
115

Video Description: A Survey of Methods, Datasets,

and Evaluation Metrics

NAYYER AAFAQ, AJMAL MIAN, and WEI LIU, The University of Western Australia, Australia

SYED ZULQARNAIN GILANI, The University of Western Australia and Edith Cowan University

MUBARAK SHAH, University of Central Florida, USA

Video description is the automatic generation of natural language sentences that describe the contents of a

given video. It has applications in human-robot interaction, helping the visually impaired and video subtitling.

The past few years have seen a surge of research in this area due to the unprecedented success of deep

learning in computer vision and natural language processing. Numerous methods, datasets, and evaluation

metrics have been proposed in the literature, calling the need for a comprehensive survey to focus research

efforts in this flourishing new direction. This article fills the gap by surveying the state-of-the-art approaches

with a focus on deep learning models; comparing benchmark datasets in terms of their domains, number of

classes, and repository size; and identifying the pros and cons of various evaluation metrics, such as SPICE,

CIDEr, ROUGE, BLEU, METEOR, and WMD. Classical video description approaches combined subject, object,

and verb detection with template-based language models to generate sentences. However, the release of large

datasets revealed that these methods cannot cope with the diversity in unconstrained open domain videos.

Classical approaches were followed by a very short era of statistical methods that were soon replaced with

deep learning, the current state-of-the-art in video description. Our survey shows that despite the fast-paced

developments, video description research is still in its infancy due to the following reasons: Analysis of video

description models is challenging, because it is difficult to ascertain the contributions towards accuracy or

errors of the visual features and the adopted language model in the final description. Existing datasets neither

contain adequate visual diversity nor complexity of linguistic structures. Finally, current evaluation metrics

fall short of measuring the agreement between machine-generated descriptions with that of humans. We

conclude our survey by listing promising future research directions.
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1 INTRODUCTION

Describing a short video in natural language is a trivial task for most people, but a very challenging
one for machines. Automatic video description involves understanding of many entities and the
detection of their occurrences in a video employing computer vision techniques. These entities in-
clude background scene, humans, objects, human actions, human-object interactions, human-human
interactions, other events, and the order in which events occur. All this information must then be
articulated using a comprehensible and grammatically correct text employing Natural Language
Processing (NLP) techniques. Over the past few years, these two traditionally independent fields,
Computer Vision (CV) and Natural Language Processing (NLP), have joined forces to address the
upsurge of research interests in understanding and describing images and videos. Special issues
of journals are published focusing on language in vision [2] and workshops uniting the two areas
have also been held regularly at both NLP and CV conferences [6–8, 89].

Automatic video description has many applications in human-robot interaction, automatic video
subtitling, and video surveillance. It can be used to help the visually impaired by generating verbal
descriptions of surroundings through speech synthesis or automatically generate and read out film
descriptions. Currently, these are achieved through very costly and time-consuming manual pro-
cesses. Another application is the description of sign-language videos in natural language. Video
description can also generate written procedures for human or service robots by automatically
converting actions in a demonstration video into simple instructions; for example, assembling fur-
niture, installing a CD-ROM, making coffee, or changing a flat tire [4, 20].

The advancement of video description opens up enormous opportunities in many application
domains. It is envisaged that in the near future, we will be able to interact with robots in the
same manner as with humans [119]. If video description is advanced to the stage of being able to
comprehend events unfolding in the real world and render them in spoken words, then Service
Robots or Smart phone Apps will be able to understand human actions and other events to converse
with humans in a much more meaningful and coherent manner. For example, they could answer
a user’s question as to where they left their wallet or discuss what they should cook for dinner.
In industry settings, they could potentially remind a worker of any actions/procedures that are
missing from a routine operation. The recent release of a dialogue dataset, Talk the Walk [149], has
introduced yet another interesting application where a natural language dialogue between a guide
and a tourist helps the tourist to reach a previously unseen location on a map using perception,
action, and interaction modeling.

Leveraging the recent developments in deep neural networks for NLP and CV, and the increased
availability of large multi-modal datasets, automatically generating stories from pixels is no longer
science fiction. This growing body of work has mainly originated from the robotics community
and can be labeled broadly as language grounded meaning from vision to robotic perception [121].
Related research areas include connecting words to pictures [15, 16, 31], narrating images in nat-
ural language sentences [38, 74, 80], and understanding natural language instructions for robotic
applications [50, 90, 136]. Another closely related field is Visual Information Retrieval (VIR), which
takes visual (image, drawing, or sketch), text (tags, keywords, or complete sentences), or mixed vi-
sual and text queries to perform content-based search. Thanks to the release of benchmark datasets
MS COCO [83] and Flicker30k [164], research in image captioning and retrieval [33, 37, 66, 88], and
image question answering [9, 87, 111, 168] has also become very active.

Automatically generating natural language sentences describing the video content has two com-
ponents: understanding the visual content and describing it in grammatically correct natural lan-
guage sentences. Figure 1 shows a simple deep learning–based video captioning framework. The
task of video description is relatively more challenging, compared to image captioning, because
not all objects in the video are relevant to the description—such as the detected objects that do not
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Fig. 1. A basic framework for deep learning–based video captioning. A visual model encodes the video frames

into a vector space. The language model takes input of visual vector and word embeddings to generate the

sentence that describes the input visual content.

play any role in the observed activity [14]. Moreover, video description methods must additionally
capture the speed, direction of relevant objects, as well as causality among events, actions, and
objects. Finally, events in videos can be of varying lengths and may even result in a possible over-
lap of events [70]. See Figure 2, for example: The event of piano recitals is spanned over almost
the entire duration of the video, however, the applause is a very short event that only takes place
at the end. The example illustrates differences between three related areas of research—namely,
image captioning, video captioning, and dense video captioning. In this example, image captioning
techniques recognize the event as mere clapping, whereas it is actually applause that resulted from
a previous event—piano playing.

Figure 3 summarizes related research under the umbrella of Visual Description. The classifica-
tion is based on whether the input is still images (Image Captioning) or multi-frame short videos
(Video Captioning). Note, however, that short video captioning is very different from video auto-
transcription where audio and speeches are the main focus. Video captioning concerns mainly
the visual content as opposed to the audio signals. In particular, Video Description extends video
captioning with the aim to provide a more detailed account of the visual contents in the video.

Below, we define some terminology used in this article.

• Visual Description: The unifying concept encompassing (see Figure 3) the automatic gener-
ation of single or multiple natural language sentences that convey the information in still
images or video clips.

• Video Captioning: Conveying the information of a video clip as a whole through a single
automatically generated natural language sentence based on the premise that short video
clips usually contain one main event [11, 33, 43, 101, 144, 162].

• Video Description: Automatically generating multiple natural language sentences that pro-
vide a narrative of a relatively longer video clip. The descriptions are more detailed and
may be in the form of paragraphs. Video description is sometimes also referred to as story
-telling or paragraph generation [114, 167].

• Dense Video Captioning: Detection and conveying information of all, possibly overlapping,
events of different lengths in a video using a natural language sentence per event. As illus-
trated in Figure 2, dense video captioning localizes events in time [70, 107, 158, 163] and
generates sentences that are not necessarily coherent. However, video description gives a
more detailed account of one or more events in a video clip using multiple coherent sen-
tences without having to localize individual events.

Video captioning research started with the classical template-based approaches in which
Subject (S), Verb (V), and Object (O) are detected separately and then joined using a sentence
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Fig. 2. Illustration of differences between image captioning, video captioning, and dense video captioning.

Image (video frame) captioning describes each frame with a single sentence. Video captioning describes the

complete video with one sentence. In dense video captioning, each event is temporally detected and described

by a single sentence eventually resulting in multiple sentences localized in time but not necessarily coherent.

Fig. 3. Classification of visual content description. This survey focuses on video only and not images.

template. These approaches are referred to as SVO-Triplets [14, 68]. However, the advent of deep
learning and the tremendous advancements in CV and NLP have equally affected the area of video
captioning. Hence, latest approaches follow deep learning–based architectures [117, 144] that en-
code the visual features with 2D/3D-CNN and use LSTM/GRU to learn the sequence. The output
of both approaches is either a single sentence [100, 160] or multiple sentences [14, 29, 62, 114, 129,
167] per video clip. Early research on video description mostly focused on domain-specific short
video clips with limited vocabularies of objects and activities [14, 29, 61, 68, 119, 165]. Description
of open domain and relatively longer videos remains a challenge, as it needs large vocabularies
and training data. Methods that follow CNN-LSTM/GRU framework mainly differ from each other
in the different types of CNNs and language models (vanilla RNN, LSTM, and GRUs) they employ
as well as how they pass the extracted visual features to the language model (at the first time-step
only or all time-steps). Later methods progressed by introducing additional transformations on
top of the standard encoder-decoder framework. These transformations include attention mecha-
nism [162], where the model learns which part of the video to focus on; sequence learning [144],
which models a sequence of video frames with the sequence of words in the corresponding sen-
tence; semantic attributes [43, 101], which exploit the visual semantics in addition to CNN features,
and joint modeling of visual content with compositional text [100]. More recently, video-based vi-
sual description problem has evolved towards dense video captioning and video story-telling. New
datasets have also been introduced to progress along these lines.

When it comes to performance comparison, quantitative evaluation of video description systems
is not straightforward. Currently, automatic evaluations are typically performed using machine

ACM Computing Surveys, Vol. 52, No. 6, Article 115. Publication date: October 2019.



Video Description: A Survey of Methods, Datasets, and Evaluation Metrics 115:5

translation and image captioning metrics, including Bilingual Evaluation Understudy (BLEU)
[102], Recall Oriented Understudy for Gisting Evaluation (ROUGE) [82], Metric for Evaluation of
Translation with Explicit Ordering (METEOR) [12], Consensus-based Image Description Evalua-
tion (CIDEr) [142], and the recently proposed Semantic Propositional Image Captioning Evaluation
(SPICE) [5] and Word Mover’s Distance (WMD) [76] metrics. Section 4.1 presents these measures.
Here, we give a brief overview to establish motivation for our survey. BLEU is a precision-based
metric, which accounts for precise matching of n-grams in the generated and ground truth ref-
erences. METEOR, however, first creates an alignment between the two sentences by comparing
exact tokens, stemmed tokens, and paraphrases. It also takes into consideration the semantically
similar matches using WordNet synonyms. ROUGE, similar to BLEU, has different n-grams-based
versions and computes recall for the generated sentences and the reference sentences. CIDEr is a
human-consensus-based evaluation metric, which was developed specifically for evaluating image
captioning methods but has also been used in video description tasks. WMD makes use of word
embeddings (semantically meaningful vector representations of words) and compares two texts
using the Earth Mover’s Distance (EMD). This metric is relatively less sensitive to word order and
synonym changes in a sentence and, like CIDEr and METEOR, it provides high correlation with
human judgments. Last, SPICE is a more recent metric that correlates more with human judg-
ment of semantic quality as compared to previously reported metrics. It compares the semantic
information of two sentences by matching their content in dependency parse trees. These metrics
capture very different performance measures for the same method and are not perfectly aligned
with human judgments. Also, due to the hand-engineered nature of these metrics, their scores
are unstable when the candidate sentence is perturbed with synonyms, word order, length, and
redundancy. Hence, there is a need for an evaluation metric that is learned from training data to
score in harmony with human judgments in describing videos with diverse content.

