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Discovering Motion Primitives for Unsupervised
Grouping and One-shot Learning of Human

Actions, Gestures, and Expressions
Yang Yang, Imran Saleemi, and Mubarak Shah

Abstract—This paper proposes a novel representation of articulated human actions and gestures, and facial expressions. The main
goals of the proposed approach are: (1) to enable recognition using very few examples, i.e., one, or k-shot learning, and (2) meaningful
organization of unlabelled data sets by unsupervised clustering. Our proposed representation is obtained by automatically discovering
high level sub-actions or motion primitives, by hierarchical clustering of observed optical flow in four dimensional, spatial and motion
flow space. The completely unsupervised proposed method, in contrast to state of the art representations like bag of video words,
provides a meaningful representation conducive to visual interpretation and textual labeling. Each primitive action depicts an atomic
sub-action, like directional motion of limb or torso, and is represented by a mixture of four dimensional Gaussian distributions. For
one-shot and k-shot learning, the sequence of primitive labels discovered in a test video are labelled using KL divergence, and can
then be represented as a string and matched against similar strings of training videos. The same sequence can also be collapsed into
a histogram of primitives, or be used to learn a Hidden Markov model to represent classes. We have performed extensive experiments
on recognition by one and k-shot learning as well as unsupervised action clustering on six human actions and gesture datasets, a
composite dataset, and a database of facial expressions. These experiments confirm the validity, and discriminative nature of the
proposed representation.

Index Terms—human actions, one-shot learning, unsupervised clustering, gestures, facial expressions, action representation, action
recognition, motion primitives, motion patterns, histogram of motion primitives, motion primitives strings, Hidden Markov model

✦

1 INTRODUCTION

Learning using few labeled examples should be an es-
sential feature in any practical action recognition system
because collection of a large number of examples for each
of many diverse categories is an expensive and laborious
task. Although humans are adept at learning new object
and action categories, the same cannot be said about
most existing computer vision methods, even though
such capability is of significant importance. A majority of
proposed recognition approaches require large amounts
of labeled training data, while testing using either a
leave-one-out or a train-test split scenario. In this paper,
we put forth a discriminative yet flexible representation
of gestures and actions, that lends itself well to the
task of learning from few as possible examples. We
further extend the idea of one-shot learning to attempt
a perceptual grouping of unlabelled datasets and to
obtain subsets of videos that correspond to a meaningful
grouping of actions, for instance, recovering the original
class-based partitions.

Given the very large volume of existing research in
the area of action recognition, we observe that action
representation can range from spatiotemporally local to
global features. On one end of this spectrum are interest-
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Fig. 1. Proposed probabilistic representation of primitive
actions. Top: five primitives discovered in UCF Sports
‘kicking’ action, showing relative location, shape, and
flow of the sub-actions. Colors correspond to conditional
expected flow magnitude and direction given pixel loca-
tions, as per the color wheel. Bottom: 4 primitives for the
KTH ‘waving’ action.

point based representations where a single descriptor
encodes the appearance [27] or motion [22], [8] in very
small x−y−t volumes, while on the other hand features
based on actor silhouettes [7], contours [50], and space-
time volumes [36] attempt to capture the entire action in
a single feature ignoring the intuitive compositional hier-
archy of action primitives. Some of the recent approaches
which have performed well on standard datasets [43],
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as well as relatively older work involving manual steps
[30], [51] tend to lie between these two extremes in terms
of the abstract spatiotemporal scale at which a video is
represented.

This observation forms the basis of the proposed rep-
resentation with the underlying idea that intermediate
features (action primitives) should: (a) span as large as
possible but contiguous x−y− t volumes with smoothly
varying motion, and (b) should be flexible enough to al-
low deformations arising from articulation of body parts.
A byproduct of these properties is that the intermediate
representation will be conducive to human understand-
ing. In other words, a meaningful action primitive is
one which can be illustrated visually, and described
textually, e.g., ‘left arm moving upwards’, or ‘right leg
moving outwards and upwards’, etc. We argue and show
experimentally, that such a representation is much more
discriminative, and makes the tasks of ‘few-shot’ ac-
tion, gesture, or expression recognition, or unsupervised
clustering simpler as compared to traditional methods.
This paper proposes such a representation based on
motion primitives, examples of which are shown in
Fig. 1. A summary of our method to obtain the proposed
representation follows.

1.1 Algorithmic Overview

An algorithmic overview of the proposed approach is as
illustrated in Fig. 2: given a video containing an action,
(i) when required, camera motion is compensated to
obtain residual actor-only motion, (ii) a frame differ-
ence based foreground estimation, and ‘centralization’ of
the actor to remove translational motion is performed,
thus resulting in a stack of rectangular image regions
coarsely centered around the human; (iii) computation
of optical flow to obtain 4d feature vectors (x, y, u, v);
(iv) clustering of feature vectors to obtain components
of a Gaussian mixture; (v) spatio-temporal linking of
Gaussian components resulting in instances of primitive
actions; and (vi) merging of primitive action instances to
obtain final statistical representation of the primitives.

For supervised recognition, given a test video, in-
stances of action primitives are detected in a similar fash-
ion, which are labeled by comparing against the learned
primitives. Sequences of observed primitives in training
and test videos are represented as strings and matched
using simple alignment [28] to classify the test video.
We also experimented with representation of primitive
sequences as histograms, followed by classifier learning,
as well as using temporal sequences of primitive labels
to learn state transition models for each class.

Compared to the state of the art action representations
the contributions of the proposed work are:
• Completely unsupervised discovery of representative
and discriminative action primitives without assuming
any knowledge of the number of primitives present, or
their interpretation,

• A novel representation of human action primitives that
captures the spatial layout, shape, temporal extent, as
well as the motion flow of a primitive,
• Statistical description of primitives as motion patterns,
thus providing a generative model, capable of estimating
confidence in observing a specific motion at a specific
point in space-time, and even sampling,
• Highly abstract, discriminative representation of primi-
tives which can be labeled textually as components of an
action, thus making the recognition task straightforward.

In the following section, we present a brief review of
the most relevant representation and recognition tech-
niques in the literature. We then describe the details
of the proposed approach for primitives discovery in
Section 3, and our representation for actions, gestures,
and facial expressions in Section 4. Experiments and
results are reported in Section 5.

