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Learning a Multi-Concept Video Retrieval Model

with Multiple Latent Variables
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Effective and efficient video retrieval has become a pressing need in the “big video” era. The objective of this

work is to provide a principled model for computing the ranking scores of a video in response to one or more

concepts, where the concepts could be directly supplied by users or inferred by the system from the user

queries. Indeed, how to deal with multi-concept queries has become a central component in modern video

retrieval systems that accept text queries. However, it has been long overlooked and simply implemented by

weighted averaging of the corresponding concept detectors’ scores. Our approach, which can be considered

as a latent ranking SVM, integrates the advantages of various recent works in text and image retrieval, such as

choosing ranking over structured prediction, modeling inter-dependencies between querying concepts, and

so on. Videos consist of shots, and we use latent variables to account for the mutually complementary cues

within and across shots. Concept labels of shots are scarce and noisy. We introduce a simple and effective

technique to make our model robust to outliers. Our approach gives superior performance when it is tested

on not only the queries seen at training but also novel queries, some of which consist of more concepts than

the queries used for training.
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1 INTRODUCTION

Video data is explosively growing due to the ubiquitous video acquisition devices. Recent years
witness a surge of huge video volumes from surveillance, health care, and personal mobile phones,
to name a few. From the perspective of the IP traffic, Cisco’s white paper on Visual Networking
Index reveals several astonishing numbers about the Internet videos (Index 2013, 2014):

• The sum of all forms of videos will be in the range of 80% to 90% of global consumer traffic
by 2019.

• It would take an individual more than 5 million years to watch the amount of video that
will cross global IP networks each month in 2019.

• Mobile video traffic exceeded 50% of total mobile data traffic in 2012. Note that the global
mobile data traffic reached 2.5 exabytes (2.5 × 1018 bytes) per month at the end of 2014.

Indeed, there have been way more videos being generated than what people can watch. Some
people have started making fun of this fact; the PetitTube (www.petittube.com) randomly plays
YouTube (www.youtube.com) videos with zero views to its visitors, such that a visitor would be-
come the first one to watch the randomly displayed video.

However, it is not funny at all to see the huge volumes of unwatched videos, but rather alarming,
for example, in the public security domain, and rather challenging for video providers to deliver
the right videos upon consumers’ requests.

By all means, effective and efficient video retrieval has become a pressing need in the era of
“big video,” whereas it has been an active research area for decades. Following the earlier research
on content-based video retrieval (Aslandogan and Yu 1999; Hu et al. 2011), the most recent efforts
have been mainly spent on (multi-)concept-based video retrieval (Snoek and Worring 2008), an
arguably more promising paradigm to bridge the semantic gap between the visual appearance
in videos and the high-level interpretations humans perceive from the videos. Multi-Concept-
based video retrieval employs a learning algorithm that learns to rank videos in response to the
queries consisting of more than one concept. It means that, in both training and testing stages, it
handles multiple concepts per query. However, the corresponding learning process may become
much harder than content-based or single concept-based video retrieval, since the number of pos-
itive examples for the queries degenerates, the number of parameters of the model grows, and
uncertainties increase, since different concepts can take place in various parts of a video. These
challenges lead us to propose a solution to train a structured model that can be trained and tested
with multiple concepts and can deal with the latent inter/intra-shot correlations of the concepts
of videos. We refer the readers to the survey articles (Hu et al. 2011; Snoek and Worring 2008) and
the annual TRECVID workshops (Over et al. 2014) for a more comprehensive understanding.

A concept corresponds to one or more words or a short description that is understandable by
humans. To be useful in automatic video retrieval systems, the concepts (e.g., furniture, beach, etc.)
have also to be automatically detectable, usually by some statistical machine-learning algorithms,
employing the low-level visual cues (color, texture, etc.) in the videos. Some studies have shown
that a rich family of concepts coupled with even poor detection results (10% mean average preci-
sion) is able to provide high accuracy results on news video retrieval—comparable to text retrieval
on the Web (Hauptmann et al. 2007). Both the richness of the concept set and the performance
of the concept detectors are essential. Correspondingly, a plethora of works has been devoted to
learning concept detectors (Chang et al. 2007; Dehghan et al. 2014; Qi et al. 2007; Snoek et al. 2013;
Yang and Shah 2012; Ye et al. 2015).

Common users have been used to text-based queries for retrieving the target instances in their
minds. Equipped with a set of concept detectors, a concept-based video retrieval system is able to
accept text descriptions as the queries even when the videos have no textual metadata associated,
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Fig. 1. How to calculate the ranking scores of videos in response to one or more concepts is the central
component in many video retrieval systems. It takes as input the multi-concept queries and then returns a
ranked list of videos. The multiple concepts in a query could be directly supplied by the users or inferred by
the systems from the users’ text queries. We apply a set of pre-trained concept detectors on all the shots
of the videos. Our model learns to select the most important shots to score a video using multiple latent
variables.

thus offering users the same interface for the video retrieval as for document or website retrieval
(e.g., Snoek et al. (2007)). As shown in Figure 1, users can directly select concepts from a checklist to
compose the queries. Alternatively, the system can also let the user’s query be a open-vocabulary
text and then translate the queries to a subset of concepts. The latter itself is a very interesting
problem to which a full treatment is beyond the scope of this article. Readers who are interested in
this problem are referred to Haubold and Natsev (2008), Kennedy et al. (2008), Natsev et al. (2007),
Neo et al. (2006), Snoek et al. (2007), Wang et al. (2007), and Wei et al. (2008). In either case, the
central operation afterward is to use the resultant subset of concepts to retrieve related videos.
In this article, we focus on retrieving whole videos as opposed to segments or shots of videos;
however, the developed approach can be conveniently applied to video segments retrieval as well.

Despite being the key component in (multi-)concept-based video retrieval, how to effectively
retrieve videos that are related to a subset of concepts is left far from being solved. There is a
lack of a principled framework or unified statistical machine-learning model for this purpose.
Instead, most existing works take the easy alternative by ranking videos according to the weighted
average of the concept detection confidences (Aytar et al. 2008; Mc Donald and Smeaton 2005),
where the weights are either uniform or in some systems derived from the similarities between
an open-vocabulary user query and the selected concepts. This necessarily fails to take account
of the reliabilities of the concept detectors, the relationships between the selected concepts, and
the potential contributions from the unselected concepts. Our empirical study actually shows that
the unselected concepts can significantly boost the video retrieval performance when they are
modeled appropriately.