The current literature lacks a comprehensive and systematic survey that covers different as-
pects of video description research, including methods, dataset characteristics, evaluation mea-
sures, benchmark results and related competitions, and video Q&A challenges. We fill this gap and
present a comprehensive survey of the literature. We first highlight the important applications and
major trends of video description in Section 1 and then classify automatic video description meth-
ods into three groups, giving an overview of the models from each group in Section 2. In Section 3,
we elaborate on the available video description datasets used for benchmarking. Furthermore, we
review the evaluation metrics that are used for quantitative analysis of the generated descriptions
in Section 4. In Section 5, benchmark results achieved through the aforementioned methods are
compared and discussed. In Section 6, we discuss the possible future directions. Section 7 concludes
our survey and discusses some insights into the findings.

2 VIDEO DESCRIPTION METHODS

Video description literature can be divided into three main phases: The classical methods phase,
where pioneering visual description research employed classical CV and NLP methods to first
detect entities (objects, actions, scenes) in videos and then fit them to standard sentence templates.
The statistical methods phase, which employed statistical methods to deal with relatively larger
datasets. This phase lasted for a relatively short time. Finally, the deep learning phase, which is the
current state-of-the-art and is believed to have the potential to solve the open domain automatic
video description problem. Below, we give a detailed survey of the methods in each category.

2.1 Classical Methods

The SVO (Subject, Object, Verb) tuples-based methods are among the first successful methods used
specifically for video description. However, research efforts were made long before to describe
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visual content into natural language, albeit not explicitly for captioning or description. The first-
ever attempt goes back to Koller et al. [69] in 1991, who developed a system that was able to
characterize motion of vehicles in real traffic scenes using natural language verbs. Later, in 1997,
Brand et al. [20] dubbed this as “Inverse Hollywood Problem” (since in Hollywood script (descrip-
tion) is converted into video; here, the problem is opposite), and described a series of actions into
semantic tag summaries to develop a storyboard from instructional videos. They also developed a
system, “video gister,” which was able to heuristically parse the videos into a series of key actions
and generate a script that describes actions detected in the video. They also generated key frames
depicting the detected causal events and defined the series of events into semantics representa-
tion, e.g., Add by enter, motion, detach and remove by attach, move, leave. Video gister
was limited to only one human arm (actor) interacting with non-liquid objects and was able to
understand only five actions (touch, put, get, add, remove).

Getting back to SVO tuple-based methods, which tackle the video description generation task
in two stages, the first stage known as content identification focuses on visual recognition and
classification of the main objects in the video clip. These typically include the performer or actor,
the action, and the object of that action. The second stage involves sentence generation, which maps
the objects identified in the first stage to Subject, Verb, and Object (and hence the name SVO),
and fills in handcrafted templates for grammatically sound sentences. These templates are created
using grammar or rule-based systems, which are only effective in very constrained environments,
i.e., short clips or videos with limited number of objects and actions. Numerous methods have been
proposed for detecting objects, humans, actions, and events in videos. Below, we summarize the
recognition techniques used in the Stage I of the SVO tuples-based approaches.

• Object Recognition: Object recognition in SVO approaches was performed typically using
conventional methods, including model-based shape matching through edge detection or
color matching [68], HAAR features matching [148], context-based object recognition [140],
Scale Invariant Feature Transform (SIFT) [85], discriminatively trained part-based mod-
els [42], and Deformable Parts Model (DPM) [40, 41].

• Human and Activity Detection: Human detection methods employed features such as His-
tograms of Oriented Gradient (HOG) [27] followed by SVM. For activity detection, features
like Spatiotemporal Interest Points such as Histogram of Oriented Optical Flow (HOOF)
[21], Bayesian Networks [56], Dynamic Bayesian Networks [46], Hidden Markov Mod-
els (HMM) [17], state machines [69], and PNF Networks [105] have been used by SVO
approaches.

• Integrated Approaches: Instead of detecting the description-relevant entities separately, Sto-
chastic Attribute Image Grammar (SAIG) [176] and Stochastic Context Free Grammars
(SCFG) [94], allow for compositional representation of visual entities present in a video,
an image, or a scene based on their spatial and functional relations. Using the visual gram-
mar, the content of an image is first extracted as a parse graph. A parsing algorithm is then
used to find the best scoring entities that describe the video. In other words, not all entities
present in a video are of equal relevance, which is a distinct feature of this class of methods
compared to the aforementioned approaches.

For Stage II, sentence generation, a variety of methods have been proposed, including HALogen
representation [77], Head-driven Phrase Structure Grammar (HPSG) [106], planner and surface
realizer [110]. The primary common task of these methods is to define templates. A template is a
user-defined language structure containing placeholders. To function properly, a template is com-
posed of three parts named lexicons, grammar, and template rules. Lexicon represents vocabulary
that describes high-level video features. Template rules are user-defined rules guiding the selection
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Fig. 4. An example of various templates used for sentence generation from videos. Subject, verb, and object

are used to fill in these templates. Verb is obtained from action/activity detection methods using spatio-

temporal features, whereas subject and object are obtained from object detection methods using spatial

features.

of appropriate lexicons for sentence generation. Grammar defines linguistic rules to describe the
structure of expressions in a language, ensuring that a generated sentence is syntactically correct.
Using production rules, Grammar can generate a large number of various configurations from a
relatively small vocabulary.

In template-based approaches, a sentence is generated by fitting the most important entities
to each of the categories required by the template, e.g., subject, verb, object, and place. Entities
and actions recognized in the content identification stage are used as lexicons. Correctness of the
generated sentence is ensured by Grammar. Figure 4 presents examples of some popular templates
used for sentence generation in template-based approaches. Figure 5 gives a timeline of how the
classical methods evolved over time; whereas below, we provide a survey of SVO methods by
grouping them into three categories—namely, subject (human) focused, action and object focused,
and methods that use the SVO approach on open domain videos. Note that the division boundaries
are frequently blurred between these categories.

(1) Subject (Human) Focused: In 2002, Kojima et al. [68] proposed one of the earliest methods
designed specifically for video captioning. This method focuses primarily on describing videos of
one person performing one action only. To detect humans in a scene, they calculated the probabil-
ity of a pixel coming from the background or the skin region using the values and distributions of
pixel chromaticity. Once a human’s head and hands are detected, the human posture is estimated
by considering three kinds of geometric information, i.e., position of the head and hands and direc-
tion of the head. For example, to obtain the head direction, the detected head image is compared
against a list of pre-collected head models and a threshold is used to decide on the matching head
direction. For object detection, they applied two-way matching, i.e., shape-based matching and
pixel-based color matching to a list of predefined known objects. Actions detected are all related
to object handling, and the difference image is used to detect actions such as putting an object
down or lifting an object up. To generate the description in sentences, pre-defined case frames
and verb patterns as proposed by Nishida et al. [96, 97] are used. Case frame is a type of frame
expression used for representing the relationship between cases, which are classified into eight
categories. The frequently used ones are agent, object, and locus. For example, “a person walks
from the table to the door,” is represented as: [PRED:walk, AG:person, GO-LOC:by(door),
SO-LOC:front(table)], where PRED is the predicate for action, AG is the agent or actor, GO-LOC is
the goal location, and SO-LOC is the source location. A list of semantic primitives are defined about
movements, which are organized using body action state transitions. For example, if moving is de-
tected and the speed is fast, then the activity state is transitioned from moving to running. They
also distinguish durative actions (e.g., walk) from instantaneous actions (e.g., stand up). The major
drawback of their approach is that it cannot be easily extended to more complex scenarios such as
multiple actors, incorporating temporal information, and capturing causal relationship between
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Fig. 5. Evolution of classical methods over time. In general the focus of these methods moved from subjects

(humans) to actions and objects and then to open domain videos containing all three SVO categories.

events. The heavy reliance on the correctness of manually created activity concept hierarchy and
state transition model also prevents it from being used in practical situations.

Hakeem et al. [51] addressed the shortcomings of Kojima et al’s [68] work and proposed an
extended case framework (CASEE ) using hierarchical CASE representations. They incorporated
multiple agent events, temporal information, and causal relationship between the events to de-
scribe the events in natural language. They introduced case-list to incorporate multiple agents in
AG, [PRED:move, AG:{person1, person2},...]. Moreover, they incorporated temporal infor-
mation into CASE using temporal logic to encode the relationship between sub-events. As some
events are conditional on other events, they also captured causal relationship between events. For
example, in the sentence “a man played piano and the crowd applauded,” the applause occurred
because the piano was played. [CAUSE: [PRED:play, D:crowd, FAC:applaud]].

Khan et al. [62] introduced a framework to describe human-related contents such as actions
(limited to five only) and emotions in videos using natural language sentences. They implemented
a suite of conventional image processing techniques, including face detection [73], emotion detec-
tion [86], action detection [17], non-human object detection [148], and scene classification [65],
to extract the high-level entities of interest from video frames. These include humans, objects,
actions, gender, position, and emotion. Since their approach encapsulates human-related actions,
human is rendered as Subject and the objects upon which action is performed are rendered as Ob-
ject. A template-based approach is adopted to generate natural language sentences based on the
detected entities. They evaluated the method on a dataset of 50 snippets, each spanning 5s to 20s
duration. Out of 50, 20 snippets were human close-ups and 30 showed human activities such as
stand, walk, sit, run, and wave. The primary focus of their research was on activities involving
a human interacting with some objects. Hence, their method does not generate any description
until a human is detected in the video. The method cannot identify actions with subtle movements
(such as smoking and drinking) and interactions among humans.

(2) Action and Object Focused: Lee et al. [78] proposed a method for semantically annotating
visual content in three sequential stages: namely, image parsing, event inference, and language
generation. An “image parsing engine” using stochastic attribute image grammar (SAIG) [176] is
employed to produce a visual vocabulary, i.e., a list of visual entities present in the frame along with
their relationships. This output is then fed into an “event inference engine,” which extracts seman-
tic and contextual information of visual events along with their relationships. Video Event Markup
Language (VEML) [95] is used to represent semantic information. In the final stage, head-driven
phrase structure grammar (HPSG) [106] is used to generate text description from the semantic
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representation. Compared to Kojima et al. [68], grammar-based methods can infer and annotate
a wider range of scenes and events. Ten streams of urban traffic and maritime scenes over a pe-
riod of 120mins, containing more than 400 moving objects, are used for evaluation. Some detected
events include “entering the scene, moving, stopping, turning, approaching traffic intersection,
watercraft approaching maritime markers and land areas and scenarios where one object follows
the other” [78]. Recall and Precision rates are employed to evaluate the accuracy of the events that
are detected with respect to manually labeled ground truth. Due to poor estimation of the motion
direction from a few perspective views, their method does not perform well on “turning” events.

Hanckmann et al. [52] proposed a method to automatically describe events involving multi-
ple actions (seven on average) performed by one or more individuals. Unlike Khan et al. [62],
human-human interactions are taken into account in addition to human-object interactions. Bag-
of-features (48 in total) are collected as action detectors [18] for detecting and classifying actions
in a video. The description generator subsequently describes the verbs relating the actions to the
scene entities. It finds the appropriate actors among objects or persons and connects them to the
appropriate verbs. In contrast to Khan et al. [62], who assume that the subject is always a person,
Hanckmann et al. [52] generalizes subjects to include vehicles as well. Furthermore, the number
of human actions is much richer. Compared to the five verbs in Khan et al. [62], they have 48 verbs
capturing a diverse range of actions, such as approach, arrive, bounce, carry, catch, and so on.