2 RELATED WORK

Human action and activity recognition is a broad and
active area of research in computer vision, and com-
prehensive reviews of the proposed methods can be
found in [42], [48]. Our discussion in this regard is
restricted to a few influential and relevant parts of
literature, with a focus on representation, as compared
to machine learning and classification approaches. These
methods can be categorized based on the different levels
of abstraction at which human actions are represented,
and are summarized below:

Interest point based Representations: One important
direction of research in the human action literature
which has gained a lot of interest recently is the use of
spatiotemporal interest points, and feature descriptors
or trajectories computed around those interest points.
Works by Dollar et al. [8], Laptev et al. [22], Gilbert et al.
[12], and Filipovych and Ribeiro [11] are representative
of this large category of methods, which is also loosely
termed as ‘bag of visual or video words’. Many of the
state of the art approaches in action recognition, like [43],
fall in this category. The main strength of this representa-
tion is the robustness to occlusion, since there is no need
to track or detect the entire human body or its parts, and
therefore, impressive results have been obtained using
such methods on standard data sets. The same strengths
of this model however, make it less than ideally suited to
content understanding and textual descriptions, mainly
because it is too local (visual words span very small
spatiotemporal regions) and too distributed (histogram
ignores spatial and temporal ordering of words). Indeed
more recent approaches [43] attempt to mitigate the
former of the above two.

Moreover, these methods are not exempt from sensi-
tivity to a number of intermediate processes including
interest point detection, choice of descriptors, number
of codebook words, and classifiers. A large number of
methods have been proposed to address each of these
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Fig. 2. Process flow of the proposed approach for action representation, recognition, and clustering.

problems. We contend that action representation and
recognition need not be this complex and should be
visually and textually interpretable, and especially so
when the goal is content understanding rather than state
of the art quantitative performance.

Holistic Representations: These methods incorporate
global, image-based representation of actions, and do
not require detection, labeling, or tracking of individual
body parts. The only requirement for these methods
is to detect a bounding box, or contour enclosing the
person performing an action. Dense features computed
within the bounding box are then used to represent
actions. Examples of these features include intensity
images [6], silhouettes composing motion history (MHI)
and motion energy (MEI) images [3], spatiotemporal
shapes using tracks of body contours [50], and spa-
tiotemporal volumes spanned by silhouette images [36].
Other holistic representations of actions involve optical
flow [32], spatiotemporal gradients [52], and HoG [39].
As mentioned earlier, such representations ignore the
useful information related to the primitive sub-actions,
which can compose multiple actions by spatiotemporal
ordering, and are much more flexible than holistic rep-
resentations. Performance of holistic representations is
expected to drop as diversity and noise within examples
of a class increases, since these are rigid and brittle.

Part based Representations: Methods based on informa-
tion derived from knowledge of location, or appearance
of body parts or joints fall in this category. This is
the most intuitive representation, but the most difficult
to estimate reliably in practice. Examples include body
parts detection, or features of trajectories of landmark
human body joints [51], and motion features of detected
body parts [30]. Detection of body parts or joints in
videos is an extremely challenging problem and even the
constrained settings of discriminative background and
use of markers does not ensure a completely unsuper-
vised process.

Other examples of work in this category include Ke et
al [16] who proposed the learning of a cascade of filters
using space-time volumetric features, effectively per-
forming action detection as well as precise spatiotempo-
ral localization. In [17], over-segmented video volumes
without regards to actor parts, are matched to volumetric

representation of an event using shape and flow cues in
order to perform detection of actions in crowded scenes.
Singh and Nevatia [37] put forth a joint tracking and
recognition approach, where they learn action models by
annotating key poses in 2D, and propose an approach
for pose localization using a pose specific part model.
Their approach was tested on two gesture datasets. Tran
et al [41] have also recently proposed to model relative
motion of body parts for action recognition.

Our proposed work can be considered a part of this
category, since the proposed primitive action represen-
tation generally corresponds to discriminative motion in-
duced by independently moving body parts. In contrast
to traditional methods however, there is no need to ex-
plicitly detect any body parts, or even assume presence
of such parts or joints. The primitives correspond to any
large spatiotemporal regions of contiguous, continuous,
and smooth flow.

In light of this discussion, we now describe the pro-
posed action representation, which is completely un-
supervised, discriminative, and simplifies the tasks of
action recognition, classification, or clustering.

3 MOTION PRIMITIVES DISCOVERY

The goal of the proposed human action representation
is twofold: (i) to automatically discover discriminative,
and meaningful sub-actions (or primitives) within videos
of articulated human actions, without assuming priors
on their number, type, or scale, and (ii) to learn the
parameters of a statistical distribution that best describes
the location, shape, and motion flow of these primitives,
in addition to their probability of occurrence. The idea
for the proposed representation is inspired by several
recent works in traffic patterns discovery and represen-
tation [45], [20], [34]. However, instead of human actions,
these techniques have been proposed for learning high
level events and activities in surveillance scenarios, by
observing rigid body motion of objects, like vehicles,
over long periods of time.

Since our choice for action primitives modeling is to
estimate a statistical description of regions of similar
optical flow, we draw from the method of [34], which
learns Gaussian mixture distributions to estimate traffic
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Fig. 3. Process of optical flow computation for 4 frames
from Weizmann ‘Side’ action. Optical flow on whole
frame essentially captures rigid body, translational mo-
tion, while optical flow on stacked, coarsely cropped,
actor bounding boxes, successfully computes articulated
motion. No pixel level segmentation is shown here.

patterns in surveillance videos. The details of our frame-
work are described in the following subsections.

3.1 Low level Feature Computation

A common approach to obtaining motion is by quan-
tizing it in terms of optical flow (e.g., HOF), computed
from sequences of images depicting the action (as in [49],
[13]). As noted in [10], it can be observed that whole-
body translational motion is not helpful in discerning
human actions, e.g., the difference between running and
walking is due to the distinct patterns of articulation
as compared to difference in speeds which is subjective
and depends on factors such as camera location and
orientation. On the other hand, computed optical flow in
videos of such actions tends to be dominated by whole
body translation, rather than the articulated motion (see
Fig. 3-2nd row). It is therefore, desirable to compensate
for such translational motion by approximate alignment
of the agent performing the action, before computation
of flow. To this end, we employ a simple process which
includes computation of intensity difference images for
consecutive frames, and thresholding of this difference
image to obtain the motion blob, which is then repre-
sented as a coarse bounding box. These bounding boxes
obtained in successive frames are then stacked together
to obtain a sequence of cropped image frames for the
entire training data set. The training is therefore per-
formed in an unsupervised fashion, i.e., estimation of
action primitives does not make use of the labels in the
training data.