The objective of this work is to provide a principled model for multi-concept-based video re-
trieval, where the concepts could be directly provided by the users or automatically selected by the
system based on user queries. Figure 1 highlights the main focus of this article in the central panel.

Our approach, which can be considered as a latent ranking SVM (Lan et al. 2012), integrates
different advantages of the recent works on text retrieval and multi-attribute-based image retrieval.
Particularly, we model the video retrieval as a ranking problem following Grangier and Bengio
(2008), as opposed to the structured prediction problem used in Siddiquie et al. (2011) and Yu
et al. (2012), to harvest better efficiency and larger modeling capacity to accommodate some latent
variables. The latent variables help choose the shots which are the most responsive to the concepts
in a user query, without the need of tediously labeling the shots in the training set. We use them
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to define the scoring functions both within and across the video shots, closely tracking the unique
temporal characteristic of videos. Besides, we incorporate the empirically successful intuitions
from multi-attribute-based image retrieval (Siddiquie et al. 2011; Yu et al. 2012) that the inter-
dependencies between both selected and unselected concepts/attributes should be jointly modeled.
Finally, we introduce a novel 0-1 loss-based early stopping criterion for learning/optimizing our
model parameters. This is motivated by the fact that the 0-1 loss is more robust to the outliers than
the hinge loss, which is used to formalize the optimization problem.

The proposed model, along with a family of provided scoring functions, accounts for some in-
evitable caveats of the concept detection results: reliabilities of individual concept detectors, inter-
dependencies between concepts, and the correlations between selected and unselected concepts in
response to a user query. It expressively improves upon the conventional weighted average of the
selected concept detection scores for the multi-concept-based video retrieval. To this end, we stress
again that, as the central component in modern video retrieval systems, how to effectively trans-
form the selected concepts to the ranking scores of videos has been long overlooked and is under
exploited. More advances and progress on this problem are in need, since they will significantly
increase the overall performance of the video retrieval systems.

In the following, we first discuss the related work in Section 2. Section 3.1 presents our video
retrieval model given multiple concepts. We then describe how to integrate video-level concept
detectors (Section 3.2) and video shot-level detectors (Section 3.3) into the model, followed by
experiments in Section 4.

2 RELATED WORK

One of the biggest known challenges in Artificial Intelligence is having systems with understand-
ings close to humans. It has been shown that visual concepts have a promising effect in this un-
derstanding of videos or images, especially for retrieval problems (Over et al. 2015; Smeaton 2007;
Snoek and Worring 2008). Concepts not only capture the semantics of an environments, they also
bridge the gap between low-level visual cues and higher-level representations that humans can
understand.

User queries for a retrieval system can include one or more concepts (Campbell et al. 2007; Chang
et al. 2005; Haubold and Natsev 2008; Jiang et al. 2015; Kennedy et al. 2008; Natsev et al. 2007; Neo
et al. 2006; Snoek et al. 2007; Wang et al. 2007; Wei et al. 2008). The order of the retrieved videos is
supposed to be ranked by the relevance of each video to the query concepts. In many works, this
is achieved by manually defined similarities and heuristic fusion techniques (Aytar et al. 2008; Li
et al. 2007; Mc Donald and Smeaton 2005; Yan and Hauptmann 2003) by mapping the user query
concepts to the pool of existing concept detector’s scores. Some works like Assari et al. (2014) take
into account the positive correlation of concepts occurring in videos. In contrast to existing works,
we introduce a principled model to automatically learn both positives and negative correlations of
concepts at video and shot-level to rank videos based on queries containing multiple concepts.

Broadly speaking, concept detection encompasses a wide spectrum of topics that are potentially
useful for the concept-based video retrieval. Some earlier works (Iyengar and Nock 2003; Smeaton
et al. 2009; Snoek et al. 2006) approached this task with tens to hundreds of concepts, while the
most recent work has significantly upgraded the scale (Chen et al. 2014; Ye et al. 2015). Concepts
can take different forms. For instance, object bank (Li et al. 2010), action bank (Sadanand and
Corso 2012), image cell-based detections (Althoff et al. 2012), classemes (Torresani et al. 2010), data-
driven concepts (Yang and Shah 2012), sentiment concepts (Chen et al. 2014), events (Ye et al. 2015),
and so on. Whereas many concept detectors are trained from manually labeled datasets (Farhadi
et al. 2009; Lampert et al. 2014), some other works harvest detectors from the noisy Web data (Li
et al. 2013). Our approach benefits from these works. Almost all the existing concept detectors can
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be seamlessly integrated into our multi-concept-based video retrieval model by the two types of
scoring functions to be described in Section 3.

Work on image retrieval and ranking using multiple attributes (Siddiquie et al. 2011; Yu et al.
2012) is the most relevant to the multi-concept-based video retrieval. However, due to the vast
number of video shots in a database, the structural SVM (Tsochantaridis et al. 2004; Yu and
Joachims 2009) model used in Siddiquie et al. (2011) and Yu et al. (2012) becomes intractable in
our experiments, especially when the annotations are incomplete like the datasets we use in this
research. Instead, we develop a simpler ranking model with a variety of scoring functions for our
retrieval problem. Our proposed model, which uses multiple latent variables to select shots, is
flexible to implement and merges many different scoring functions and also is robust to partially
annotated datasets. Also, in contrast to Wu and Worring (2012), which learns to assign a “genre”
to each video, our system ranks the videos based on multiple-concepts. Since, a genre can be too
specific or too general for what a user is searching for and doesn’t match the requirements.

There is a pile of works on learning to rank using the large-margin principle (Grangier and
Bengio 2008; Herbrich et al. 1999; Joachims 2002; Lan et al. 2012; Shashua and Levin 2002; Vapnik
2013). The conventional ranking SVMs (Herbrich et al. 1999; Joachims 2002) only learn the ranking
function for one query; however, our model is learned for all the queries in the training set, and we
show it can be generalized to the queries not seen in training as well without extra training. The
model in Grangier and Bengio (2008) is the closest to this work when coupled with our video-level
scoring functions, and the latent ranking SVM (Lan et al. 2012) is the closest to ours when coupled
with the shot-level scoring functions. However, our scoring functions are particularly tailored to
model the characteristics of videos and despite of Lan et al. (2012), we have zero knowledge about
the spatial or temporal structure of the concepts in the videos or queries. Besides, we introduce
a novel training approach to learn the model parameters by involving the 0-1 loss in an early
stopping criterion.