Barbu et al. [14] generated sentence descriptions for short videos of highly constrained domains
consisting of 70 object classes, 48 action classes, and a vocabulary of 118 words. They rendered
a detected object and action as noun and verb, respectively. Adjectives are used for the object
properties, and prepositions are used for their spatial relationships. Their approach is composed
of three steps. In the first step, object detection [41] is carried out on each frame by limiting 12 de-
tections per frame. Second, object tracking [128, 138] is performed to increase the precision. Third,
using dynamic programming, the optimal set of detections is chosen. Verb labels corresponding to
actions in the videos are then produced using Hidden Markov Models. After getting the verb, all
tracks are merged to generate template-based sentences that comply to grammar rules.

Despite the reasonably accurate lingual descriptions generated for videos in constrained envi-
ronments, the aforementioned methods have trouble scaling to accommodate increased number
of objects and actions in open domain and large video corpora. To incorporate all the relevant
concepts, these methods require customized detectors for each entity. Furthermore, the texts gen-
erated by existing methods of the time have mostly been in the form of putting together lists of
keywords using grammars and templates without any semantic verification. To address the issue
of lacking semantic verification, Das et al. [29] proposed a hybrid method that produces content
of high relevance compared to simple keyword annotation methods. They borrowed ideas from
image captioning techniques. This hybrid model is composed of three steps in a hierarchical man-
ner. First, in a bottom-up approach, keywords are predicted using low-level video features. In this
approach, they first find a proposal distribution over the training set of vocabulary using multi-
modal latent topic models. Then by using grammar rules and parts of speech (POS) tagging, most
probable subjects, objects, and verbs are selected. Second, in a top-down approach, a set of con-
cepts is detected and stitched together. A tripartite graph template is then used for converting the
stitched concepts to a natural language description. Finally, for semantic verification, they pro-
duced a ranked set of natural language sentences by comparing the predicted keywords with the
detected concepts. Quantitative evaluation of this hybrid method shows that it was able to generate
more relevant content compared to its predecessors [14, 61].

(3) SVO Methods for Open Domain Videos: While most of the prior mentioned works are
restricted to constrained domains, Krishnamoorthy et al. [71] led the early works of describing
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Fig. 6. Example of the Subject-Verb-Object-Place (SVOP) [137] approach where confidences are obtained

by integrating probabilities from visual recognition system, with statistics from out-of-domain English text

corpora to determine the most likely SVOP tuple. The red block shows low probability given to a correct

object by the visual system that is rectified by the high probability from the linguistic model.

open domain videos. They used selected open domain YouTube videos; however, the subjects and
objects were limited to the 20 entities that were available in the classifier training set. Their main
contribution is the introduction of text-mining using web-scale text corpora to aid the selection of
the best SVO tuple to improve sentence coherence.

In addition to focusing on open domain videos and utilizing web-scaled text corpora,
Guadarrama et al. [49] and Thomason et al. [137] started dealing with relatively larger vocabular-
ies. Compared to Krishnamoorthy et al. [71], instead of using only 20 objects in the PASCAL dataset
[36], all videos of the YouTube corpora are used for the detection of 241 objects, 45 subjects, and
218 verbs. To describe short YouTube videos, Guadarrama et al. [49] proposed a novel language-
driven approach. They introduced “zero-shot” verb recognition for selecting unseen verbs in the
training set. For example, if subject is “person,” object refers to “car” and the model-predicted verb
is “move,” then the most suitable verb would be “drive.” Thomason et al. [137] used visual recog-
nition techniques on YouTube videos for probabilistic estimations of subjects, verbs, and objects.
Their approach is illustrated in Figure 6. The object and action classifiers were trained on Ima-
geNet [124]. In addition to detecting subjects, verbs, and objects, places (12 scenes) where actions
are performed, e.g., kitchen or playground, are also identified. To further improve the accuracy
of assigning visually detected entities to the right category, probabilities using language statistics
obtained from four “out of domain” English text corpora—English Gigaword, British National
Corpus (BNC), ukWac, and WaCkypedia EN—are used to enhance the confidence of word-category
alignment for sentence generation. A small “in domain” corpus composed of human-annotated
sentences for the video description dataset is also constructed and incorporated into the sentence
generation stage. Co-occurring bi-gram (SV, VO, and OP) statistics from the candidate SVOP tuples
are calculated using both the “out of domain” and the “in domain” corpora, which are used in a
Factor Graph Model (FGM) to predict the most probable SVO and place combination. Finally, the
detected SVOP tuple is used to generate an English sentence through a template-based approach.

Classical methods focused mainly on the detection of pre-defined entities and events separately.
These methods then tried to describe the detected entities and events using template-based sen-
tences. However, to describe open domain videos or those with more events and entities, classical
methods must employ object and action detection techniques for each entity, which is unrealis-
tic due to the computational complexity. Moreover, template-based descriptions are insufficient to
describe all possible events in videos given the linguistic complexity and diversity. Consequently,
these methods failed to describe semantically rich videos.
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2.2 Statistical Methods

Naïve SVO tuple rule-based engineering approaches are indeed inadequate to describe open
domain videos and large datasets, such as YouTubeClips [23], TACoS-MultiLevel [114], MPII-
MD [116], and M-VAD [139]. These datasets contain very large vocabularies as well as tens of
hours of videos. There are three important differences between these open domain and previous
datasets. First, open domain videos contain unforeseeable diverse sets of subjects, objects, activ-
ities, and places. Second, due to the sophisticated nature of human languages, such datasets are
often annotated with multiple viable meaningful descriptions. Third, the videos to be described are
often long, potentially stretching through many hours. Descriptions of such videos with multiple
sentences or even paragraphs become more desirable.

To avoid the tedious efforts required in rule-based engineering methods, Rohrbach et al. [119]
proposed a machine learning method to convert visual content into natural language. They used
parallel corpora of videos and associated annotations. Their method follows a two-step approach.
First, it learns to represent the video as intermediate semantic labels using maximum posterior
estimate (MAP). Then, it translates the semantic labels into natural language sentences by using
techniques borrowed from Statistical Machine Translation (SMT) [67]. In this machine transla-
tion approach, the intermediate semantic label representation is the source, while the expected
annotations are regarded as the target language.

For the object and activity recognition stages, the research moved from earlier threshold-based
detection [68] to manual feature engineering and traditional classifiers [29, 49, 71, 137]. For the
sentence generation stage, an uptake of machine learning methods can be observed in recent years
to address the issue of large vocabulary. This is also evidenced by the trend in recent methods that
use models for lexical entries that are learned in a weakly supervised [114, 119, 161, 166] or fully
supervised [26, 49, 71, 133] fashion. However, the separation of the two stages makes this camp of
methods incapable of capturing the interplay of visual features and linguistic patterns, let alone
learning a transferable state space between visual artifacts and linguistic representations. In the
next section, we review the deep learning methods and discuss how they address the scalability,
language complexity, and domain transferability issues faced by open domain video description.

2.3 Deep Learning Models

The whirlwind success of deep learning in almost all sub-fields of computer vision has also revolu-
tionized video description approaches. In particular, Convolutional Neural Networks (CNNs) [72]
are the state-of-the-art for modeling visual data and excel at tasks such as object recognition [72,
131, 135]. Long Short-Term Memory (LSTMs) [55] and the more general deep Recurrent Neu-
ral Networks (RNNs), however, are now dominating the area of sequence modeling, setting new
benchmarks in machine translation [25, 134], speech recognition [47], and the closely related task
of image captioning [33, 147]. While conventional methods struggle to cope with large-scale, more
complex, and diverse datasets for video description, researchers have combined these deep nets in
various configurations with promising performances.

As shown in Figure 7, deep learning approaches to video description can also be divided into two
sequential stages: visual content extraction and text generation. However, in contrast to the SVO
tuple methods (Section 2.1), where lexical word tokens are generated as a result of the first stage
through visual content extraction, visual features represented by fixed or dynamic real-valued
vectors are produced instead. This is often referred to as the video encoding stage. CNN, RNN, or
Long Short-Term Memory (LSTM) are used in this encoding stage to learn visual features that are
then used in the second stage for text generation, also known as the decoding stage. For decod-
ing, different flavors of RNNs are used, such as deep RNN, Bi-directional RNN, LSTM, or Gated
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Fig. 7. Deep learning–based video description techniques in the literature are composed of two main stages.

The first stage involves visual content extraction and is represented either by a fixed length vector or by

dynamic vectors. The second stage takes input of visual representation vectors from the first stage for text

generation and generates single/multiple sentence(s).

Recurrent Units (GRU). The resulting description can be a single sentence or multiple sentences.
Figure 8 illustrates a typical end-to-end video description system with encoder-decoder stages.
The encoding part is followed by transformations such as mean pooling, temporal encoding, or
attention mechanisms to represent the visual content. Some methods apply sequence-to-sequence
learning and/or semantic attributes learning. The aforementioned mechanisms have been used in
different combinations by contemporary methods. We group the literature based on the different
combinations of deep learning architectures for encoding and decoding stages, namely:

• CNN-RNN Video Description, where convolution architectures are used for visual encod-
ing and recurrent structures are used for decoding. This is the most common architecture
employed in deep learning–based video description methods;

• RNN-RNN Video Description, where recurrent networks are used for both stages; and
• Deep reinforcement networks, the relatively new research area for video description.

2.3.1 CNN-RNN Video Description. Given its success in computer vision and simplicity, CNN
is still by far the most popular network structure used for visual encoding. The encoding process
can be broadly categorized into fixed-size and variable-size video encoding.

Donahue et al. [33] were the first to use deep neural networks to solve the video captioning
problem. They proposed three architectures for video description. Their model is based on the
assumption to have CRF-based predictions of subjects, objects, and verbs after full pass of com-
plete video. This allows the architecture to observe the complete video at each time-step. The
first architecture, LSTM encoder-decoder with CRF max, is motivated by the statistical machine
translation (SMT)–based video description approach by Rohrbach et al. [119] mentioned earlier in
Section 2.2. Recognizing the state-of-the-art machine translation performance of LSTMs, the SMT
module in Reference [119] is replaced with a stacked LSTM composed of two layers for encoding
and decoding. Similar to Reference [134], the first LSTM layer encodes the one-hot vector of the
input sentence allowing for variable-length inputs. The final hidden representation from the first
encoder stage is then fed into the decoder stage to generate a sentence by producing one word per
time-step. Another variant of the architecture, LSTM decoder with CRF max, incorporates max pre-
dictions. This architecture encodes the semantic representation into a fixed length vector. Similar
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Fig. 8. Summary of deep learning–based video description methods. Most methods employ mean pooling

of frame representations to represent a video. More advanced methods use attention mechanisms, semantic

attribute learning, and/or employ a sequence-to-sequence approach. These methods differ in whether the

visual features are fed only at first time-step or all time-steps of the language model.

to image description, LSTM is able to see the whole visual content at every time-step. An advan-
tage of LSTM is that it is able to incorporate probability vectors during training as well as testing.
This virtue of LSTM is exploited in the third variant of the architecture, LSTM decoder with CRF
probabilities. Instead of using max predication like in the second variant (LSTM decoder with CRF
max), this architecture incorporates probability distributions. Although the LSTM outperformed
the SMT-based approach of Reference [119], it was still not trainable in an end-to-end fashion.