The simplicity of our proposed process can be com-
pared with much stricter pre-processing assumptions of
[36] (requiring body contours), [24] (which needs perfect

foreground masks), [51] (landmark joint tracks), and
[4] (employs HOG-based human detection instead of
frame difference). Figure or actor centric spatiotemporal
volumes were also required as input to the methods of
Efros et al [9], and Fathi and Mori [10], who used human
detection, background subtraction, or normalized cross-
correlation based tracking to obtain such volumes.

The videos containing camera motion, for example,
those in KTH or UCF Youtube datasets, are preprocessed
to compensate for the moving camera, by feature based
image alignment (homography from SIFT correspon-
dences). It should be noticed that more complicated
and comprehensive methods can be used in the pre-
processing steps, e.g., Gaussian mixture model based
background subtraction [38], human detection [5], and
model based alignment of human blobs [29], etc.

Lucas-Kanade optical flow is then computed for the
centralized training videos. Some of the noise in optical
flow is eliminated by removing flow vectors with mag-
nitude below a small threshold. The resulting optical
flow captures articulated motion as shown in Fig. 3. The
flow vectors are then assumed to be values taken by
the random variable, f = (x, y, u, v), where (x, y) is a
location in the image, and (u, v) are the horizontal and
vertical components of the optical flow vector at (x, y),
as shown in Fig. 4(a). We propose that an action prim-
itive be described as a Gaussian mixture distribution,
Vq = {μq,Σq, ωq}, i.e.,

pq (f) =
Nq∑
j=1

ωjN (f|μj ,Σj) , (1)

for the qth primitive, where 1 ≤ q ≤ Q, so that there are Q
action primitives (or mixture distributions) in the entire
dataset, which are referred to as V = {Vq}. The goal
of the training (or learning) phase then, is to estimate
the parameters of each such mixture distribution, where
the number of primitive actions (motion patterns), Q, as
well as the number of components Nq , in each pattern’s
mixture distribution are unknown.

3.2 Gaussian Mixture Learning

We begin by performing a K-means clustering of all
the 4d feature vectors obtained, as shown in Fig. 4(b).
The value of K is not crucial and the goal is to obtain
many, low variance clusters, which will become the
Gaussian components in the motion patterns mixture
distributions. In general, larger values of K will result
in better performance, as shown later. It should be noted
though, that the value of K does not affect the number
of primitives obtained eventually, rather it controls the
resolution or quality of the representation. The clustering
is performed separately for D, short disjoint video clips,
each of which contains k frames. The clustering results
in a set of Z Gaussian components, C = {Cz}Zz=1, for the
entire training set, where, Z = K · D = N1 + . . . + NQ;
and the mean, μz , covariance Σz , and weight ωz for the
zth component.
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(a) Optical flow (b) Gaussian mixtures (c) Sampled points

left leg kicking ball moving up leg retraction ball coming down

Fig. 4. Illustration of primitives discovery from optical flow: (a) optical flow for 20 frames from the UCF YouTube
‘s_juggling’ action, shown as colored dots representing flow magnitude and orientation as brightness and color
resp., as per color wheel. Several primitives corresponding to legs and ball motion are intuitively discernable. (b)
K-means clustering and component linking results in statistical representation of primitive instances describing four
sub-actions. Gaussian distributions are shown as error ellipses at 2.5σ, in (x, y,magnitude), but placed in (x, y, time).
(c) optical flow data points sampled from the 4 mixture distributions are almost identical to the original data. Bottom
row shows conditional expectation E

[√
u2 + v2, tan−1( vu )|x, y

]
, of flow for each of the 4 discovered sub-actions.

The eventual goal is to find out which of these com-
ponents belong to each primitive action’s distribution.
We notice that the action primitive, represented as a
motion pattern, repeats itself within the video of an
action (because most action videos are cyclic), as well as
within the training data set (because there are multiple
examples of each action). Therefore, we first attempt to
further group the Gaussian components, such that each
repetition of a primitive is represented by such a high
level group. We employ a Mahalanobis distance based
measure to define a weighted graph, G = {C, E,W},
where E and W are Z × Z matrices corresponding to
edges and their weights. Whenever two components,
Ci and Cj occur in consecutive, k-frames long, video
clips, an edge exists between Ci and Cj , i.e., the element
eij is 1. The weight for the edge between Ci and Cj is
computed as sum of bidirectional squared Mahalanobis
distances,

wij =
(

f̂i − μj

)�
Σ−1

j

(
f̂i − μj

)

+
(

fj − μi

)�
Σ−1

i

(
fj − μi

)
, (2)

where
f̂i = (xi + kui, yi + kvi, ui, vi) (3)

is the forward transition prediction for the ith component
Ci, and

fj = (xj − kuj , yj − kvj , uj , vj) (4)
is the backward transition prediction for the jth com-
ponent. The two, 4d predicted features therefore serve
as the points with respect to which the Mahalanobis
distances are computed, essentially between pairs of
Gaussian components. The weighted graph G, shown
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Fig. 5. Illustration of Graph G for components: (left)
spatial means and covariances shown as colored dots
and ellipses, with color corresponding to mean optical
flow; (right) edge weights depicted by shades of gray.

in Fig. 5, is then converted into an un-weighted one, by
removing edges with weights below a certain threshold.
The threshold is chosen as the Gaussian probability of a
data point at 1.5σ (∼87%), i.e., wij ≤ 2(1.5)2 = 4.5. A con-
nected components analysis of this unweighted graph
gives P sequences (mixtures) of Gaussian components,
each of which is assumed to be a single occurrence of
an action primitive, e.g., one instance of ‘torso moving
down’. Each such sequence of components (action prim-
itive instance) is a Gaussian mixture, Sp = {Cm}, where
1 ≤ p ≤ P , and 1 ≤ m ≤ Mi, where Mi is the number of
Gaussian components in the pth mixture, Sp. We observe
that these action primitives are shared in multiple similar
actions, e.g., ‘right arm going upwards’ is shared by ‘one
hand waving’ as well as ‘both hands waving’ (refer
to Table 2 for more examples).