3 APPROACH

In this section, we introduce our main approach to multi-concept-based video retrieval. First, we
formalize a ranking model for retrieval problem, and then we describe different scoring functions
and how to integrate them into our retrieval model.

3.1 A Ranking Model for Multi-concept Based Video Retrieval

Ranking videos according to one or more concepts selected by the users/systems is the main com-
ponent in modern video retrieval systems (cf. Figure 1). Whereas most of existing recent works
consider a weighted-average of the detection confidences of concepts to rank the videos, we aim
to enhance this component by a principled ranking model, which is flexible enough to incorporate
different kinds of concept detectors and also can be generalized to unseen queries and deal with
temporal dynamics of videos and the correlation of concepts.

We denote all the concepts defined for the system by Q, which users compose queries with and
all the videos in the dataset by V . R (Q ) ⊂ V is the set of all videos that are related to a multi-
concept query Q ⊂ Q. Therefore, an ideal retrieval system must use a learning algorithm to select
the best possible subset, named R (Q ), among all other subsets of videos fromV such that:

∀S ⊂ V, S � R (Q ), R (Q ) is a better output than S . (1)

Directly modeling this notion gives rise to a structured prediction model presented in Siddiquie
et al. (2011) and strengthened in Yu et al. (2012). We appreciate that this is perhaps the most natural
choice for the retrieval model. There exists 2 |V | distinct subsets from V . Unfortunately, this ex-
ponential number of subsets makes the computations expensive. Moreover, the expressiveness of
the model’s scoring function is limited to special forms, to tailor the function to utilize the training
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and testing algorithms for structured prediction (Petterson and Caetano 2010; Tsochantaridis et al.
2004). Our own experiments show that it is computationally intractable to use this retrieval model
for the shot-level concept detections (cf. Section 3.3).

3.1.1 Retrieval as Ranking. To avoid the high cost of aforementioned structure model, we relax
the retrieval problem and solve it as a ranking problem following (Grangier and Bengio 2008). We
accommodate multiple latent variables in our model to keep track of the shot-level detections.
In particular, the rigorous criterion (Equation (1)) for retrieval is replaced by a less constrained
ranking criterion,

∀Vi ∈ R (Q ),∀Vj � R (Q ), Vi ranks ahead of Vj , (2)

givenVi andVj as a pair of relevant and irrelevant videos in the databaseV according to the query
Q .

Comparing Equation (1) with Equation (2), the former calls for a model to operate over 2 |V |

subsets of videos, while for the latter we only need a model to assign a ranking score for each video
V ∈ V . The exponential computation complexity makes the solution impractical even for datasets
with a few hundreds of videos. We use the following ranking model in this work F : Q ×V �→ R,

F (Q,V ) =
1

|Q |
∑

q∈Q
f (q,V |Θ), (3)

which breaks down into several ranking scoring functions f (q,V |Θ),q ∈ Q, each for an individual

concept, and Θ denotes the model parameters. We shall write f (q) � f (q,V |Θ) in the following
for brevity and leave the discussion of the scoring functions to Sections 3.2 and 3.3.

We rank the videos in the database given a multi-concept query Q using F . Top ranked videos
in the database will be returned to the user as the video search results. Compared to the retrieval
model based on structured prediction (Siddiquie et al. 2011; Yu et al. 2012), our model is not able to
optimize the number of videos to output. However, we argue that this does not reduce the usability
of our ranking model, considering that common users are used to ranking lists due to text retrieval.

3.1.2 Learning Model Parameters Θ. To train the described model, we follow the ranking
SVM (Herbrich et al. 1999; Joachims 2002) strategy. We write our objective function such that

min
Θ

∑

Q

1

|N (Q ) |
∑

(i, j )∈N (Q )

L
(
F (Q,Vi ) − F (Q,Vj )

)
, (4)

givenN (Q ) as the set of all the pairs of videosVi andVj in Equation (2) for the queryQ andL(x ) ≥ 0
is a loss function. i and j takes indices of positives and negative videos in the dataset regarding
to query Q . One can obtain the pairs from user annotated ranking lists of videos. In Section 4.1,
we provide more details about the selection of positive and negatives in our experiments. The loss
function will impose some amount of penalty when the ranking scores of a pair of videos violate
the ranking constraint of Equation (2).

We exploit two types of loss functions in this work, the hinge loss Lhinge (x ) = max(1 − x , 0) and
0-1 loss L0-1 (x ), which takes the value 1 when x > 0 and 0 otherwise. Note that we cannot actually

solve the optimization problem with the 0-1 loss by gradient descent; we instead use it to define a
novel early stopping criterion when we solve the problem with hinge loss. Namely, the program
stops when the change of the objective function value, computed from the 0-1 loss, is less than a
threshold (10−10 in our experiments).

As a result, we are able to take advantage of the fact that the 0-1 loss is more robust than the
hinge loss when there are outliers in the data. The hinge loss alone would be misled by the outliers
and results in solutions that are tuned away from the optimum, while the 0-1 loss helps avoid that
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situation by suppressing the penalties incurred by the outliers. Improvements using this novel 0-1
loss stopping criterion, is more sensible in multi-concept video retrieval problem, since for most
of the concepts there are many outliers or videos with very different appearances from usual (e.g.,
cartoons, partial occlusion, distance and point of view, etc.) and also noisy annotations for big
datasets. These outliers make the training stage much more harder. Indeed, the novel stopping
criterion by the 0-1 loss significantly improves the results of hinge loss in our experiments.

Note that the 0-1 loss-based stopping criterion is another key point clearly differentiating our
approach from Grangier and Bengio (2008), which motivates our ranking model. In addition, we
introduce a family of new scoring functions for different concept detections, especially the one
with latent variables in Section 3.3.