In contrast to the work by Donahue et al. [33], where an intermediate role representation was
adopted, Venugopalan et al. [145] presented the first end-to-end trainable network architecture for
generating natural language description of videos. Their model is able to simultaneously learn the
semantic as well as grammatical structure of the associated language. Moreover, Donahue et al. [33]
presented results on domain -specific cooking videos composed of pre-defined objects and actors.
However, Venugopalan et al. [145] reported results on open domain YouTube Clips [22]. To avoid
supervised intermediate representations, they connected an LSTM directly to the output of the
CNN. The CNN extracts visual features, whereas the LSTM models the sequence dynamics. They
transformed a short video into a fixed length visual input using a CNN model [58] that is slightly
different from AlexNet [72]. The CNN model [58] was learned using the ILSVRC-2012 object clas-
sification dataset (composed of 1.2M images), which is a subset of ImageNet [124]. It provides a
robust and efficient way without manual feature selection for initialization object recognition in
the videos. They sampled every tenth frame in the video and extracted features for all sample
frames from the fc7 layer of the CNN. Furthermore, they represented a complete video by aver-
aging all the extracted frame-wise feature vectors into a single vector. These feature vectors are
then fed into a two-layered LSTM [48]. The feature vectors from CNN form the input to the first
layer of the LSTM. A second LSTM layer is stacked on top of the first LSTM layer, where the hid-
den state of the first LSTM layer is the input to the second LSTM unit for caption generation. In
essence, the transforming of multiple frame-based feature vectors into a single aggregated video-
based vector reduces the video description problem into an image captioning one. This end-to-end
model performed better than the previous systems at the time and was able to effectively generate
the sequence without any templates. However, as a result of simple averaging, valuable temporal
information of the video, such as the order of appearances of any two objects, is lost. Therefore,
this approach is only suitable for generating captions for short clips with a single major action per
clip.

ACM Computing Surveys, Vol. 52, No. 6, Article 115. Publication date: October 2019.



115:14 N. Aafaq et al.

Open domain videos are rich in complex interactions among actors and objects. Representation
of such videos using a temporally averaged single feature vector is, therefore, prone to produce
clutter. Consequently, the descriptions produced are bound to be inadequate, because valuable
temporal ordering information of events is not captured in the representation. With the success
of C3D [141] in capturing spatio-temporal action dynamics in videos, Li et al. [162] proposed a
novel 3D-CNN to model the spatio-temporal information in videos. Their 3D-CNN is based on
GoogLeNet [135] and pre-trained on an activity recognition dataset. It captures local fine motion
information between consecutive frames. This local motion information is then subsequently sum-
marized and preserved through higher-level representations by modeling a video as a 3D spatio-
temporal cuboid. It is further represented by concatenation of HoG, HoF, MbH [28, 151]. These
transformations not only help capture local motion features but also reduce the computation of
the subsequent 3D CNN. For global temporal structure, a temporal attention mechanism is pro-
posed and adapted from soft attention [10]. Using 3D CNN and attention mechanisms in RNN,
they were able to improve results. Recently, GRU-EVE [3] was proposed as an effective and com-
putationally efficient technique for video captioning. GRU-EVE uses a standard GRU for language
modeling but with Enriched Visual Encoding as follows: It applies the Short Fourier Transform
on 2D/3D-CNN features in a hierarchical manner to encapsulate the spatio-temporal video dy-
namics. The visual features are further enriched with high-level semantics of the detected objects
and actions in the video. Interestingly, the enriched features obtained by applying Short Fourier
Transform on 2D-CNN features alone [3] outperform C3D [141] features.

Unlike the fixed video representation models discussed above, variable visual representation mod-
els are able to directly map input videos composed of different number of frames to variable-length
words or sentences (outputs), and are successful in modeling various complex temporal dynamics.
Venugopalan et al. [144] proposed an architecture to address the variable representation problem
for both the input (video frames) and the output (sentence) stage. For that purpose, they used a
two-layered LSTM framework, where the sequence of video frames is input to the first layer of
the LSTM. The hidden state of the first LSTM layer forms the input to the second layer of the
LSTM. The output of the second LSTM layer is the associated caption. The LSTM parameters are
shared in both stages. Although sequence-to-sequence learning had previously been used in ma-
chine translation [134], this is the first method [144] to use a sequence-to-sequence approach in
video captioning. Later methods have adopted a similar framework, with minor variations includ-
ing attention mechanisms [162], making a common visual-semantic-embedding [100], or using
out-of-domain knowledge either with language models [143] or visual classifiers [115].

While deep learning has achieved much better results compared to previously used classifier-
based approaches, most methods have aimed at producing one sentence from a video clip contain-
ing only one major event. In real-world applications, videos generally contain more than a single
event. Description of such multi-events and semantically rich videos by only one sentence ends
up to be overly simplified, and hence, uninformative. For example, instead of saying “someone
sliced the potatoes with a knife, chopped the onions into pieces, and put the onions and pota-
toes into the pot,” a single sentence generation method would probably say “someone is cooking.”
Yu et al. [167] proposed a hierarchical recurrent neural network (h-RNN) that applies the atten-
tion mechanisms on both the temporal and spatial aspects. They focused on the sentence decoder
and introduced a hierarchical framework composed of a sentence generator and on top of that a
paragraph generator. First, a Gated Recurrent Unit (GRU) layer takes video features as input and
generates a single short sentence. The other recurrent layer generates paragraphs using context
and the sentence vectors obtained from the sentence generator. The paragraph generator thus cap-
tures the dependencies between sentences and generates a paragraph of sentences that are related.
Recently, Krishna et al. [70] introduced the concept of dense-captioning of events in a video and
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employed action-detection techniques to predict the temporal intervals. They proposed a model to
extract multiple events with one single pass of a video, attempting to describe the detected events
simultaneously. This is the first work that detects and describes multiple overlapping events in a
video. However, the model did not achieve significant improvement on the captioning benchmark.

2.3.2 RNN-RNN Video Description. Although not as popular as the CNN-RNN framework, an-
other approach is to also encode the visual information using RNNs. Srivastava et al. [132] use
one LSTM to extract features from video frames (i.e., encoding) and then pass the feature vector
through another LSTM for decoding. They also introduced some variants of their models and pre-
dicted the future sequences from the previous frames. The authors adopted a machine translation
model [134] for visual recognition but could not achieve significant improvement in classification
accuracy.

Yu et al. [167] proposed a similar approach and used two RNN structures for the video descrip-
tion task. Their configuration is a hierarchical decoder with multiple Gated Recurrent Units (GRU)
for sentence generation. The output of this decoder is then fed to a paragraph generator that mod-
els the time dependencies between the sentences while focusing on linguistic aspects. The authors
improved the state-of-the-art results for video description; however, their method is inefficient for
videos involving fine-grained activities and small interactive objects.

2.3.3 Deep Reinforcement Learning Models. Deep Reinforcement Learning (DRL) has out-
performed humans in many real-word games. In DRL, artificial intelligence agents learn from
the environment through trial-and-error and adjust learning policies purely from environmental
rewards or punishments. DRL approaches have been popularized by Google Deep Mind [92, 93]
since 2013. Due to the absence of a straightforward cost function, learning mechanisms in this
approach are considerably harder to devise as compared to traditional supervised techniques. Two
distinct challenges are evident in reinforcement learning when compared with conventional su-
pervised approaches: (1) The model does not have full access to the function being optimized. It has
to query the function through interaction. (2) The interaction with the environment is state-based
where the present input depends on previous actions. The choice of reinforcement learning algo-
rithms then depends on the scope of the problem at hand. For example, variants of Hierarchical
Reinforcement Learning (HRL) framework have been applied to Atari games [75, 146]. Similarly,
different variants of DRL have been used to meet the challenging requirements of image captioning
[112] as well as video description [24, 79, 103, 104, 155].

Xwang et al. [155] proposed a fully differentiable neural network architecture using reinforce-
ment learning for video description. Their method follows a general encoder-decoder framework.
The encoding stage captures the video frame features using ResNet-152 [54]. The frame-level fea-
tures are processed through two-stage encoder, i.e., low-level LSTM [125] followed by a high-level
LSTM [55]. For decoding, they employed HRL to generate the word-by-word natural language
descriptions. The HRL agent is composed of three components, a low-level worker that accom-
plishes tasks as set by manager, a high-level manager that sets goals, and internal critic to ascer-
tain whether the task has been accomplished or not and informs the manager accordingly to help
the manager update the goals. The process iterates till reaching the end of sentence token. This
method is demonstrated to be capable of capturing more details of the video content, thus gen-
erating more fine-grained descriptions. However, this method has shown very little improvement
over existing baseline methods.

In 2018, Chen et al. [24] proposed an RL-based model selecting key informative frames to repre-
sent a complete video in an attempt to minimize noise and unnecessary computations. Key frames
are selected such that they maximize visual diversity and minimize the textual discrepancy. Hence,
a compact subset of 6–8 frames on average can represent a full video. Evaluated against several
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Table 1. Standard Datasets for Benchmarking Video Description Methods

Dataset Domain # classes # videos avg len # clips # sent # words vocab len (hrs)

MSVD [22] open 218 1970 10s 1,970 70,028 607,339 13,010 5.3

MPII Cooking [118] cooking 65 44 600s - 5,609 - - 8.0

YouCook [29] cooking 6 88 - - 2,688 42,457 2,711 2.3

TACoS [109] cooking 26 127 360s 7,206 18,227 146,771 28,292 15.9

TACos-MLevel [114] cooking 1 185 360s 14,105 52,593 2K - 27.1

MPII-MD [116] movie - 94 3.9s 68,337 68,375 653,467 24,549 73.6

M-VAD [139] movie - 92 6.2s 48,986 55,904 519,933 17,609 84.6

MSR-VTT [160] open 20 7,180 20s 10K 200K 1,856,523 29,316 41.2

Charades [130] human 157 9,848 30s - 27,847 - - 82.01

VTW [171] open - 18,100 90s - 44,613 - - 213.2

YouCook II [174] cooking 89 2K 316s 15.4K 15.4K - 2,600 176.0

ActyNet Cap [70] open - 20K 180s - 100K 1,348,000 - 849.0

ANet-Entities [173] social media - 14,281 180s 52K - - - -

VideoStory [45] social media - 20K - 123K 123K - - 396.0

popular benchmarks, it was demonstrated that video captions can be produced without perfor-
mance degradation but at a significantly reduced computational cost. The method did not use
motion features for encoding, a design trade-off between speed and accuracy. DRL-based methods
are gaining popularity and have shown comparable results in video description. Due to their un-
conventional learning methodology, DRL methods are unlikely to suffer from paucity of labeled
training data, hardware constraints, and overfitting problems. Therefore, these methods are ex-
pected to flourish.

3 DATASETS

The availability of labeled datasets for video description has been the main driving force behind the
fast advancement of this research area. In this survey, we summarize the characteristics of these
datasets and give an overview in Table 1. The datasets are categorized into four main classes,
namely: Cooking, Movies, Videos in the Wild, and Social Media. In most of the datasets, a single
caption per video is assigned except for a few datasets that contain multiple sentences or even
paragraphs per video snippet.