As mentioned earlier, the instances computed are
multiple occurrences of the same primitive actions. The
final step in training is to merge the representations
of these occurrences into a single Gaussian mixture for
each primitive action, by computing the KL divergence
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(1) (2) (3) (4)

(13) (14) (15) (16)

(25) (26) (27) (28)

(29) (30) (31)

(a) Kecklab Gesture Dataset [24]

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(17) (18) (21) (22)

(b) Weizmann Dataset [36]

(c) Cohn-Kanade Face Expressions Database [40]

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(d) IXMAS Dataset [47]

(e) UCF Sports Dataset [33]

(f) UCF Youtube Dataset [25]
Fig. 6. Some of the action primitives discovered in various datasets are shown by the conditional expected optical
flow of the Gaussian mixtures that represent them. The direction is encoded by color as shown in the color wheel
on bottom right, while the magnitude is depicted by brightness. See Table 2 for a list of actions represented by the
primitives.
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between each Gaussian mixture, and merging the ones
with low divergences. The KL divergence between two
mixtures, Si and Sj is computed using Monte-Carlo
sampling, and finally, we create a P ×P , non-symmetric
positive matrix, Δ, of KL divergences between all P
Gaussian mixtures of primitive instances, so that,

Δ(i, j) = DKL (Si‖Sj) =

Nmc∑
n=1

pi (fn) log
(
pi (fn)
pj (fn)

)
, (5)

where Nmc points are sampled from the Gaussian mix-
ture Si. A graph connected component analysis of the
binarized Δ matrix then gives V, the Q mixture models
of the action primitives. Since true primitives occur
multiple times in the dataset (due to multiple cycles
and/or multiple example videos), primitives composed
of less than 5 instances are removed as noise. Each action
class is represented as a sequence or group of these
primitives, which essentially define a vocabulary of the
human actions. Examples of such Gaussian mixtures for
different actions, gestures, and face expressions datasets
are shown in Fig. 6 as conditional expected optical flow.

The expected values of optical flow magnitude and
orientation for each pixel is a direct visualization of the
4d distribution of a motion pattern, which takes into
account not only the flow at each pixel but also the prob-
ability of that pixel belonging to the motion pattern. The
expected value of horizontal component of flow given a
pixel location for the qth motion primitive is computed
as the weighted mean of conditional expectations of each
component in the Gaussian mixture,

Eq[u|x,y] =
Nq∑
j=1

ωjEj [u|x,y], (6)

and each component’s expectation is given as,

Ej [u|x,y] = μu +

[
σux

σuy

]� [
σxxσxy

σyxσyy

]−1 [
x− μx

y − μy

]
,

(7)
where the random variables u and v are assumed to
be conditionally independent given location, and the
random variables x and y take values (x, y) over the
entire image (omitted in Eq. 7). The conditional expecta-
tion of the vertical component of flow, i.e., Eq[v|x,y], is
computed in a similar manner. Therefore, Eq. 6 computes
a scalar mean at a pixel, and we can finally obtain two
2d matrices, each as the conditional expected horizontal
and vertical components of optical flow respectively.

4 ACTION REPRESENTATION

Given the automatic discovery, and statistical represen-
tation of action primitives, the next step in our proposed
framework is to obtain a representation of the entire
action video. We first deduce the occurrence of these
primitives in a video. This process is straightforward
for the videos used during primitive discovery, since we
know which video each of the components in a Gaussian

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

⏐� ⏐� ⏐� ⏐� × ⏐�

(19) (23) (20) (24) (27) (23)

Fig. 7. Process of obtaining test video representation:
(row 1): 6 frames (1.5 cycles) from Kecklab action ‘go
back’. (row 2): 3 pairs of co-occurring primitive instances
for the test video, shown as Gaussian error ellipses at
1.5σ (colors correspond to mean direction and bright-
ness to mean magnitude). Horizontal braces ({) on top
indicate co-occurring pairs. (row 3): results of primitive
labeling using KL-divergence. Learned primitive with least
divergence picked as label and shown at bottom. Down-
ward arrows indicate correctness of labeling per primi-
tive. The action model is represented by the sequence
T = ({19, 23}, {20, 24}). The only incorrect label is of the
5th detected primitive, labeled as 27 instead of 19. String
matching score (to class model) for this video is 91.67%.

mixture came from. The ith video is then represented
as a temporal sequence of action primitive labels, i.e.,
Ti = {tj}, where tj ∈ [1, Q].

For unseen test videos, this process is similar to the
primitive discovery phase. However, since a test video
is typically short, and contains at most a few cycles of
the action, we do not perform the final step of primitive
instance merging. This is because, for most test videos,
only a single instance of action primitives is observed.
We therefore obtain a set of motion primitives for a
test video, and our goal is to relate these primitive
instances to the previously learned representation, i.e.,
the action primitives learned from the entire training
set which form the action vocabulary. This relationship
is established by finding the KL divergence between
each motion pattern observed in the test video, and
all learned action primitives, and assigning it the label
(or index) of the primitive with the least divergence.
This process is illustrated in Fig. 7, where the second
row shows patterns observed in a particular video, and
the third row shows the corresponding primitives that
each pattern was assigned to. The end result of this
process then, is the representation of the given video,
as a temporal sequence of action primitive labels, e.g.,
T = ({19, 23}, {20, 24}, {27, 23}) in the example in Fig. 7.

We observe in our experiments, that most actions are
adequately represented by very few primitives. This in
part, is due to the nature of the primitive discovery
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Fig. 8. Similarity matrices for all examples in two datasets
using histogram intersection for BoVW, and string match-
ing for primitive strings. Distinct classes are clearly dis-
cernable as squares of high similarity along the diagonal,
for string matching matrices, lending themselves nicely
to unsupervised clustering. The BoVW similarity matrices
are largely random.

process and representation, where a specific sub-action
of a limb, or the torso, is usually decomposed into
at most a few primitives. The motion patterns thus
represent the sub-actions at the highest possible level
of abstraction, e.g., a continuous motion of the right
arm moving upwards need not be broken further. De-
pending on complexity of articulation, an action can be
represented by as few as one, or as many as ten or
so primitives. Actual examples of strings representing
different action classes are provided in Table 2.