3.2 Video-level Concept Detection

It is a common practice that the concept detection results ϕ (V ) over each video V ∈ V are com-
puted off-line and stored somewhere to speed up the responding to the users’ queries. We use ϕ
as the shorthand of ϕ (V ). Note that ϕ is a |Q|-dimensional vector whose entry ϕq corresponds to
the detection confidence of the concept q (in a videoV ). We next describe how to use ϕ, the video-
level concept detection results, to design the scoring functions f (q),q ∈ Q ⊂ Q (cf. Section 3.1).
We start from the weighted average approach that prevails in the existing video retrieval works.

3.2.1 Weighted Average. Recall that the overall scoring function F (Q,V ) breaks down into sev-

eral individual functions f (q,V |Θ) � f (q),q ∈ Q , each of which accounts for one concept (Equa-
tion (3)). A common practice to rank the videos given a multi-concept query Q is by the average
of the corresponding concept detection confidences:

f V
avg (q) = ϕq � 〈1q ,ϕ

〉
, (5)

where the weights are simply uniform and q ∈ Q . 1
q ∈ {0, 1} |Q | denotes a one-hot vector, which is

1 at the qth entry and 0’s else, or, when the query is an open-vocabulary text, the weights could be
the similarities inferred between the concepts inQ and the user query (Kennedy et al. 2008; Wang
et al. 2007). We include the uniform weights in our experiments without loss of generality.

The mentioned average method fails to model the correlations between the concepts in Q , and
also the correlations betweenQ and the remaining unselected concepts inQ. To make it more clear,
we have re-written the score function by the one-hot vectors on the rightmost of Equation (5).
Therefore, the model parameters become Θ = (11, 12, · · · , 1 |Q | )T = I ∈ R |Q |×|Q | , i.e., actually an
identity matrix. The entry Θqp , which is supposed to encode the relationship of concepts q and p,
is 0 in the weighted average (Equation (5)).

3.2.2 Encoding Concept Correlations. To this end, the natural extensions to the weighted aver-
age scoring function are the following:

f V
corr-1 (q) =

〈
θq ,ϕ

〉
, such that θ

q
p = 0 if p � Q, (6)

and

f V
corr-2 (q) =

〈
θq ,ϕ

〉
, such that θq ∈ R |Q |, (7)

where f V
corr-1 (q) considers the contributions from the other concepts p ∈ Q when it scores the con-

cept q for a videoV . Indeed, the existence of “computer” could affect the confidence of “furniture”
when both are selected to the query Q ⊂ Q. The other function f V

corr-2 (q) further considers all
the other concepts not in the query, when it scores for instance the concept q = “furniture” in a
video, capturing the case that the lack of “beach” may reinforce the confidence about “furniture.”
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Note that the parameters Θ = (θ 1, · · · ,θ |Q | )T become a full matrix now, offering more modeling
flexibilities.

3.3 Shot-level Concept Detection

Many concept detectors are designed to take frames or video shots as input (Althoff et al. 2012;
Sadanand and Corso 2012; Ye et al. 2015). We split any given video V in the database into H
shots. This can be done by applying a shot detector (Paul et al. 2011) or uniformly select the
shot boundaries inside a full sequence video. We compute and store the concept detection results

ϕh ∈ R |Q |,h = 1, . . . ,H for all the concepts Q over the shots of the video. Shot-level detections
provide more detailed information about the videos than video-level concept detections consider-
ing the dynamics of the video and sudden changes of the scene. Therefore, we propose our novel
family of scoring functions, which leverage the shot-level detection scores.

3.3.1 Scoring the Best Shot for the Querying Concepts. One potential benefit we can have from
the shot-level concept detections is that, among all the shots of a video V , we can select the most
informative shot for the scoring function:

f S
latent (q) = max

h∈{1,2, ...,H}

〈
θq ,ϕh

〉
, (8)

where the model parameters θq ∈ R |Q | , which correspond to the concept q ∈ Q ⊂ Q, represent
the contributions to q from all the concepts within the shot, which will be selected by the latent
variable h ∈ {1, 2, . . . ,H}.

We argue that this formulation can better model the negative correlations between concepts, if
any, than the f V

corr-2 (q) defined over the video level. Indeed, consider a set of negatively correlated
concepts (e.g., “beach,” “furniture,” etc.). They could all have very strong responses across a video.
For instance, a tourist may capture a video within a hotel room and then shift to the beach outside.
As a result, both “beach” and “furniture” will be detected with high confidences in the video but
they are exclusive over a single shot. As a result, the video-level scoring function may be confused
by this video but f S

latent
(q) scores a single best shot and is thus robust to this scenario.

3.3.2 Scoring Best Shot for Each Querying Concept. While f S
latent

(q) well captures the negative
concept correlations by possibly negative off-diagonal entries, it may be inadequate to track the
positive correlations between different concepts by focusing on only a shot; very few concepts
could appear simultaneously in a single shot. We thus compensate it by a second term:

f VS
latent (q) = max

h∈{1, ...,H}

〈
θq ,ϕh

〉
+
∑

p∈Q
max

д∈{1, ...,H}
υ

q
pϕ

д
p , (9)

where maxд υ
q
pϕ

д
p max-pools the confidences of each concept across all the shots of videoV . Note

that we therefore provide two complementary types of modeling capabilities in f VS
latent

(q). The first
term is robust to the concepts that are negatively correlated with q and the products in the second
term strengthen the detection score of concept q from some positively correlated concepts in the
video. The model parameters θq and υq are learned by solving Equation (4) with sub-gradient
descent. Details are given as follows.

3.4 Optimization

We use (Sub-)Gradient Descent(SGD) as a solver to learn our model parameters Θ. As discussed in
Section 3.1.2, the loss function L is a non-zero and positive value for each pair {(Vi ,Vj )}, in which
the negative video Vj has higher ranking score than the positive Vi . As a result, the gradients for
those pairs are non-zero and zero for the others.
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Denoting by

Sj =
∂L

∂F (Q,Vj )
×
∂F (Q,Vj )

∂Θ
, (10)

we thus have the overall gradients of Equation (4) by
∑

Q

1

|N (Q ) |
∑

(i, j )∈N (Q )

(
Si − Sj

)
. (11)

Note that the model parameters Θ consist of two parts (θ ,υ ), corresponding to the two terms
of f VS

latent
(cf. Equation (9)), respectively. We compute the gradients with respect to the first part

θ using the so f tmax derivation to approximate a smooth gradients, as suggested by Ping et al.
(2014):

∂F (Q,Vj )

∂θ
=

∑

h∈{1,2, ...,H}

e〈θ
q,ϕh 〉ϕh

∑
j ∈{1,2, ...,H} e〈θ

q,ϕ j 〉
. (12)

We write out the gradients with respect to the second part, υ , over different dimensions of υ .
Recall that he second term of f VS

latent
(cf. Equation (9)), maxд υ

q
pϕ

д
p , max-pools over all the shots of a

video for each single concept. As a result, we have the following:

∂F
υ

q
p

= ϕ
д∗
p , p = 1, 2, . . . ,H, q = 1, . . . ,H, (13)

where д∗ is determined by д∗ ← maxд υ
q
pϕ

д
p .