3.1 Cooking

3.1.1 MP-II Cooking. Max Plank Institute for Informatics (MP-II) Cooking dataset [118] is com-
posed of 65 fine-grained cooking activities, performed by 12 participants preparing 14 dishes such
as fruit salad, cake, and so on. The data are recorded in the same kitchen with camera installed on
the ceiling. The 65 cooking activities include “wash hands,” “put in bowl,” “cut apart,” “take out
from drawer,” and so on. When the person is not in the scene for 30 frames (1s) or is performing an
activity that is not annotated, a “background activity” is generated. These fine-grained activities—
for example “cut slices,” “pour,” or “spice”—are differentiated by movements with low inter-class
and high intra-class variability. In total, the dataset is composed of 44 videos (888,775 frames), with
an average length per clip of approximately 600s. The dataset spans a total of 8h play length for
all videos and 5,609 annotations.

3.1.2 YouCook. The YouCook dataset [29] consists of 88 YouTube cooking videos of different
people cooking various recipes. The background (kitchen/scene) is different in most of the videos.
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This dataset represents a more challenging visual problem than the MP-II Cooking [118] dataset
that is recorded with a fixed camera viewpoint in the same kitchen and with the same background.
The dataset is divided into six different cooking styles; for example, grilling, baking, and so on. For
machine learning, the training set contains 49 videos and the test set contains 39 videos. Frame-
wise annotations of objects and actions are also provided for the training videos. The object cat-
egories for the dataset include “utensils,” “bowls,” “food,” and so on. Amazon Mechanical Turk
(AMT) was employed for human-generated multiple natural language descriptions of each video.
Each AMT worker provided at least three sentences per video as a description, and on average
eight descriptions were collected per video.

3.1.3 TACoS. Textually Annotated Cooking Scenes (TACoS) is a subset of MP-II Compos-
ites [120]. TACoS was further processed to provide coherent textual descriptions for high-quality
videos. Note that MP-II Composites contain more videos but less activities than the MP-II Cook-
ing [118]. It contains 212 high-resolution videos with 41 cooking activities. Videos in the MP-II
Composites dataset span over different lengths ranging from 1–23mins with an average length
of 4.5mins. The TACoS dataset was constructed by filtering through MP-II Composites, while re-
stricting to only those activities that involve manipulation of cooking ingredients, and have at
least 4 videos for the same activity. As a result, TACoS contains 26 fine-grained cooking activi-
ties in 127 videos. AMT workers were employed to align the sentences and associated videos; for
example, “preparing carrots,” “cutting a cucumber,” “separating eggs,” and so on. For each video,
20 different textual descriptions were collected. The dataset is composed of 11,796 sentences con-
taining 17,334 actions descriptions. A total of 146,771 words are used in the dataset. Almost 50% of
the words, i.e., 75,210, describe the content for example nouns, verbs, adjectives, and so on. These
words includes a vocabulary size of 28,292 verb tokens. The dataset also provides the alignment of
sentences describing activities by obtaining approximate time stamps where each activity starts
and ends.

3.1.4 TACoS-MultiLevel. TACoS Multilevel [114] corpus annotations were also collected via
AMT workers on the TACoS corpus [109]. For each video in the TACoS corpus, three levels of
descriptions were collected, which include: (1) detailed description of video with no more than
15 sentences per video; (2) a short description composed of 3–5 sentences per video; and finally
(3) a single sentence description of the video. Annotation of the data is provided in the form of
tuples such as object, activity, tool, source, and target with a person always being the subject.

3.1.5 YouCook II. YouCook-II Dataset [174] consists of 2K videos uniformly distributed over
89 recipes. The cooking videos are sourced from YouTube and offer all the challenges of open
domain videos, such as variations in camera position, camera motion, and changing backgrounds.
The complete dataset spans a total play time of 175.6h and has a vocabulary of 2600 words. The
videos are further divided into 3–16 segments per video with an average of 7.7 segments per video
elaborating procedural steps. Individual segment length varies from 1s to 264s. All segments are
temporally localized and annotated. The average length of each video is 316s, reaching up to a
maximum of 600s. The dataset is randomly split into train, validation, and test sets with the ratio
of 66%:23%:10%, respectively.

3.2 Movies

3.2.1 MPII-MD. MPII-Movie Description Corpus [116] contains transcribed audio descriptions
extracted from 94 Hollywood movies. These movies are subdivided into 68,337 clips with an av-
erage length of 3.9s paired with 68,375 sentences amounting to almost one sentence per clip. Ev-
ery clip is paired with one sentence that is extracted from the script of the movie and the audio
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description data. The Audio Descriptions (ADs) were collected first by retrieving the audio streams
from the movie using online services MakeMkV1 and Subtitle Edit.2 These audio streams are fur-
ther transcribed using crowd-sourced transcription service [1]. Then the transcribed texts were
aligned with associated spoken sentences using their time stamps. To remove the misalignments
of audio content with the visual content itself, each sentence was also manually aligned with the
corresponding video clip. During the manual alignment process, sentences describing the content
not present in the video clip were also filtered out. The audio descriptions track is an added feature
in the dataset trying to describe the visual content to help visually impaired persons. The total time
span of the dataset videos is almost 73.6h, and the vocabulary size is 653,467.

3.2.2 M-VAD. Montreal Video Annotation Dataset (M-VAD) [139] is based on the Descriptive
Video Service (DVS) and contains 48,986 video clips from 92 different movies. Each clip is spanned
over 6.2s on average and the entire time for the complete dataset is 84.6h. The total number of
sentences is 55,904, with few clips associated with more than one sentence. The vocabulary of the
dataset spans about 17,609 words (Nouns-9,512; Verbs-2,571; Adjectives-3,560; Adverbs-857). The
dataset split consists of 38,949, 4,888, and 5,149 video clips for training, validation, and testing,
respectively.

3.3 Social Media

3.3.1 VideoStory. VideoStory [45] is a multi-sentence description dataset composed of 20K so-
cial media videos. This dataset is aimed to address the story narration or description generation
of long videos that may not be sufficiently illustrated with a single sentence. Each video is paired
with at least one paragraph. The average number of temporally localized sentences per paragraph
is 4.67. There are a total of 26,245 paragraphs in the dataset composed of 123K sentences with an
average of 13.32 words per sentence. On average, each paragraph covers 96.7% of video content.
The dataset contains about 22% temporal overlap between co-occurring events. The dataset has
training, validation, and test split of 17,908, 999, and 1,011 videos, respectively and also proposes a
blind test set composed of 1,039 videos. Each training video is accompanied with one paragraph,
however, videos in the validation and test sets have three paragraphs each for evaluation. Annota-
tions for the blind test are not released and are only available on server for benchmarking different
methods.

3.3.2 ActivityNet Entities. ActivityNet Entities dataset (or ANet-Entities) [173] is the first video
dataset with entities grounding and annotations. This dataset is built on the training and validation
splits of the ActivityNet Captions dataset [70], but with different captions. In this dataset, noun
phrases (NPs) of video descriptions have been grounded to bounding boxes in the video frames.
The dataset is composed of 14,281 annotated videos, 52K video segments with at least one noun
phrase annotated per segment, and 158K bounding boxes with annotations. The dataset employs a
training set (10K) similar to ActivityNet Captions. However, validation set of ActivityNet Captions
is randomly and evenly split into ANet-Entities validation (2.5K) and testing (2.5K) sets.

3.4 Videos in the Wild

3.4.1 MSVD. Microsoft Video Description (MSVD) dataset [22] is composed of 1,970 YouTube
clips with human-annotated sentences. This dataset was also annotated by AMT workers. The
audio is muted in all clips to avoid bias from lexical choices in the descriptions. Furthermore,
videos containing subtitles or overlaid text were removed during the quality-control process of the

1https://www.makemkv.com/.
2http://www.nikse.dk/SubtitleEdit/.
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dataset formulation. Finally, manual filtering was carried out over the submitted videos to ensure
that each video met the prescribed criteria and was free of inappropriate and ambiguous content.
The duration of each video in this dataset is typically between 10s and 25s mainly showing one
activity. The dataset is composed of multilingual (such as Chinese, English, German, etc.) human-
generated descriptions. On average, there are 41 single-sentence descriptions per clip. This dataset
has been frequently used by the research community, as detailed in Section 5. Almost all research
groups have split this dataset into training, validation, and testing partitions of 1,200, 100, and 670
videos, respectively.

3.4.2 MSR-VTT. MSR-Video to Text (MSR-VTT) [160] contains a wide variety of open domain
videos for video captioning task. It is composed of 7,180 videos subdivided into 10K clips. The clips
are grouped into 20 different categories. The dataset is divided into 6,513 training, 497 validation,
and 2,990 test videos. Each video is composed of 20 reference captions annotated by AMT workers.
In terms of the number of clips with multiple associated sentences, this is one of the largest video
captioning datasets. In addition to video content, this dataset also contains audio information that
can potentially be used for multimodal research.

3.4.3 Charades. This dataset [130] contains 9,848 videos of daily indoor household activities.
These videos are recorded by 267 AMT workers from three different continents. They were given
scripts describing actions and objects and were required to follow the scripts to perform actions
with the specified objects. The objects and actions used in the scripts are from a fixed vocabulary.
Videos are recorded in 15 different indoor scenes and restricted to use 46 objects and 157 action
classes only. The dataset is composed of 66,500 annotations describing 157 actions. It also provides
41,104 labels to its 46 object classes. Moreover, it contains 27,847 descriptions covering all the
videos. The videos in the dataset depict daily life activities with an average duration of 30s. The
dataset is split into 7,985 and 1,863 videos for training and test purposes, respectively.

3.4.4 VTW. Video Titles in the Wild (VTW) [171] contains 18,100 video clips with an average of
1.5mins duration per clip. Each clip is described with one sentence only. However, it incorporates
a diverse vocabulary, where on average one word appears in not more than two sentences across
the whole dataset. Besides the single sentence per video, the dataset also provides accompanying
descriptions (known as augmented sentences) that describe information not present in the visual
content of the clip. The dataset is proposed for video title generation as opposed to video content
description but can also be used for language-level understanding tasks including video question
answering.

3.4.5 ActivityNet Captions. ActivityNet Captions dataset [70] contains 100K dense natural lan-
guage descriptions of about 20K videos from ActivityNet [176] that correspond to approximately
849h. On average, each description is composed of 13.48 words and covers about 36s of video.
There are multiple descriptions for every video and when combined together, these descriptions
cover 94.6% of content present in the entire video. In addition, 10% temporal overlap makes the
dataset especially interesting and challenging for studying multiple events occurring at the same
time.

4 EVALUATION METRICS

Evaluations performed over machine-generated captions/descriptions of videos can be divided
into Automatic Evaluations and Human Evaluations. Automatic evaluations are performed using
six different metrics that were originally designed for machine translation and image captioning.
These metrics are BLEU [102], ROUGEL [82], METEOR [12], CIDEr [142], WMD [76], and SPICE
[5]. Below, we discuss these metrics in detail as well as their limitations and reliability. Human
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Fig. 9. An example from MSVD [22] dataset with the associated ground truth captions. Note how the same

video clip has been described very differently. Each caption describes the activity wholly or partially in a

different way.

evaluations are performed, too, because of the unsatisfactory performance of automatic metrics
given that there are numerous ways to correctly describe the same video.