For evaluation of the quality and discriminative nature
of our proposed primitive actions, we put forth three
different high level representations of an action video,
all of which employ the observed primitives. These
representations are described in detail in the following
sections.

4.1 Histograms of Action Primitives

Given the primitive instances observed in an action
video, the simplest way to represent the video is to
ignore the temporal sequence, and collapse the sequence
T into a histogram. The number of bins in this histogram
is Q, the total number of primitives discovered in the
dataset, and the value of each bin is the number of
times that particular primitive is observed in the video.
In order to make the histogram invariant to the number
of action cycles, or the length of the video, the histogram
is normalized to sum to 1. This histogram is analogous
to the standard bag of video words histogram, and can
be termed as a ‘bag of action primitives’ (BoAP), but

has much fewer bins, is much more sparse, and there-
fore discriminative as compared to BoVW histograms.
Specifically, given R instances discovered in the tth test
video, each a Gaussian mixture Sr, we generate an R×Q
matrix, Dt, where,

Dt (r, q) =
1

DKL (Sr‖Vq)
, (8)

and then create a Q dimensional, weighted histogram as,

Ht =

R∑
r=1

Dt (r, q) . (9)

Each bin in the histogram therefore, provides the likeli-
hood of occurrence of a learned motion primitive in the
test video. Given such a histogram, a supervised training
based recognition (e.g., using nearest neighbor, or SVM
classification), as well as, unsupervised action clustering
(using histogram intersection as similarity measure) is
performed and results are reported in Section 5.

4.2 Strings of Action Primitives

Another choice for action representation is to employ
the string of primitive labels, T , instead of a histogram,
which will preserve the temporal order of occurrence
of each of the action primitives. The problem of action
recognition then reduces to a simple string matching,
where the letters in the string represent the primitive
index between 1 and Q. Again, such strings can be used
to perform supervised nearest neighbor classification, as
well as unsupervised clustering using string matching
scores as similarity measure.

We perform string matching using the well known
Needleman-Wunsch algorithm [28], which is a linear
global optimization method. We therefore obtain a con-
fidence score in a particular matching. The matching
score between two action videos, i and j, is written as
Θ(Ti, Tj), and the scores for all possible alignments are
computed using the following recursive relationship:

A(m,n) = max

⎧⎨
⎩

A(m− 1, n− 1) + b(Tm
i , Tn

j )
A(m− 1, n)− g
A(m,n− 1)− g

A(m, 0) = −mg

A(0, n) = −ng

A(0, 0) = 0, (10)

where,

b
(
Tm
i , Tn

j

)
=

{
1 : Tm

i ≡ Tn
j ,

−0.5 : otherwise
(11)

and g is the gap penalty set to -1. The matching score
Θ(Ti, Tj) is the maximum score alignment, A(m,n).

For each action class, we have as many strings as the
number of examples. A test string is compared to each
training string, and is assigned the label of the class
with the highest matching score, essentially a nearest
neighbor approach. In order to handle co-occurring pairs
(or groups), they are sorted arbitrarily, and for string
matching, all possible permutations are tried, and the
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best chosen. Despite the simplicity of the recognition
approach, very encouraging results are obtained as re-
ported in Section 5, which is a direct consequence of the
discriminative nature and high level of abstraction of the
proposed action representation. In actuality, we observed
that even a literal string matching performs reasonably
well without global alignment [28] of primitive labels. In
order to test if the motion patterns based representation
is discriminative enough, we visualize histogram inter-
section and string matching based similarities between
examples of actions, some of which are shown in Fig. 8.

4.3 Temporal Model of Action Primitives

Given that in our framework a video is essentially
a temporal sequence of primitive actions, where each
primitive is observed with a specific probability or con-
fidence (KL divergence), one of the most succinct and
information preserving ways to represent an action class
is by learning a Hidden Markov Model (HMM) for
the primitive sequences. HMMs [31] have been used
extensively in speech recognition, object tracking, as
well as human action recognition. Given discrete, finite
valued time series of action primitives, Ti as represen-
tation of the ith video, our goal is to learn a discrete
HMM, λl = {Al , Bl , πl }, for each action class l ∈ [1,L],
where Al is the state transition matrix, πl is the initial
distribution or prior, and Bl represents the probability
distributions for the observed feature vector conditional
on the hidden states, which are assumed to be repre-
sented as a Gaussian mixture model as is traditionally
done. The maximum likelihood approach is then used
to classify each action example:

l ∗ = argmax
l

P (Ti|λl ) , (12)

that is, the conditional probability of an action video i,
represented by the feature vector Ti, the sequence of
action primitive labels, given the model for action l ∗

is maximum among all classes. The number of states
for each class model was chosen to be 5 in all our
experiments.

5 EXPERIMENTS

The proposed primitive representation has been eval-
uated for five human action datasets, as well as a
composite dataset, two human gestures datasets, and a
facial expressions database. We tested our representation
using three different high level representations (strings,
histograms, and HMMs), for three distinct applications
(unsupervised clustering, 1/k-shot recognition, and con-
ventional supervised recognition), to show represen-
tation and recognition quality and performance. Our
extensive experiments on a variety of datasets provide
insight into not only how our framework compares
with state-of-the-art, but also into the very nature of
the action recognition problem. For most of the experi-
ments, we demonstrate the superiority of the proposed
representation compared to existing methods as detailed

TABLE 1
Some statistics related to experiments. Notice that as
few as 55 action primitives sufficiently represent even

large datasets (e.g., composite dataset with 25 classes).

Supervised Value of # primitive # initial # final
K instances primitives primitives

Kecklab [24] 20 620 45 31
Weizmann [36] 30 2000 52 35
KTH [35] 50 15000 60 29
UCF Sports [33] 50 3500 400 300
UCF YouTube [25] 50 4000 400 200
Cohn-Kanade [40] 30 740 41 24

Unsupervised

Kecklab [24] 50 700 50 37
Weizmann [36] 50 2500 43 26
KTH [35] 50 15500 51 20
IXMAS [47] 50 820 48 30
Composite 50 19800 88 55
UCF Sports [33] 50 3500 450 211
UCF YouTube [25] 50 4200 490 309
Cohn-Kanade [40] 30 740 56 37

TABLE 2
Action primitives used in each of Kecklab gesture, and

Weizmann datasets to represent different action classes.
A primitive can be part of multiple actions, while an

action may be represented by a single primitive.
Primitives grouped by {} co-occur in a clip.