4 EXPERIMENTS

This section presents our experiments to evaluate the proposed multi-concept video retrieval
model along with the various scoring functions. We first describe the experiment setup and then
report the retrieval results. We further give some detailed analyses and qualitative results.

4.1 Experiment Setup

We use two separate datasets in our experiments, respectively, for video retrieval and training
the concept detectors. We further exploit four sets of multi-concept queries. Two sets consist of 50
queries each in the form of concept pairs, one for training and testing and the other just for testing.
Two other sets contain 50 triplets and 30 single concept queries just for testing, respectively. We
train our model using only the first set of queries on the training set and then test it by all four
sets of queries on the test set.

4.1.1 The IACC.2.B Dataset for Video Retrieval. We mainly test our approach over the IACC.2.B
dataset, which is the test set used in the Semantic Indexing (SIN) task of TRECVID 2014 (Over et al.
2014) challenge. The dataset comprises 2,371 Internet videos that are “characterized by a high de-
gree of diversity in creator, content, style, production qualities, original collection device/encoding,
language, and so on” (Over et al. 2014). The video durations range from 10 seconds to 6.4min with
the mean of 5min. Standard shot partitions (106,000 shots in total) are provided by the dataset and
30 concepts are annotated for the shots. We use TRECVID 2015 SIN Task’s test set, named IACC.2.C
dataset, as the second dataset for more experiments as a correctness proof of our approach. All the
settings, such as splits ratios, are the same as IACC.2.B.

We randomly split IACC.2.B to 712 videos as the training set, 474 videos as the validation set

and 1,185 videos as the test set. We select 50 pairs of concepts from the total ( 30
2 ) possible pairs.

We select them based on the number of positive examples in the training set and call them the
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Table 1. The Multi-concept Queries Used in Our Experiments

Queries
(Chair, Computers), (Boat/Ship, Oceans), (Classroom, Computers), (Instrumental_Musician, Singing), (Chair, Classroom)

(Boat/Ship, Running), (Chair, Nighttime), (Boat/Ship, Quadruped), (Bicycling, Forest), (Chair, Hand), (Chair, Flags)

(Boat/Ship, Forest), (Nighttime, Singing), (Cheering, Singing), (Forest, Lakes), (Chair, Telephones), (Running, Stadium)

50 (Chair, Forest), (Beach, Boat/Ship), (Oceans, Quadruped), (Forest, Quadruped), (Beach, Quadruped), (Running, Forest)

Concept (Bridges, Forest), (Boat/Ship, Bridges), (Instrumental_Musician, Nighttime), (Highway, Nighttime), (Beach, Oceans)

Pairs (Bus, Highway), (Bus, Chair), (Nighttime, Forest), (Highway, Forest), (Computers, Telephones), (Nighttime, Running)

(Bridges, Highway), (Cheering, Flags), (Cheering, Instrumental_Musician), (Cheering, Nighttime), (Forest, Oceans)

(Chair, Highway), (Chair, Quadruped), (Boat/Ship, Lakes), (Running, Quadruped), (Nighttime, Flags), (Bridges, Chair)

(Boat/Ship, Nighttime), (Demonstration_Or_Protest, Flags), (Airplane, Boat/Ship), (Boat/Ship, Chair), (Chair, Running)

(Ocean, Quadruped, Boat/ship), (Chair, Classroom, Computers), (Beach, Boat/Ship, Quadruped), (Cheering, Boat/Ship, Flags)

(Chair, Computers, Telephones), (Cheering, Instrumental_Musician, Singing), (Instrumental_Musician, Nighttime, Singing)

(Forest, Boat/Ship, Oceans), (Lakes, Boat/Ship, Oceans), (Beach, Ocean, Boat/Ship), (Quadruped, Beach, Ocean)

(Forest, Lakes, Quadruped), (Boat/Ship, Bridges, Forest), (Chair, Nighttime, Forest), (Bridges, Forest, Lakes)

50 (Boat/Ship, Forest, Quadruped), (Boat/Ship, Forest, Lakes), (Running, Oceans, Boat/Ship), (Highway, Boat/Ship, Bridges)

Concept (Running, Beach, Oceans), (Quadruped, Running, Forest), (Cheering, Instrumental_Musician, Nighttime)

Triplets (Boat/Ship, Nighttime, Forest), (Chair, Ocean, Boat/Ship), (Running, Oceans, Quadruped), (Chair, Highway, Bridges)

(Beach, Forest, Oceans), (Bridges, Oceans, Boat/Ship), (Lakes, Bridges, Boat/Ship), (Running, Beach, Boat/Ship)

(Cheering, Singing, Flags), (Demonstration, Bus, Flags), (Lakes, Boat/Ship, Quadruped), (Bus, Chair, Computers)

(Boat/Ship, Flags, Oceans), (Forest, Bus, Boat/Ship), (Quadruped, Forest, Bicycling), (Oceans, Forest, Lakes)

(Bridges, Chair, Boat/Ship), (Boat/Ship, Bridges, Bus), (Forest, Boat/Ship, Highway), (Cheering, Nighttime, Singing)

(Quadruped, Ocean, Forest), (Flags, Demonstration, Nighttime), (Bus, Bridge, Highway), (Boat/Ship, Nighttime, Oceans)

(Chair, Boat/Ship, Forest), (Forest, Chair, Quadruped), (Highway, Bus, Chair), (Bridges, Highway, Forest)

The concept-pair queries shown in this table are mentioned as Seen Queries and have been used for training the system.

seen queries, which always will be used in training and in one experiment as the test. A video is a
positive or related sample for a query when there is at least one shot annotated as positive for all
the concepts in that query. This results in minimally 27, maximally 86, and on average 44 out of
the 1,185 videos in the database (i.e., the test set) related to the concept-pair queries. See Table 1.