4.1 Automatic Sentence Generation Evaluation

Evaluation of video descriptions, automatically or manually generated, is challenging, because as
there is no specific ground truth or “right answer,” that can be taken as a reference for benchmark-
ing accuracy. A video can be correctly described in a wide variety of sentences that may differ not
only syntactically but also in terms of semantic content. Consider a sample from MSVD dataset as
shown in Figure 9, for instance; several ground truth captions are available for the same video clip.
Note that each caption describes the clip in an equally valid but different way with varied atten-
tions and levels of details in the clip, ranging from “jet,” “commercial airplane” to “South African
jet” and from “flying,” “soaring” to “banking” and last from “air,” “blue sky” to “clear sky.”

For automatic evaluation, when comparing the generated sentences with ground truth descrip-
tions, three evaluation metrics are borrowed from machine translation: namely, Bilingual Evalu-
ation Understudy (BLEU) [102], Recall Oriented Understudy of Gisting Evaluation (ROUGE) [82],
and Metric for Evaluation of Translation with Explicit Ordering (METEOR) [12]. Consensus-based
Image Description Evaluation (CIDEr) [142] and Semantic Propositional Image Captioning Evalua-
tion (SPICE) [5] are two other recently introduced metrics specifically designed for image caption-
ing tasks that are also being used for automatic evaluation of video description. Table 2 gives an
overview of the metrics included in this survey. In addition to these automatic evaluation metrics,
human evaluations are also employed to determine the performance of automated video descrip-
tion algorithms.

4.1.1 Bilingual Evaluation Understudy (BLEU, 2002). BLEU [102] is a popular metric used to
quantify the quality of machine-generated text. The quality measures the correspondence between
a machine and human outputs. BLEU scores take into account the overlap between predicted uni-
grams (single word) or higher order n-gram (sequence ofn adjacent words) and a set of one or more
candidate reference sentences. According to BLEU, a high-scoring description should match the
ground truth sentence in length, i.e., exact match of words as well as their order. BLEU evaluation
will score 1 for an exact match. Note that the higher the number of reference sentences in the
ground truth per video, the more the chances of a higher BLEU score. It is primarily designed
to evaluate text at a corpus level and, therefore, its use as an evaluation metric over individual
sentences may not be fair. BLEU is calculated as,

log BLEU = min

(
1 − lr

lc
, 0

)
+

N∑
n=1

wn logpn .

In the above equation, lr /lc is the ratio between the lengths of the corresponding reference corpus
and the candidate description, wn are positive weights, and pn is the geometric average of the
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Table 2. Summary of Metrics Used for Video Description Evaluation

Metric Name Designed For Methodology
BLEU [102] Machine translation n-gram precision
ROUGE [82] Document summarization n-gram recall
METEOR [12] Machine translation n-gram with synonym matching
CIDEr [142] Image captioning tf-idf weighted n-gram similarity
SPICE [5] Image captioning Scene-graph synonym matching
WMD [76] Document similarity Earth mover distance on word2vec

modified n-gram precisions. While the second term computes the actual match score, the first term
is a brevity penalty that penalizes descriptions that are shorter than the reference description.

4.1.2 Recall-oriented Understudy for Gisting Evaluation (ROUGE, 2004). ROUGE [82] metric was
proposed in 2004 to evaluate text summaries. It calculates recall score of the generated sentences
corresponding to the reference sentences using n-grams. Similar to BLEU, ROUGE is also computed
by varying the n-gram count. However, unlike BLEU, which is based on precision, ROUGE is based
on recall values. Moreover, other than n-gram variants of ROUGEn , it has other versions known as
ROUGEL (Longest Common Subsequence), ROUGEW (Weighted Longest Common Subsequence),
ROUGES (Skip-Bigram Co-Occurrences Statistics), and ROUGESU (extension of ROUGES ). We re-
fer the reader to the original paper for details. The version used in image and video captioning
evaluation is ROUGEL , which computes recall and precision scores of the longest common subse-
quences (LCS) between the generated and each reference sentence. The metric compares common
subsequences of words in candidate and reference sentences. The intuition behind this is that
longer LCS of candidate and reference sentences correspond to higher similarity between the two
summaries. The words need not be consecutive but should be in sequence. ROUGE-N is computed
as

ROUGE-N =

∑
S ∈RSum

∑
дn ∈S Cm (дn )∑

S ∈RSum

∑
дn ∈S C (дn )

,

n being the n-gram length, дn , and Cm (дn ) represents the highest number of n-grams that are
present in candidate as well as ground truth summaries, and RSum stands for reference summaries.

LCS-based F-measure score is computed to find how similar summary A of lengthm is to sum-
mary B of lengthn. WhereA is a sentence from the ground truth summary and B is a sentence from
the candidate-generated summary. The recall Rlcs , precision Plcs , and f-score Flcs are calculated as

Rlcs =
LCS(A,B)

m
, Plcs =

LCS(A,B)

n
, Flcs =

(1 + β2)RlcsPlcs

Rlcs + β2Plcs
,

where LCS(A,B) is the length of longest common subsequence between A and B, β = Plcs/Rlcs .
The LCS-based F-measure score computed by equation Flcs is known as ROUGEL score. ROUGEL

is 1 when A = B, and zero in case when A and B have no commonalities, i.e., LCS(A,B) = 0.
One of the advantages of ROUGEL is that it does not consider successive matches of words but

employs in-sequence matches within a sentence. Moreover, pre-defining the n-gram length is also
not required, as this is automatically incorporated by LCS .

4.1.3 Metric for Evaluation of Translation with Explicit Ordering (METEOR, 2005). METEOR [12]
was proposed to address the shortcomings of BLEU [102]. Instead of exact lexical match required by
BLEU, METEOR introduced semantic matching. METEOR takes WordNet[39], a lexical database of
the English language to account for various match levels, including exact words matches, stemmed
words matches, synonymy matching, and the paraphrase matching.
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METEOR score computation is based on how well the generated and reference sentences are
aligned. Each sentence is taken as a set of unigrams, and alignment is done by mapping unigrams of
candidate and reference sentences. During mapping, a unigram in candidate sentence (or reference
sentence) should either map to unigram in reference sentence (or candidate sentence) or to zero.
In case of multiple options available for alignments between the two sentences, the alignment
configuration with a lower number of crossings is preferred. After finalizing the alignment process,
METEOR score is calculated.

Initially, unigram-based precision score P is calculated using P =mcr /mct relationship. Here,
mcr represents the number of unigrams co-occurring in both candidate as well as reference
sentences, and mct corresponds to total number of unigrams in the candidate sentences. Then
unigram-based recall score R is calculated using R =mcr /mr t . Here, mcr represents the number
of unigrams co-occurring in both candidate as well as reference sentences. However, mr t is the
number of unigrams in the reference sentences. Further, precision and recall scores are used to
compute the F-score using the following equation:

Fmean =
10PR

R + 9P
.

The precision, recall, and F-score measures account for unigram-based congruity and do not
cater for n-grams. The n-gram-based similarities are used to calculate the penalty p for alignment
between candidate and reference sentences. This penalty takes into account the non-adjacent map-
pings between the two sentences. The penalty is calculated by grouping the unigrams into a min-
imum number of chunks. The chunk includes unigrams that are adjacent in candidate as well as
reference sentences. If a generated sentence is an exact match to the reference sentence, then there
will be only one chunk. The penalty is computed as

p =
1

2

(
Nc

Nu

)2

,

where Nc represents the number of chunks and Nu corresponds to the number of unigrams
grouped together. The METEOR score for the sentence is then computed as:

M = Fmean (1 − p).

Corpus-level score can be computed using the same equation by using aggregated values of all the
arguments, i.e., P ,R, and p. In case of multiple reference sentences, the maximum METEOR score
of a generated and reference sentence is taken. To date, correlation of METEOR score with human
judgments is better than that of BLEU score. Moreover, Elliot et al. [35] also found METEOR to
be a better evaluation metric as compared to contemporary metrics. Their conclusion is based on
Spearman’s correlation computation of automatic evaluation metrics against human judgments.

4.1.4 Consensus-based Image Description Evaluation (CIDEr, 2015). CIDEr [142] is a recently
introduced evaluation metric for image captioning task. It evaluates the consensus between a pre-
dicted sentence ci and reference sentences of the corresponding image. It performs stemming and
converts all the words from candidate as well as reference sentences into their root forms, e.g.,
stems, stemmer, stemming, and stemmed to their root word stem. CIDEr treats each sentence as a
set of n-grams containing 1 to 4 words. To encode the consensus between predicted sentence and
reference sentence, it measures the co-existence frequency of n-grams in both sentences. Finally,
n-grams that are very common among the reference sentences of all the images are given lower
weight, as they are likely to be less informative about the image content and more biased towards
lexical structure of the sentences. The weight for each n-gram is computed using Term Frequency
Inverse Document Frequency (TF-IDF) [113]. The term TF puts higher weightage on frequently
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occurring n-grams in the reference sentence of the image, whereas IDF puts lower weightage on
commonly appearing n-grams across the whole dataset. Finally, CIDErn score is computed as

CIDErn (ci , Si ) =
1

m

∑
j

дn (ci ).дn (si j )

‖дn (ci )‖.‖дn (si j )‖
,

where дn (ci ) is a vector representing all n-grams with length n and ‖дn (ci )‖ depicts magnitude of
дn (ci ). Same is true for дn (si j ). Further, CIDEr uses higher-order n-grams (the higher the order,
the longer the sequence of words) to capture the grammatical properties and richer semantics of
the text. For that matter, it combines the scores of different n-grams using the following equation:

CIDEr(ci , Si ) =
N∑

n=1

wnCIDErn (ci , Si ).

The most popular version of CIDEr in image and video description evaluation is CIDEr-D, which
incorporates a few modifications in the originally proposed CIDEr to prevent higher scores for
the captions that badly fail in human judgments. First, they proposed removal of stemming to
ensure correct form of words are used. Otherwise, multiple forms of verbs (singular, plural, etc.)
are mapped to the same token producing high scores for incorrect sentences. Secondly, they ensure
that if the words of high confidence are repeated in a sentence, a high score is not produced as the
original CIDEr produces even if the sentence does not make sense. This is done by introducing a
Gaussian penalty over length differences between the candidate and reference sentences and by
clipping to the n-grams count equal to the number of occurrences in the reference sentence. The
latter ensures that the desired sentence length is not achieved by repetition of high-confidence
words to get a high score. The aforementioned changes make the metric robust and ensure its
high correlation score [142].

4.1.5 Word Mover’s Distance (WMD, 2015). The WMD [76] makes use of word embeddings that
are semantically meaningful vector representations of words learnt from text corpora. WMD dis-
tance measures the dissimilarity between two text documents. Two captions with different words
may still have the same semantic meanings. However, it is possible for multiple captions to have
the same attributes, objects, and their relations while still having very different meanings. WMD
was proposed to address this problem. This is because word embeddings are good at capturing
semantic meanings and are easier to compute than WordNet, thanks to the distributed vector rep-
resentations of words. The distance between two texts is cast as an Earth Mover’s Distance (EMD)
[123], typically used in transportation to calculate the travel cost using word2vec embeddings [91].
In this metric, each caption or description is represented by a bag-of-words histogram that includes
all but the start and stop words. The magnitude of each bag-of-words histogram is then normal-
ized. To account for semantic similarities that exist between pairs of words, the WMD metric uses
the Euclidean distance in the word2vec embedding space. The distance between two documents or
captions is then defined as the cost required to move all words between captions. Figure 10 illus-
trates an example WMD calculation process. The WMD is modelled as a special case of EMD [123]
and is then solved by linear optimization. Compared to BLUE, ROUGE, and CIDEr, WMD is less
sensitive to word order or synonym swapping. Further, similar to CIDEr and METEOR, it gives
high correlation against human judgments.