Kecklab Gesture

Action Primitives Action Primitives

Turn left 1, 2 Attention right 13, 14
Turn right 5, 6 Attention both {9, 14}, {10, 13}
Turn both {1, 5}, {2, 6} Speed up 27, 28
Stop left 3, 4 Come near {19, 23}, {20, 24}
Stop right 7, 8 Go back {17, 21}, {18, 22}
Stop both {3, 7}, {4, 8} Close distance {11, 16}, {12, 15}
Attention left 9, 10 Start engine 31

Weizmann

Action Primitives Action Primitives

Bending 17, 18 Sideways gallop 7, {9, 10},
8, {11, 12}

1 hand Waving 1, 2 Walking {13, 14}, {15, 16},
19, 20

2 hand waving{1, 4}, {2, 3} Jumping 23, 24, 25, 7, 8
Running 5, 6 Jumping Jacks 7, {9, 10}, {1, 4},

8, {11, 12}, {2, 3}
Para-jumping 7, 8 Skipping 21, 22

in the following subsections. Some key statistics related
to learning of action primitives as motion patterns, are
summarized in Table 1.

5.1 Unsupervised Clustering

As mentioned earlier the problem of collecting a large
number of labelled examples for training is a labori-
ous task. On the other hand, in practical scenarios the
available videos to be recognized or classified are mostly
unlabelled. Indeed the vast amount of visual data in the
public domain falls in this category, e.g., web sources like
YouTube, etc. It is therefore desirable to attempt group-
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TABLE 3
Quantitative comparison of different representations for

unsupervised clustering with and without actor
centralization. BBx in column 2 implies ‘bounding box’.

Method Bag of video words

No BBx Dense Sampling Action
Not Dense in Bounding Box Primitives

Dollar Dollar ISA MBH (proposed)
Dataset [8] [8] [23] [43]

Weizmann 67% 69.2% 69.9% 72.5% 91%
KTH 65% 61.0% 63.6% 67.2% 91%
IXMAS 53% 51.2% 53.6% 67.2% 63%
UCF Sports 63% 59% 61.7% 61.9% 68%
UCF Youtube 49% 37% 36.7% 41.2% 54%
Composite 43% 41% 42% 45.8% 79%

ing of such videos into meaningful categories, without
provision of training examples or user intervention. This
problem is referred to as unsupervised clustering.

In this experiment, all videos in the dataset are used to
learn the action primitives representation, and the videos
are represented as strings of primitive labels. A value of
50 was used for K (in k-means) for all datasets except the
Cohn-Kanade face expressions databased, where K =30.
A string matching similarity matrix of all videos is
then constructed (Fig. 8), and clustering is performed by
thresholding and graph connected components to obtain
groups of videos. Each video in a cluster is then assigned
the same label as that of the dominating class within
the cluster, and comparison of the assigned label with
the ground truth label, provides classification accuracy.
The results of these experiments on most datasets are
summarized in Table 3.

This experiment truly reveals the discriminative
power of any representation, because if the represen-
tation is truly unique, one would expect a high intra-
class similarity and a high inter-class distance in the fea-
ture space, thus reasonably lending the features or data
points to clustering. In order to simplify interpretation
of results, we fixed the number of clusters to the number
of classes in the dataset. It can be observed that the same
experiment can be performed without this constraint.
The labels of the videos however, were not used during
the entire process (except evaluation). Obviously, this
experimental setup will achieve much lower classifi-
cation scores as compared to supervised recognition,
but our goal is to compare the results across different
representations, including the ones achieving state-of-
the-art performance in traditional supervised recognition
scenarios.

As reported in Table 3, the proposed action primitives
based representation outperforms all other methods for
nearly all datasets. One can argue (and rightly so) that
a comparison of unsupervised clustering using the pro-
posed algorithm is not comparable to other techniques
due to the advantage of actor centralization. We there-
fore compared a number of existing techniques using
the same exact actor bounding boxes for all methods.

Moreover, since our action primitives can be interpreted
as dense, pixel-level representation, we performed the
quantitative comparison using other dense features as
well. We can make several interesting observations from
the results presented in Table 3.

First, among some of the best existing features, the
motion boundary histogram (MBH) feature [43], consis-
tently performs the best.

Second, as expected, the use of actor centralized vol-
umes instead of features computed on the full frame
performs comparably in relatively simpler videos, but as
they becomes more complex this trend is reversed. The
reason for this result is that most of the ‘important’ or
discriminative features (video words) tend to appear on
the background instead of the actor’s body. Therefore,
for ‘actions in the wild’ videos, the success of bag of
words based methods mostly relies on capturing the
scene information. The same observation has been made
by Kuehne et al [21], where it is shown that the Gist
descriptor performs only 5% worse than HOG/HOF on
UCF YouTube, and actually performs 2% better than
HOG/HOF on UCF Sports. Features capturing the back-
ground scene information are indeed useful in improv-
ing quantitative performance, but they obviously are
not representative of the action (motion) itself, rather
the characteristics of the particular dataset. Indeed, as
we report later, by augmenting our representation with
scene information, we were able to reach close to the
state-of-the-art in supervised recognition.

Third, we observe that the proposed action primitives
based representation outperforms all other methods on
all datasets with very significant margins, with the ex-
ception of IXMAS dataset, where dense MBH features
on actor bounding boxes performs ∼4% better.

• Composite Dataset: We also experimentally demon-
strate and quantify our claim that the proposed rep-
resentation is flexible and discriminative. In addition
to recognition from very few examples, and achieving
significantly better accuracy for unsupervised clustering
compared to conventional methods, another test of these
claims is to perform action recognition across multiple
datasets, i.e., truly representative features, vocabulary, or
primitives of an action should be common for a class,
across datasets.