Additionally, we build a set of concept-triplet queries with the size of 50. On average each
concept-triplet query has 24 related videos. As a matter of fact, by increasing the number of con-
cepts, the retrieval task becomes more challenging due to less number of positive examples, and
we show in our experiments that our method can handle them very well. We never use concept-
triplets as training and use them just for a test as unseen queries. In Table 1, we show our set of
concept-triplets.

4.1.2 Evaluation. We use one of the most popular metrics in information retrieval, Normalized
Discounted Cumulative Gain (NDCG) (Järvelin et al. 2008), to evaluate the ranking lists returned
by our model in response to the multi-concept queries. Given a ranking list for query Q , NDCG is
calculated by

NDCG@k =
1

Z

k∑

j=1

G[j]

1 + log2 j
, (14)

given the gain functionG[j] = rel(j )2 and j as the rank of a video that has rel(j ) number of concepts
that video shares with the queryQ . By changing the power in the gain function, we can tune how
important is for us that a retrieved video contains all the desired concepts. The partition Z is the
ideal gain value computed by ground truth, which will produce an ideal ranking list. As a result,
any NDCG@k value is normalized between 0 and 1. We shall report the results at k = 5, 10, . . . , 50
in the following experiments.
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4.1.3 Concept Detectors. Learning robust concept detectors has a rich literature (Qi et al. 2007;
Snoek et al. 2013; Ye et al. 2015). All kinds of concept detectors can be potentially employed in our
retrieval model. We train our independent concept detectors following the practice of Mazaheri
et al. (2015).

In particular, we train 60 independent detectors from the training data (IACC.1.tv10.training,
IACC.1.A, IACC.1.B, and IACC.1.C) of the TRECVID 2014 SIN task (Over et al. 2014) for the con-
cepts with key frame annotations, including the 30 concepts annotated in IACC.2.B. To this end,
we extract dense SIFT (Lowe 2004) (DSIFT) and Convolutional Neural Network (CNN) features
(Krizhevsky et al. 2012) from the annotated (both positive and negative) key frames for the 60
concepts. The DSIFT features computed using VLFeat (Vedaldi and Fulkerson 2010) toolbox are
encoded by Fisher vectors (Perronnin et al. 2010) as an image representation and then input to
linear SVMs. For CNN features, we use the activations of “relu6” and “fc7” layers as two types
of image representations, train SVMs with histogram intersection kernels for each of them, and
then average the detection scores of the two types of SVMs. Overall, we thus harvest two comple-
mentary detection confidences for any concept, one from the DSIFT and the other from the CNN
features. They are both transformed to probabilities using the Platt calibration. At the testing stage,
we first average them to obtain the concept detection confidences for each frame, then max-pool

the scores within a shot to have the shot-level results ϕh , and finally arrive at the video-level
concept detection results ϕ by max-pooling.

4.1.4 Practical Considerations in Implementation. To prevent the model from overfitting, we

have employed an L2 − norm as regularizer. In particular, we add
∑

q∈Q λ ��θ
q�
�

2
2 + γ ‖υq ‖22 term

to regularize the optimization problem in Equation (4). We have used the validation set to tune
the hyper-parameters λ and γ . Note that γ = 0 except for the scoring function f VS

latent
(q). We also

remove all the videos that have no shot annotated as negative or positive for the given query.

4.2 Comparison Results

We compare different scoring function results in Table 2. For this experiment, we have used
IACC.2.B dataset and the 50 pair-concepts queries shown in Table 1 for both training and testing.
We evaluate using NDCG@k where k = 5, 10, . . . , 50 for different columns. The left-hand column
shows the mean of NDCG for all k values.

Following the common practice in the existing concept-based video retrieval systems, we em-
pirically test a variety of fusion methods (Campbell et al. 2007; Ishikawa et al. 2013; Yan and
Hauptmann 2003) as the (old) baselines-our approach offers a new set of simple yet more advanced
ranking scheme for the multi-concept-based video retrieval. Probably because our detectors output
probabilities after the Platt calibration, the average operation in f V

avg performs the best among the

fusion techniques discussed in Campbell et al. (2007). We thus only show the results of f V
avg and the

second best, PicSOM (Ishikawa et al. 2013), in the rows tagged by “Common practice” and “PicSOM
2013”, respectively, in Table 2. The PicSOM fusion strategy (Ishikawa et al. 2013) involves a con-
vex combination of the product and the average of the querying concepts’ detection scores. Also,
we used an another common technique as explained in Assari et al. (2014) to capture just positive
correlation between pairs of concepts, using a Co-occurrence matrix of them built in training stage.

We further include ranking SVM (Joachims 2002) and TagProp (Guillaumin et al. 2009) in the
table as more advanced baselines. Both take as input the video-level representations; they are not
able to handle the set of shot-level features in each video. We use two types of inputs, the video-
level concept detection scores, and CNN features as the video representations to train the TagProp
and ranking SVM models. Note that we train a ranking SVM model for each of the pair-concept
queries. TagProp is a state-of-the-art image tagging algorithm. It uses K-nearest neighbor and
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Table 2. Comparison Results of Different Scoring Functions in Pair-concept-based Video Retrieval

Baselines

Functions NDCG@5 @10 @15 @20 @25 @30 @35 @40 @45 @50 Mean

PAMIR (Grangier and Bengio 2008) 04.3% 04.2% 04.1% 04.3% 04.7% 05.2% 05.7% 06.1% 06.5% 06.7% 05.22%

Fast0Tag (Zhang et al. 2016) 07.6% 07.2% 07.3% 07.7% 08.0% 08.2% 08.6% 08.9% 09.0% 09.1% 08.2%

Common practice f V
avg 62.6% 57.1% 55.6% 56.1% 57.5% 58.8% 59.7% 61.0% 62.0% 62.6% 59.3%

TagProp (Guillaumin et al. 2009) 30.0% 27.3% 25.6% 26.8% 27.7% 28.6% 29.4% 30.1% 30.8% 31.4% 28.8%