4.1.6 Semantic Propositional Image Captioning Evaluation (SPICE, 2016). SPICE [5] is the lat-
est proposed evaluation metric for image and video descriptions. SPICE measures the similarity
between the scene graph tuples parsed from the machine-generated descriptions and the ground
truth. The semantic scene graph encodes objects, their attributes, and relationships through a de-
pendency parse tree. A scene graph tuple G (c ) of caption c consists of semantic tokens such as
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Fig. 10. Components of the WMD metric between a query D0 and two sentences D1 and D2 with the

same BOW distance. D1 with less distance 1.07 matches with query D0 than D2 with distance 1.63. The

arrows show flow between two words and are labeled with their distance contribution. Figure adapted from

Reference [76].

object classes O (c ), relation types R (c ), and attribute types A(c ),

G (c ) = 〈O (c ),R (c ),A(c )〉.

SPICE is computed based on F1-score between the tuples of machine-generated descriptions and
the ground truth. Like METEOR, SPICE also uses WordNet to find and treat synonyms as positive
matches. Although, in the current literature, the SPICE score has not been employed much; one
obvious limiting factor on its performance could be the quality of the parsing. For instance, in a
sentence “white dog swimming through river,” the failure case could be the word “swimming”
being parsed as “object,” and the word “dog” parsed as “attribute,” resulting in a very bad score.

4.2 Human Evaluations

Given the lack of reference captions and low correlation with human judgments of automated eval-
uation metrics, human evaluations are also often used to judge the quality of machine-generated
captions. Human evaluations may either be crowd-sourced, such as AMT workers, or specialist
judges, as in some competitions. Such human evaluations can be further structured using mea-
surements such as Relevance or Grammar Correctness. In relevance-based evaluation, video-content
relevance is given subjective scores, with the highest score given to the “Most Relevant” and min-
imum score to the “Least Relevant.” The score of two sentences cannot be the same unless they
are identical. In the approaches where grammar correctness is measured, the sentences are graded
based on grammatical correctness without showing the video content to the evaluators, in which
case, more than one sentence may have the same score.

4.3 Limitations of Evaluation Metrics

Like video description, evaluation of the machine-generated sentences is an equally difficult task.
There is no metric specifically designed for evaluating video description; instead, machine trans-
lation and image captioning metrics have been extended for this task. These automatic metrics
compute the score given reference and candidate sentences. This paradigm has a serious problem
that there can be several different ways to describe the same video, all correct at the same time,
depending upon “what has been described” (content selection) and “how it has been described” (re-
alization). These metrics fail to incorporate all these variations and are, therefore, far from being
perfect. Various studies [63, 154] have examined how metric scores behave under different con-
ditions. In Table 3, we perform similar experiments [63] but with an additional variation of short
length. First, the original caption was evaluated with itself to analyze the maximum possible score
achievable by each metric (first row of Table 3). Next, minor modifications were introduced in the
candidate sentences to measure how the evaluation metrics behave. It was observed that all metric
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Table 3. Variations in Automatic Evaluation Metric Scores with Four Types of Changes Made to

Candidate Sentence, i.e., Words Replaced with Their Synonyms, Added Redundancy to Sentence,

Changing Word Order, and Shortening the Sentence Length

Variation Description B M R C
reference an elderly man is playing piano in front of a crowd in

an anteroom
1 1 1 10

candidate an elderly man is showing how to play piano in front
of a crowd in a hall room

0.47 0.45 0.70 0.53

synonyms an old man is demonstrating how to play piano in
front of a crowd in a hall room

0.37 0.40 0.64 0.43

redundancy an elderly man is showing how to play piano in front
of a crowd in a hall room with a woman

0.40 0.44 0.65 0.47

word order an elderly man in front of a crowd is showing how to
play piano in a hall room

0.30 0.39 0.57 0.35

short length a man is playing piano 0.12 0.22 0.39 0.49

The first row shows the upper bound scores of BLEU-4, METEOR, ROUGE, and CIDEr represented by B, M, R, and C,

respectively.

scores reduced, BLEU and CIDEr being the most affected, when some words were replaced with
their synonyms. This is apparently due to the failure to match synonyms. Further experiments
revealed that the metrics were generally stable when the sentence was perturbed with a few ad-
ditional words. However, changing the word order in a sentence was found to alter the scores of
n-gram-based metrics such as BLEU, ROUGE, and CIDEr significantly and that of ROUGE to some
extent. However, WMD and SPICE were found to be robust to word order changes [63]. Last, re-
ducing the sentence length significantly affected BLEU, METEOR, and ROUGE scores but had little
effect on CIDEr score, i.e., the scores were reduced by 74%, 51%, 44%, and 7%, respectively.

4.4 Reliability of Evaluation Metrics

A good method to evaluate the video descriptions is to compare the machine-generated descrip-
tions with the ground truth descriptions annotated by humans. However, as shown in Figure 9,
the reference captions can vary within themselves and can only represent a few samples out of
all valid samples for the same video clip. Having more reference sample captions creates a better
solution space and hence leads to more reliable evaluation.

Another aspect of the evaluation problem is the syntactic variations in candidate sentences. The
same problem also exists in the well-studied field of machine translation. In this case, a sentence
in a source language can be translated into various sentences in a target language. Syntactically
different sentences may still have the same semantic content.

In a nutshell, evaluation metrics assess the suitability of a caption to the visual input by com-
paring how well the candidate caption matches reference caption(s). The agreement of the metric
scores with human judgments (i.e., the gold standard) improves with the increased number of ref-
erence captions [142]. Numerous studies [99, 142, 144, 167] also found that CIDEr, WMD, SPICE,
and METEOR have higher correlations to human judgments and are regarded as superior among
the contemporary metrics. WMD and SPICE are very recent automatic caption evaluation metrics
and had not been studied extensively in the literature at the time of this survey.

5 BENCHMARK RESULTS

We summarize the benchmark results of various techniques on each video description dataset.
We group the methods based on the dataset they reported results on and then order them
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Table 4. Performance of Video Captioning Methods on MSVD Dataset

Techniques/Models/Methods Yr Dataset
Results

BLEU METEOR CIDEr ROUGE

RBS+RBS & RF-TP+RBS [52] 2012 MSVD SVO Accuracy

SVO-LM (VE) [71] 2013 MSVD 0.45+_0.05 0.36+_0.27

FGM [137] 2014 MSVD SVOP Accuracy

LSTM-YT [145] 2015 MSVD 33.3 29.1 - -

TA [162] 2015 MSVD 41.9 29.6 51.67 -

S2VT [144] 2015 MSVD - 29.8 - -

h-RNN [167] 2016 MSVD 49.9 32.6 65.8 -

MM-VDN [159] 2016 MSVD 37.6 29.0 - -

Glove + Deep Fusion Ensble [143] 2016 MSVD 42.1 31.4 - -

S2FT [84] 2016 MSVD - 29.9 - -

HRNE [99] 2016 MSVD 43.8 33.1 - -

GRU-RCN [11] 2016 MSVD 43.3 31.6 68.0 -

LSTM-E [100] 2016 MSVD 45.3 31.0 - -

SCN-LSTM [43] 2017 MSVD 51.1 33.5 77.7 -

LSTM-TSA [101] 2017 MSVD 52.8 33.5 74.0 -

TDDF [172] 2017 MSVD 45.8 33.3 73.0 69.7

BAE [13] 2017 MSVD 42.5 32.4 63.5 -

PickNet [24] 2018 MSVD 46.1 33.1 76.0 69.2

M3 − IC [153] 2018 MSVD 52.8 33.3 - -

RecNetlocal [150] 2018 MSVD 52.3 34.1 80.3 69.8

TSA-ED [156] 2018 MSVD 51.7 34.0 74.9 -

GRU-EVE [3] 2019 MSVD 47.9 35.0 78.1 71.5

Higher scores are better in all metrics. The best score for each metric is shown in bold in green cells.

chronologically. Moreover, for multiple variants of the same model, only their best reported re-
sults are reported here. For a detailed analysis of each method and its variants, the original paper
should be consulted. In addition, where multiple n-gram scores are reported for the BLEU metric,
we have chosen only the BLEU@4 results, as these are the closest to human evaluations. From
Table 4, we can see that most methods have reported results on the MSVD dataset, followed by
MSR-VTT, M-VAD, MPII-MD, and ActivityNet Captions. The popularity of MSVD can be attributed
to the diverse nature of YouTube videos and the large number of reference captioning. MPII-MD,
M-VAD, MSR-VTT, and ActivityNet Captions are popular because of their size and their inclusion
in competitions.

Another key observation is that earlier works have mainly reported results in terms of sub-
ject, verb, object (SVO) and in some cases place (scene) detection accuracies in the video, whereas
more recent works report sentence-level matches using automatic evaluation metrics. Considering
the diverse nature of the datasets and the limitations of automatic evaluation metrics, we analyze
the results of different methods using four popular metrics, namely, BLEU, METEOR, CIDEr, and
ROUGE. Table 4 summarizes results for the MSVD dataset. GRU-EVE [3] achieves the best perfor-
mance on METEOR and ROUGEL metrics and the second best on CIDEr metric, whereas LSTM-
TSA [101] and M3-IC [153] report the best BLEU scores. RecNetlocal [150] has the best CIDEr score
and second-best BLEU score. Table 5 shows results on the TACoS Multilevel dataset, where h-RNN
[167] has the best scores on the three reported metrics (BLEU, METEOR, and CIDEr).

On the more challenging M-VAD dataset, the reported results (Table 6) are overall very poor.
Only Temporal-Attention [162] and HRNE [99] reported results using the BLEU metric with a score
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Table 5. Performance of Video Captioning Methods on TACoS-MLevel Dataset

Techniques/Models/Methods Yr Dataset
Results

BLEU METEOR CIDEr ROUGE

SMT(SR) + Prob I/P [114] 2014 TACoS MLevel 28.5 - - -

CRF + LSTM-Decoder [33] 2015 TACoS MLevel 28.8 - - -

h-RNN [167] 2016 TACoS MLevel 30.5 28.7 160.2 -

JEDDi-Net [158] 2018 TACoS MLevel 18.1 23.85 103.98 50.85

Table 6. Performance of Video Captioning Methods on M-VAD Dataset

Techniques/Models/Methods Yr Dataset
Results

BLEU METEOR CIDEr ROUGE

Temporal-Attention (TA) [162] 2015 M-VAD 0.7 5.7 6.1 -

S2VT [144] 2015 M-VAD - 6.7 - -

Visual-Labels [115] 2015 M-VAD - 6.4 - -

HRNE [99] 2016 M-VAD 0.7 6.8 - -

Glove + Deep Fusion Ensemble [143] 2016 M-VAD - 6.8 - -

LSTM-E [100] 2016 M-VAD - 6.7 - -

LSTM-TSA [101] 2017 M-VAD - 7.2 - -

BAE [13] 2017 M-VAD - 7.3 - -

Table 7. Performance of Video Captioning Methods on MPII-MD Dataset

Techniques/Models/Methods Yr Dataset
Results

BLEU METEOR CIDEr ROUGE

S2VT [144] 2015 MPII-MD - 7.1 - -

Visual-Labels [115] 2015 MPII-MD - 7.0 - -

SMT [116] 2015 MPII-MD - 5.6 - -

Glove + Deep Fusion Ensemble [143] 2016 MPII-MD - 6.8 - -

LSTM-E [100] 2016 MPII-MD - 7.3 - -

LSTM-TSA [101] 2017 MPII-MD - 8.0 - -

BAE [13] 2017 MPII-MD 0.8 7.0 10.8 16.7

of 0.7 in both cases. All other works that used this dataset reported METEOR scores with BAE
[13] achieving the best METEOR score followed by LSTM-TSA [101]. HRNE [99] and Glove+Deep
Fusion Ensemble [143] share the third place for METEOR score.