We perform this experiment by combining three
sources, namely, the KTH, IXMAS, and the Weizmann
datasets to obtain a ‘Composite’ set of 25 action classes.
We performed a variety of experiments with this dataset.
First, the classification accuracy for the composite dataset
is obtained by attempting unsupervised (unlabeled) clus-
tering of videos. The action primitives are learned using
all the videos of the composite set, and as shown in
Table 1, 55 primitive actions are discovered. As listed
in Table 3, clustering by thresholding a graph of string
similarity scores resulted in a classification accuracy of
79%, compared to only 43% for BoVW using a codebook
of size 500 (>9 times the size of our vocabulary). The
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improvement of 36% over 25 action categories, even with
a more compact vocabulary, is only possible if most of
the learned action primitives are exclusive to specific
action classes, thus resulting in representations of videos
that are sparse in terms of the primitives. Our approach
significantly outperforms the state-of-the-art descriptors
of independent subspace analysis (ISA) [23] and mo-
tion boundary histograms (MBH) [43], even when all
methods employ the same figure-centric volumes. The
confusion table obtained by classification via clustering
is shown in Fig. 9(b).

• Cross-dataset Grouping: Another interesting experi-
ment performed using the Composite dataset was, to
use the 55 action primitives learned in the Compos-
ite dataset (Weizmann + KTH + IXMAS), to represent
and classify videos in the 3 datasets individually, and
compare the performance against the representation
using dedicated, indigenous primitives learned within
each dataset (i.e., against results reported in Table 3).
Naturally, it is expected that the performance would
degrade using the composite primitives, due to larger
variance in shared actions, and more noise. However, a
meaningful high-level representation should be largely
robust to these problems, which is what we observed
in our experiments. The performance using composite
primitives on Weizmann, KTH, and IXMAS, was 86%,
88%, and 59% respectively, compared to 91%, 91%, and
63% respectively for the individual datasets, which is a
very insignificant deterioration.

• Kecklab Gesture Dataset: Unsupervised clustering
over the entire Kecklab gesture dataset was also per-
formed using the proposed action primitives represen-
tation, as described before, and the proposed method
obtained an average classification accuracy of 91.64%.
This performance is very close to supervised recognition
accuracy using labeled training examples with the same
representation, i.e., 94.64% (Table 7).

• Cohn-Kanade Expressions Database: The application
of unsupervised clustering on the facial expressions
database resulted in an average accuracy of 82.1% which
is comparable to supervised learning accuracy of 81.0%
([33]) and 86.7% (proposed representation).

• Effect of Parameter K: We also quantified the effect
of the parameter, K, the number of components in each
video clip obtained using the K-means algorithm. The
larger values of K essentially correspond to increased
granularity of representation (even though the distribu-
tion is defined continuously space and flow space). We
observed that as conjectured earlier, a high, computa-
tionally reasonable value of K, lets the performance of
our method peek and level out. This can be observed
in Fig. 9(a) where results of unsupervised clustering are
quantified for different values of K.

As mentioned earlier, it should be noted that although
the performance of the proposed approach as well
as competitive methods for unsupervised clustering is
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Fig. 9. Classification accuracy by unsupervised clustering
using proposed primitives. (a) shows the increase in
performance as the value of K, in the K-means cluster-
ing is increased. The confusion matrix for the 25 class
‘composite’ dataset is shown in (b); avg. accuracy was
79%.

lower than the state of the art, it is a much harder
problem as well. This is due to the lack of labeled train-
ing examples, which can be used to learn classification
boundaries between positive and negative examples,
even when the data points representing videos cannot
otherwise be grouped in the high dimensional space. To
conclude this section, we summarize two main points:
(1) a discriminative representation is one where visual
similarity (in feature space) is highly correlated with
semantic similarity (same class/category), and should
therefore allow feature based grouping of unlabelled
videos; and (2) in order to be applicable to real life,
practical scenarios, the representation of an action should
capture the action (motion and articulation) of the ac-
tor (albeit with some static context), rather than the
background scene which may serve to artificially inflate
performance.

5.2 One-shot and K-shot Learning

To quantify the discriminative power of our represen-
tation, we attempted action recognition using as few as
possible training examples using the proposed method.
This experiment was performed for Kecklab Gesture,
Weizmann, and UCF YouTube datasets, as well as Cohn-
Kanade face expressions database, and the recently
posed ChaLearn Gesture Challenge dataset [1].

Fig. 10 shows the performance of the proposed repre-
sentation using a variable number of training examples,
as well as comparison to BoVW framework with same
settings using Dollar [8] features. For the Kecklab train-
ing dataset, 9 examples per action class are available,
and we performed incremental learning and recognition
increasing the number of available videos from 1 to 9,
while testing on the entire test set in each increment. For
the Weizmann dataset, we trained using an increasing
number of videos (1 to 8), as we added videos from each
of the 9 performers incrementally. In each increment, all
the unused videos were tested upon. Therefore, in the
first increment, videos from 8 actors were tested using
videos from 1 actor as training, and vice versa for the last
increment. For both datasets, using even a single training
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Fig. 10. Classification of actions using a variable number
of training examples. The values corresponding to 1 on
the X-axis are essentially results of one-shot learning.
Using our method, an average accuracy of around 80%
is obtained for both the Kecklab gesture and Weizmann
datasets, using a single training example per class for
primitive discovery and training video representation. The
proposed method outperforms BoVW by a large margin.

TABLE 4
Quantitative comparison of different methods for

one-shot learning on ChaLearn dataset [1] (average
accuracy for development batches 1-10)

Method Average accuracy

ISA [23] 25.4%
MACH 3D [33] 34.67%
MBH [43] 32.4%
STIP [22] 16.4%
Proposed action primitives 56.34%

example per action class, around 80% recognition rate is
achieved, compared to about 30% for BoVW.

• ChaLearn Gesture Challenge Dataset: Recently a
new comprehensive dataset of videos of human actors
performing a variety of gestures has been made available
to researchers under the Microsoft ChaLearn Gesture
Challenge [1]. The goal of the challenge is to employ
systems to perform gesture recognition from videos con-
taining diverse backgrounds, using a single example per
gesture, i.e., one-shot learning.