Rank-SVM (Chapelle and Keerthi 2010) 57.9% 52.9% 52.2% 52.6% 54.3% 55.4% 56.5% 56.8% 57.7% 58.1% 55.5%

Co-occurrence (Assari et al. 2014) 59.4% 50.7% 48.6% 49.5% 51.8% 53.4% 54.9% 55.6% 56.4% 57.4% 53.8%

PicSOM 2013 (Ishikawa et al. 2013) 63.0% 57.1% 55.5% 55.9% 57.3% 58.1% 59.2% 60.5% 61.5% 62.1% 59.0%

|Q |= 30 concepts

Video-level f V
corr-1 61.6% 57.0% 55.5% 55.8% 57.0% 58.1% 59.5% 60.5% 61.5% 62.2% 58.9%

Video-level f V
corr-2 64.8% 59.2% 57.4% 57.6% 58.9% 60.3% 61.5% 62.3% 63.1% 63.3% 60.9%

Shot-level f S
latent

68.2% 61.0% 59.5% 59.5% 61.2% 62.1% 63.6% 64.9% 65.8% 66.1% 63.2%

Shot-Video-level f VS
latent

62.9% 58.8% 58.3% 60.0% 61.8% 63.1% 64.7% 65.4% 66.2% 67.1% 62.8%

|Q |= 60 concepts

Video-level f V
corr-1 61.6% 57.0% 55.5% 55.8% 57.0% 58.1% 59.5% 60.5% 61.5% 62.2% 58.9%

Video-level f V
corr-2 64.8% 58.8% 57.3% 57.3% 58.8% 60.0% 61.1% 62.4% 62.9% 63.2% 60.7%

Video-level with RBF Distance f V
corr-2 64.0% 59.3% 57.3% 57.3% 58.7% 60.1% 61.1% 62.4% 62.9% 63.3% 60.6%

Shot-level f S
latent

67.6% 61.8% 59.8% 59.7% 61.5% 62.6% 64.1% 65.1% 65.8% 66.5% 63.5%

Shot-Video-level f VS
latent

69.8% 63.8% 61.7% 60.9% 63.0% 64.1% 65.4% 66.4% 66.8% 67.4% 64.9%

Shot-Video-level with RBF Distance f VS
latent

70.2% 62.2% 60.0% 60.3% 62.1% 63.2% 64.5% 65.4% 66.1% 67.1% 64.1%

metric learning to propagate the tags of training examples to any testing instance. We report the
best results for each after parameter tuning on our validation set. Probably because our training
set is relatively small, the TagProp results are very low. Ranking SVM gives comparable results
with the other fusion techniques.

Moreover, we adopt Fast0Tag (Zhang et al. 2016) and Passive Aggressive Model for Image Re-
trieval (PAMIR) (Grangier and Bengio 2008) methods on all three datasets (cf. Table 4). Both of
these methods try to find a mapping between image feature and concepts. Fast0tag uses the pop-
ular pre-trained word2vec (Pennington et al. 2014) model that is trained on a large text corpus, to
embed each concept in a high dimensional space where word (concept) similarities can be mea-
sured more accurately. It maps each image to its corresponding unique direction to rank concept
scores. PAMIR also follows the same idea; however, this method learns to represent each query of
multi-concept by a single vectors.

There are four types of scoring functions in our approach, f V
corr-1 and f V

corr-2 accounting for the

video-level concept detections and f S
latent

and f VS
latent

for the shot-level concept detections. We learn
these models’ parameters by the 0-1 loss-based early stopping and the 50 pair-concept queries (cf.
Table 1) using the videos in the training set. Experiments comparing the hinge loss and the 0-1
loss are presented in Section 4.3.

To further study our model’s behavior, we replace the linear distance between positive and nega-
tive neighbors described in Equation (4) with a non-linear distance. To be more specific, we replace
F (Q,Vi ) − F (Q,Vj ) in Equation (4), with siдn(F (Q,Vi ) − F (Q,Vj )).(1 − K (F (Q,Vi ),F (Q,Vj ))),
where K is the Radial Basis Function (RBF) similarity function. We keep the siдn of the distance,
since we are solving a ranking problem and the order of the ranked samples must be preserved.
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Comparison. There are |Q| = 30 concepts labeled for our video database V , which are drawn
from the IACC.2.B dataset. All our queries are constructed from these concepts such that we have
the ground-truth ranking list for evaluation. We first show the video retrieval results in the top
half of Table 2. The variations of our model with different scoring functions all improve the com-
mon practice f V

avg. The margins between f V
avg and our latent shot-level functions are especially

significant.
The Benefit of More Concepts. Though the queries are built from the vocabulary of 30 concepts, we

are actually able to harvest more concept detectors from another independent dataset, TRECVID
2014 SIN task training set. Our model is flexible to include them by expanding the concept detection
vectorsϕ (see Section 3). The bottom half of Table 2 shows the results corresponding to 60 concept
detectors. We see that the observations about the relative performances of the model variations
from the |Q| = 30 concepts still hold. In addition, the video retrieval results using the shot-level
scoring functions have been significantly improved over those of the 30 concepts. This is in ac-
cordance with our intuition as well as the results in Yu et al. (2012). Indeed, the inter-dependences
of more concepts may provide better information for our scoring functions and make them more
robust to the unreliable concept detection confidences.

Note that, however, introducing more concepts does not change the results of the video-level
scoring function f V

corr-2 too much, f V
corr-1 is not affected by extra concepts. We argue that this is

mainly due to the fact that our detectors are not developed for the video-level concept detections.
For the future work, it will be interesting to see whether more video-level concept detectors, such
as the action classifiers (Hou et al. 2014; Wang and Schmid 2013), can benefit our video-level func-
tion f V

corr-2 as well. Another interesting direction would be to pursue the weak attributes/concepts
in the video retrieval task (Yu et al. 2012).

