly west to east, east to 
west, north to south and south to north. Through this step, we 
discard most of the words which bring little information for key 
motion patterns detection in the video scene. Judging from the 
results, the screening method is meaningful and effective: Words in 
green and red (east, west direction) appear mostly on the east-west 
road; words in cyan and blue (north, south direction) appear mostly 
on the north-south road. However, there are still some words which 
are due to noise generated in optical flow that we cannot discard, 
due to the low resolution and low frame rate, and probably due to 
illumination changes in the NGSIM dataset. 
 

(a)                                             (b) 

Figure 5: motion patterns detected by using k-means clustering 
without embedding. We show one of the motion patterns with 
largest number of video words. Most of the video words are 
clustered into one group without capturing any semantic meaning. 
(a) NGSIM, k = 10. (b) Crowd scene, k = 15.   
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traffic”. This high level (or larger scale) motion pattern 
analysis makes sense because we are also able to cluster 
words by considering larger neighborhood due to large 
scale. If we increase t to 8 and σ to 5, we finally get 3 major 
motion patterns. Figure 6(b)(c) shows our results using 
multiple scales analysis.    

Furthermore, we can also cluster clips and identify do-
minating motion patterns in each cluster. Note that since 
each clip was originally represented as a histogram of 
words, we can now represent a clip as a histogram of mo-
tion patterns (group of words). Results are shown in figure 
7; our clustering accuracy is 90.1% according to the ground 
truth. From the clustering results, we can determine the 

dominant motion patterns of each cluster of clips as shown 
in figure 8. 

Figure 7: clip clustering result on NGSIM dataset.  Each 
cluster is shown by different color.  

1                                                       224 

Figure 8: The main motion patterns in 5 clusters of clips in 
NGSIM dataset. (1) crowded traffic in the east-west direction; (2) 
vehicle moving from north to south and the same time vehicle 
making right-turn form south to north; (3) vehicle moving from 
south to north, some making right-turn; (4) vehicle making 
left-turn; (5)  light traffic in the east-west direction. 
 

(1)                               (2)                                (3) 

  (4)                                                  (5) 

(a)                                                                                        (b)                                (c) 
Figure 6: Automatic discovery of motion patterns at three different scales. (a) 20 motion patterns when t=2, σ=8. (1) — (9) are “hori-
zontal” motion patterns. (1) and (3) are “vehicle moving through west-east road unhindered”. (4) and (6) correspond to “vehicle moving 
along east-west road to intersection and stopping”. (8) and (9) correspond to “vehicle proceeding after it stopped at the red traffic light”. 
(5) and (7) correspond to “vehicle stopping to wait for traffic light after crossing the intersection along east-west”. (10) and (11) cor-
respond to “vehicle moving along north-south”. (12)— (19) correspond to “vehicle making left or right turn”. From the video, we find 
that the east-west road is crowded, whereas traffic flow of north-south road is small. This is consistent with our results since there are 
more east-west motion patterns compared to north-south. Also (17) shows that when vehicles from north-south make a right turn, there 
are always vehicles from south-north making a right turn at the same time. Figure (b) shows 3 of 10 patterns obtained by our method 
when t = 4, σ = 6, which are significantly different from the previous twenty. The pattern shown by cyan color (“vehicles going up north 
and vehicles in motion east-west, stopping to wait for light change, and some vehicles making right turn”) is essentially combination of 
(4), (6), (10), (13), (15) from (a). The second pattern is combination of (12) and (18), and the third is the combination of (7) and (8) in (a). 
(c) Three motion patterns are detected by our method when t = 8, and σ = 5. The first corresponds to major traffic which is in the 
north-south direction. The second corresponds to vehicle approaching from north and making a left turn. We noticed that this motion 
pattern is quite frequent in the video. The third motion pattern corresponds to east-west traffic. Through this multi-scale analysis, we 
verify that it is possible to embed high dimensional data into different levels by using diffusion time t. 
 



 

 

3.2. Experiments on crowd scene dataset 
We also tested our approach on the crowd traffic scene 

dataset. The dataset consists of 1.5-hours of video with 30 
frames per second and a variable number of motion patterns. 
We divide the video into 549 clips of 10 seconds each, and 
quantize optical flow in the same way as the NGSIM da-
taset. The image size is 480 by 720, so our codebook size is 
48*72*4.  After the screening stage, we obtain useful words 
shown in figure 9. Figure 12 shows motion patterns de-
tected at two different scales. Also, we cluster clips based 
on the key motion patterns. We show the results in figure 
10, and the dominating motion patterns corresponding to 
each cluster of clips are shown in figure 11. Compared to 
our ground truth, we got accuracy of 86%. 

 

4. Conclusion 
In this paper, we propose a novel unsupervised approach 

for video scene understanding.  We first quantize low-level 
features into words, then screen out useful words for mo-
tion pattern detection. We use diffusion maps framework to 
detect motion patterns at different scales. Based on clus-
tering of clips, we can also identify dominant motion pat-
terns occurring in each clip cluster. We tested our approach 
on two complicated video traffic datasets and obtained 
meaningful results.  
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            Figure 9: useful words in four directions. 
 

Figure 10: clip clustering result on crowd scene dataset. We show 
the first 250 clips of 549 clips. Each cluster is shown by different 
color.  
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Figure 11:  The main motion patterns in 6 clusters of clips. (1) 
vehicle moving on the north-south roads and at the same time 
some vehicles making right-turn form south to north; (2) vehicle 
moving on the east-west roads and some vehicles making left-turn 
form west to east; (3) crowded traffic in the east-west direction; 
(4) Vehicle and pedestrian moving from east to west;   (5) pede-
strian crossing road along east-west, meanwhile, vehicle from 
north-south road coming to the intersection and stopping; (6) 
vehicle moving from west to east, some of them making left-turn. 
Vehicle from north-south road coming and stoping. 
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Figure 12: (a) 30 motion patterns detected by our algorithm using t = 2, σ =10. (1)-(15) correspond to vehicle movement. (2) and (4) 
correspond to “vehicle moving along east-west road”, (5) corresponds to “vehicle moving along east-west road to intersection and 
stopping”. (1) and (3) correspond to “vehicle moving along west-east road and making left-turn”. (6-10) correspond to “vehicle moving 
along north-south road at different lanes” and (11-13) correspond to “vehicle crossing intersection from south to north”. (14-15) cor-
respond to “vehicle making right turn from south to north”. (16)-(30) correspond to pedestrian movement. (16-19) correspond to “pe-
destrian crossing street on crosswalk from east to west”. (20)(21)(23)(24) correspond to “pedestrian crossing street on crosswalk from 
west to east”. (22)(25)(26-30) correspond to “pedestrian moving on pavement”.  
(b) 15 motion patterns detected using t=5, σ=10. Some multiple motion patterns in (a) merge into a single motion pattern in (b). (1) 
corresponds to “vehicle moving from east to west”. (7) corresponds to “vehicle moving from west to east”. (2)(4)(15) correspond to 
“vehicle moving along south-north road”. (8)(11) correspond to “vehicle crossing the intersection along north-south road”.  (3) is the 
combination of (20)(21)(23)(25) in Figure 12(a), corresponds to “pedestrian crossing street from west to east on crosswalk”. (14) is the 
combination of (16)(17) in Figure 12(a), corresponds to “pedestrian crossing street from east to west on crosswalk”. 
(5)(6)(9)(10)(12)(13) correspond to “pedestrian movement”.    
 