MPII-MD is another very challenging dataset and still has very low benchmark results, as shown
in Table 7, similar to the M-VAD dataset. Only BAE [13] has a reported BLEU score for this dataset.
LSTM-TSA [101] has achieved the best METEOR score followed by LSTM-E [100] and S2VT [144]
at second and third place, respectively. Only BAE [13] reported CIDEr and ROUGE scores on this
dataset.

Results on another popular dataset, MSR-VTT, are overall better than the M-VAD and MPII-
II datasets. As shown in Table 8, CST-GT-None [104] has reported the highest score on all four
metrics, i.e., BLEU, METEOR, CIDEr, and ROUGE. DenseVidCap [126] and HRL [155], respectively,
report the second- and third-best scores on BLEU metric. GRU-EVE [3] reports the third-best score
in METEOR and CIDEr metrics.
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Table 8. Performance of Video Captioning Methods on MSR-VTT Dataset

Techniques/Models/Methods Yr Dataset Results

BLEU METEOR CIDEr ROUGE

Alto [127] 2016 MSR-VTT 39.8 26.9 45.7 59.8

VideoLab [108] 2016 MSR-VTT 39.1 27.7 44.4 60.6

RUC-UVA [34] 2016 MSR-VTT 38.7 26.9 45.9 58.7

v2t-navigator [59] 2016 MSR-VTT 40.8 28.2 44.8 61.1

TDDF [172] 2017 MSR-VTT 37.3 27.8 43.8 59.2

DenseVidCap [126] 2017 MSR-VTT 41.4 28.3 48.9 61.1

CST-GT-None [104] 2017 MSR-VTT 44.1 29.1 49.7 62.4

PickNet [24] 2018 MSR-VTT 38.9 27.2 42.1 59.5

HRL [155] 2018 MSR-VTT 41.3 28.7 48.0 61.7

M3 −VC [153] 2018 MSR-VTT 38.1 26.6 - -

RecNetlocal [150] 2018 MSR-VTT 39.1 26.6 42.7 59.3

GRU-EVE [3] 2019 MSR-VTT 38.3 28.4 48.1 60.7

Table 9. Performance of Video Captioning Methods on ActivityNet Captions Dataset

Techniques/Models/Methods Yr Dataset
Results

BLEU METEOR CIDEr ROUGE

Dense-Cap Model [70] 2017 ActivityNet Cap 3.98 9.5 24.6 -

LSTM-A+PG+R [163] 2017 ActivityNet Cap - 12.84 - -

TAC [107] 2017 ActivityNet Cap - 9.61 - -

JEDDi-Net [158] 2018 ActivityNet Cap 1.63 8.58 19.88 19.63

DVC [81] 2018 ActivityNet Cap 1.62 10.33 25.24 -

Bi-SST [152] 2018 ActivityNet Cap 2.30 9.60 12.68 19.10

Masked Transformer [175] 2018 ActivityNet Cap 2.23 9.56 - -

Table 10. Performance of Video Captioning Methods on Various Benchmark Datasets

Techniques/Models/Methods Yr Dataset
Results

BLEU METEOR CIDEr ROUGE

CT-SAN [170] 2016 LSMDC 0.8 7.1 10.0 15.9

GEAN [169] 2017 LSMDC - 7.2 9.3 15.6

HRL [155] 2018 Charades 18.8 19.5 23.2 41.4

TSA-ED [156] 2018 Charades 13.5 17.8 20.8 -

Masked Transformer [175] 2018 YouCook-II 1.13 5.90 - -

Results of another recent and popular ActivityNet Captions dataset are presented in Table 9. This
dataset was primarily introduced for dense video captioning and is gaining popularity very quickly.
In this dataset, Dense-Cap Model [70] stands at top in terms of BLEU score. Best METEOR score
is reported by LSTM-A+PG+R [163]. Highest scores in CIDEr and ROUGE metrics are achieved by
methods DVC [81] and JEDDi-Net [158], respectively. Finally, in Table 10, we report two results
for LSMDC and Charades each and only one result for YouCook-II datasets. YouCook-II is also a
recent dataset and not reported much in the literature.

We summarize the best reporting methods for each dataset along with their published scores.
The tables group methods by the used dataset(s). Hence, one can infer the difficulty level of datasets
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by comparing the intra dataset scores of the same methods and the popularity of a particular
dataset from the number of methods that have reported results on it.

6 FUTURE AND EMERGING DIRECTIONS

Automatic video description has come very far since the pioneer methods, especially after the
adoption of deep learning. Although the performance of existing methods is still far below that
of humans, the gap is diminishing at a steady rate, and there is still ample room for algorithmic
improvements. Here, we list several possible future and emerging directions that have the potential
to advance this research area.

Visual Reasoning: Although video VQA is still in its nascent stage, beyond VQA is the visual
reasoning problem. This is a very promising field to further explore. Here the model is made not
to just answer a particular question but to reason why it chose that particular answer. For ex-
ample, in a video where a roadside with parking marks is shown, the question is “Can a vehicle
be parked here?,” and the model answers correctly, “Yes.” The next question is “Why? ” to which
the model reasons that there is a parking sign on the road, which means it is legal to park here.
Another example is the explanations generated by self-driving cars [64], where the system keeps
the passengers in confidence by generating natural language descriptions of the reasons behind
its decisions, e.g., to slow down, take a turn, and so on. An example of visual reasoning models is
the MAC Network [57], which is able to think and reason giving promising results on CLEVR [60],
a visual reasoning dataset.

Visual Dialogue: Similar to audio dialogue (e.g., Siri, Hello Google, Alexa, and ECHO), visual
dialogue [30] is another promising and flourishing field, especially in an era where we look forward
to interact with robots. In visual dialogue, given a video, a model is asked a series of questions
sequentially in a dialogue/conversational manner. The model tries to answer (no matter right or
wrong) these questions. This is different from visual reasoning, where the model argues the reasons
that lead the model to choose particular answers.

Audio and Video: While the majority of computer vision research has focused on video descrip-
tion without the help of audio, audio is naturally present in most of videos. Audio can help in video
description by providing background information; for instance, the sound of a train, the ocean, and
traffic when there is no visual cue of their presence. Audio can additionally provide semantic in-
formation; for example, who the person is or what they are saying on the other side of the phone.
It can also provide clues about the story, context, and sometimes explicitly mention the object or
action to complement the video information. Therefore, using audio in video description models
will certainly improve the performance [53, 98].

External Knowledge: In video description, most of the time, we are comparing the performance
with humans who have extensive out-of-domain or prior knowledge. When humans watch a clip
and describe it, most of the time they don’t rely solely on the visual (or even the audio) content.
Instead, they additionally employ their background knowledge. Similarly, it would be an inter-
esting and promising approach to augment the video description techniques with prior external
knowledge [157]. This approach has shown significantly better performance in visual question
answering methods and is likely to improve video description accuracy.

Addressing the Finite Model Capacity: Existing methods are performing end-to-end training
while using as much data as possible for better learning. However, this approach itself is inherently
limited in learning, as no matter how big the training dataset becomes, it will never cover the
combinatorial complexity of real-world events. Therefore, learning to use data rather than learning
the data itself is more important and may help improve the upcoming system performances.
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Automatic Evaluation Measures: So far, video description has relied on automatic metrics de-
signed for machine translation and image captioning tasks. To date, there is no automatic video
description (or even captioning) evaluation metric that is purpose-designed. Although metrics de-
signed for image captioning are relevant, they have their limitations. This problem is going to
exacerbate in the future with dense video captioning and story-telling tasks. There is a need for
an evaluation metric that is closer to human judgments and that can encapsulate the diversities of
realizations of visual content. A promising research direction is to use machine learning to learn
such a metric rather than hand-engineer it.

7 CONCLUSION

We presented the first comprehensive literature survey of video description research, starting
from the classical methods that are based on Subject-Verb-Object (SVO) tuples to more sophis-
ticated statistical and deep learning–based methods. We reviewed popular benchmark datasets
that are commonly used for training and testing these models and discussed international compe-
titions/challenges that are regularly held to promote the video description research. We discussed,
in detail, the available automatic evaluation metrics for video description, highlighting their at-
tributes and limitations. We presented a comprehensive summary of results obtained by recent
methods on the benchmark datasets using all metrics. These results not only show the relative
performance of existing methods but also highlight the varying difficulty levels of the datasets
and the robustness and trustworthiness of the evaluation metrics. Finally, we put forward some
recommendations for future research directions that are likely to push the boundaries of this re-
search area.

From an algorithm-design perspective, although LSTMs have shown competitive caption gener-
ation performance, the interpretablity and intelligibility of the underlying models are low. Specif-
ically, it is hard to differentiate how much visual features have contributed to the generation of a
specific word compared to the bias that comes naturally from the language model adopted. This
problem is exacerbated when the aim is to diagnose the generation of erroneous captions. For
example, when we see a caption “red fire hydrant” generated by a video description model from
a frame containing a “white fire hydrant,” it is difficult to ascertain whether the color feature is
incorrectly encoded by the visual feature extractor or is due to the bias in the used language model
towards “red fire hydrants.” Future research must focus on improving diagnostic mechanisms to
pinpoint the problematic part of the architectures so it can be improved or replaced.

Our survey shows that a major bottleneck hindering progress along this line of research is the
lack of effective and purposely designed video description evaluation metrics. Current metrics have
been adopted either from machine translation or image captioning and fall short in measuring
the quality of machine-generated video captions and their agreement with human judgments.
One way to improve these metrics is to increase the number of reference sentences. We believe
that purpose-built metrics that are learned from the data itself are the key to advancing video
description research.

Some challenges come from the diverse nature of the videos themselves. For instance, multiple
activities in a video, where captions represent only some activities, could lead to low video de-
scription performance of a model. Similarly, longer duration videos pose further challenges, since
most action features can only encode short-term actions such as trajectory features and C3D fea-
tures [141] that are dependent on video-segment lengths. Most feature extractors are suitable only
for static or smoothly changing images and hence struggle to handle abrupt scene changes. Cur-
rent methods rather simplify the visual encoding part by representing holistic videos or frames.
Attention models may further need to be explored to focus on spatially and temporally significant
parts of the video. Similarly, temporal modeling of the visual features itself is quite rudimentary in
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existing methods. Most methods either use mean pooling, which completely discards the temporal
information or uses the C3D model, which can only model 15 frames. Future research should focus
on designing better temporal modeling architectures that preferably learn in an end-to-end fash-
ion rather than disentangling the visual description from the temporal model and the temporal
modeling from language description.
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