We have used this dataset to test and compare the abil-
ity of our proposed representation for one-shot learning.
Specifically, we used the first 10 development batches out
of the available hundreds. Each batch has approximately
15 training and 20 test videos. The videos are captured
from frontal views with the actor roughly centralized
and no camera motion. The actor centralization step was
not performed for this dataset. Although the gestures
performed in this dataset were simultaneously captured
from a color video camera as well as a depth camera (us-
ing the KinectTM camera), we only used the RGB videos
for our experiments. Table 4 shows a comparison of
different well-known approaches to the proposed tech-
nique. It should be noted that all experimental settings
for these comparative evaluations were the same. As
evident from the quantitative comparison, the proposed
representation is well suited to capturing human motion
from a single example, and is by far the best performer.

TABLE 5
Results of k-shot recognition on the Cohn-Kanade face

expression database. BoW framework employs MBH [43]
with actor centralization and dense sampling.

# of examples 1 4 7 10

BoW 41.2% 44.5% 52.1% 60.5%
Proposed 65.1% 70.9% 74.2% 79.3%

TABLE 6
Comparison of k-shot recognition on UCF YouTube

dataset. BoW framework employs MBH [43] with actor
centralization and dense sampling.

# of examples 1 10 20 30 40 50

BoW 11.2% 20.6% 28.9% 35.4% 39% 43%
Proposed 19.3% 31.3% 39.2% 46.3% 50% 51%

We also compared the performance of our approach
against the state-of-the-art MBH descriptor [43] using
the same settings as action primitives (actor centraliza-
tion and dense sampling), for the Cohn-Kanade face
expressions and UCF YouTube datasets. The results of
these comparisons are shown in Tables 5 and 6. For
the Cohn-Kanade database, we randomly chose 1, 4,
7, and 10 examples for training, and tested on the
rest. The results were averaged over 10 runs. Similarly
for the UCF YouTube dataset, 1, 10, 20, 30, 40, and
50 videos for each class, and tested on the rest. The
reported accuracies were averages of 50 runs. For all the
experiments, the BoVW method used exactly the same
training and testing samples. The only difference is that
the proposed approach learns action primitives, while
the BoVW framework learns the codebook from the
training samples. Given the same advantage of figure-
centric volumes to both approaches, action primitives
demonstrate their highly discriminative yet flexible na-
ture in one and k shot recognition.

5.3 Supervised Recognition

Finally, for the sake of completeness and comparison
to results in the existing literature, we present our re-
sults using the traditional supervised learning approach.
In this experiment, a dataset is divided into training
and testing sets. The primitive action representation is
learned from examples in the training sets. The training
videos are then represented as strings of the primitive
labels. Given a test video, pattern instances are esti-
mated using the proposed approach, which are then
represented as Gaussian mixtures. These distributions
are then compared against the learned primitive distri-
butions using KL divergence, and labeled. The test video
is thus also represented as a string of learned primi-
tives. Finally, a string matching based nearest neighbor
classifier is employed to assign an action label to the
test video. The results on different datasets using this
approach are reported in Table 7.

The experimental settings (train-test partitions, cross
validation methodology, etc.) used in our experiments
are the same as the original papers. The Kecklab gesture
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dataset [24] is already partitioned into training and
test sets. The Weizmann dataset [36], which consists of
videos of 10 actions performed by 9 individual actors,
is tested using leave-one-out cross validation as in [36].
UCF Sports and YouTube datasets were experimented
with using the original settings of the corresponding
papers, i.e., [33] (leave-one-out) and [25] (25 fold cross
validation) respectively. 25 fold cross validation was also
performed for KTH.

In order to provide a fair comparison, the first 3 rows
of Table 7 use actor centralization and dense sampling
of features within actor bounding boxes (same as ac-
tion primitives). Moreover, instead of a string matching
based nearest neighbor classification, we use a histogram
of action primitive labels trained using an SVM clas-
sifier (same as ISA and MBH). For string matching
and HMM based nearest neighbor recognition, the UCF
Sports dataset was recognized with average accuracies
of 61% and 85% respectively. These accuracies for the
UCF YouTube dataset were 42% and 51% respectively.
The worse performance of strings and HMM can be at-
tributed to the fact that temporal order is not too helpful
within short videos where actions are represented by
very few primitives.

On simpler datasets like Kecklab gesture, Weizmann,
and KTH, it can be observed that the performance of
using the actor centralized videos is almost the same
as the state-of-the-art features using original full frames.
However, on more complex videos like the UCF Youtube
dataset, a significant drop in performance from the
original videos to centralized videos is noticeable for
not only the proposed approach but also state-of-the-
art descriptors like ISA and MBH. As mentioned earlier
in Section 5.1, the reason for this drop is that many of
the video words contributing to discriminative power
of the histogram feature, appear on the background
scene instead of the human body. The goal of our action
representation framework however, is not to capture
static scene properties, but the motion and articulation
of the actor. To verify our hypothesis about the reason
for this performance drop, we augmented the action
primitives histogram with dense SIFT bag of words
feature computed on only the non-actor pixels, and were
able to improve the performance from 57% to 79.5%, and
to 86.9% when we used MBH features instead of SIFT. So
our method performed comparably to the state-of-the-art
when recognition is truly based on the actor’s motion.

• Cohn-Kanade Expressions Database: Our represen-
tation is also readily applicable to subtle motions like
videos of facial expressions. We tested our hypothe-
sis on the Cohn-Kanade AU-Coded Facial Expression
Database [40], which contains videos of multiple humans
depicting various expressions corresponding to human
emotions. Facial action units (AU) have often been used
to describe expressions. Our experiments were carried
out to classify action units into one of seven upper
face AU classes, as was done in [33]. Using 24 motion

primitives (some of which are shown in Fig. 6), the
proposed method achieved an average accuracy of 86.7%
using four fold cross validation, compared to 81% in [33].

6 CONCLUSION

This paper has proposed a method that automatically
discovers a flexible and meaningful vocabulary of ac-
tions using raw optical flow, learns statistical distribu-
tions of these primitives, and because of the discrimi-
native nature of the primitives, very competitive results
are obtained using the simplest recognition and classi-
fication schemes. Our representation offers benefits like
recognition of unseen composite action, insensitivity to
occlusions (partial primitive list), invariance to splitting
of primitive during learning, detection of cycle extents
and number, etc. The meaningful nature of the primitives
is also promising towards closing the gap between visual
and textual representations and interpretations.
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