4.3 The Effect of the 0-1 Loss

We study the effect of the novel 0-1 loss-based stopping criterion in this section. Figure 2 shows
the retrieval results of both the video-level scoring function f V

corr-2 and shot-level function f VS
latent

,
respectively, with and without using the 0-1 loss in the optimization. We can see that coupling
the 0-1 loss as a stopping criterion with the hinge loss in optimization significantly improves
the performance of the hinge loss alone for both types of scoring functions. This is not surprising.
The 0-1 loss is advantageous over the hinge loss, especially when there are “difficult” positive-
negative pairs that heavily violate the ranking constraint in the training/optimization stage. The
hinge loss would penalize more those pairs and consequently ignore the other pairs, but the 0-1
loss is resilient to those pairs. Although in practice we cannot fully harvest the appealing model-
ing power of the 0-1 loss due to the gradient descent, our results in Figure 2 verify that the nice
properties of the 0-1 loss can be transferred indirectly by defining the new stopping criterion with
the 0-1 loss. And also, it shows a better performance for top retrieved videos (smaller k values in
Figure 2), where the 0-1 stopping criterion shows a lot of improvement. We also provide qualitative
results in Figure 6 for more clarifications.

4.4 Generalizing Out to Unseen Queries

We expect our model to generalize well to other multi-concept queries. To demonstrate this,
we train our system with pair-concept queries shown in Table 1 and test it on three other sets
of queries of which none of them have any query in common with the ones used in training:
(a) 30 single-concept queries, (b) 50 new pair-concept queries, and (c) 50 new triple-concept
queries. None of them are used to train our model. The 50 concept triplets are shown in Table 1.
Figure 3 shows the retrieval results using different variations of our model. We can see our model
with the shot-level scoring functions f S

latent
and f VS

latent
performs quite well upon the new queries.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 2, Article 46. Publication date: April 2018.



46:14 A. Mazaheri et al.

Fig. 2. The effects of the 0-1 loss-based stopping criterion in optimization. For both the video-level scoring

function f V
corr-2 and shot-level function f VS

latent
, the introduction of the 0-1 loss significantly improves the

performance of the hinge loss.

Table 3. Results for TRECVID 2014 SIN Challenge

Method f V
avg f VS

latent

IACC.2.B (Full) - TRECVID SIN 2014 24.01 —

IACC.2.B (Half) - TRECVID SIN 2014 24.56 24.80

The results are not only significantly better than the simple average, but also comparable to
those for the previously seen pair-concept queries (cf. Table 2). The video-level scoring function
f V
corr-2 unfortunately degrades and gives similar or worse performance compared to the averaging

baseline f V
avg. It implies that our multi-latent variable-based scoring function is able to generalize

the trained model and use it to retrieve unseen queries.
In a complementary experiment, we show our model can be used on TRECVID SIN challenge.

Even though this challenge is based on short video shots and single concept queries retrieval, an
improvement is expected due correlation of concepts that our model captures. For this experiment,
we use the same testing pipeline. Shots are considered as videos and each frame as a single shot.
The results are given in Table 3. We use the same settings as explained in Section 4.1 and the
learned model is the same as used in other experiments. To give an insight into performance of
the independent concept detectors, we try them on the full set as well. The numbers are reported
using mean InfAP (Yilmaz and Aslam 2006) over 30 concepts. The first 2,000 retrieved shots for
each concept are considered. Note that our model is not applicable to full dataset due to 50% usage
of that in training stage.
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Fig. 3. Previously unseen queries: (a) single-concept queries, (b) pair-concept queries, and (c) triple-concept
queries.

4.5 Extensive Experiments on IACC.2.C Dataset

To have an extensive set of experiments, we use IACC.2.C dataset. As explained in Section 4.1.1,
we use similar setting for extracting queries and also training/validation/test sets as IACC.2.B.
We go further integrate IACC.2.C and IACC.2.B to build one super dataset. In Table 4, we show a
side by side comparison between three different datasets as well as different scoring functions and
baselines. Clearly, our multi-latent variables method gives the superior performance in all three
cases.
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Table 4. Baseline Averages of NDCG@5-50 on
Three Different Datasets

Dataset IACC.2.B IACC.2.C IACC.2.B + C

PAMIR 5.2% 38.3% 18.0%

Fast0Tag 8.2% 30.6% 18.4%

TagProp 28.8% 24.1% 12.3%

Rank-SVM 55.5% 26.4% 39.5%

Co-occurrence 53.8% 44.4% 30.2%

PicSOM 59.0% 53.2% 40.3%

f V
avg 59.3% 53.7% 40.4%

f V
corr-2 60.7% 50.1% 37.8%

f VS
latent

64.9% 56.9% 43.5%

Table 5. Mean Ratio of Positives to Total Number
of Videos for Pair-concept Queries

Dataset IACC.2.B IACC.2.C IACC.2.B + C

Mean Ratio 0.0159 0.0134 0.0106

Table 6. Time Complexities Comparison

Method Time Complexities

PicSOM O (1)

Co-occurrence O (n)

Fast0tag O (n)

Rank-SVM O (n2)

Tagprob O (n2)

f V
corr-2 O (n2)

f V
corr-2 O (n2)

f S
latent

O ( |H | × n2)

f VS
latent

O ( |H | × |Q| × n2)

Notice a drop in all the performances in Table 4. To explain this, we compute the ratio of an
average number of positive of all queries and the total number of videos in each dataset (Table 5).
Smaller ratio makes the retrieval harder, since there are less number of samples in training stage
and also a higher drop even a single positive sample is lost in the testing stage.

4.6 Time Complexity

In Table 6, we show the time complexities comparison between different methods, where n is the
number of training samples, |H | << n is the number of shots in the video, and |Q| << n is the
number of concepts.
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Fig. 4. The number of user votes for different ranking lists and queries. Users preferred the ranking lists by
our algorithm to Youtube’s default ranking lists for six out of nine queries.

4.7 User Study on YouTube Search Engine

We build a new dataset using 230 videos gathered from YouTube. These videos are retrieved using
nine pair-concept queries shown in Table 1. Twenty to 30 videos for each of the queries are down-
loaded and their actual ranks in YouTube are saved. Shots are also built by clipping videos into
2s shots. We apply our method for each query and get a new ranking list. Ten randomly selected
users are asked to compare these two ranking lists. One of them is YouTube original list and the
other is from our method, and we ask users to choose the best list for corresponding query search,
just based on visual cues. User voting is completely blind and participants do not have access to
other participants’ decisions. Even though our detectors are trained on the training set explained
in Section 4.1.1, which is different from YouTube videos, in Figure 4, we show for some queries,
users mostly like the re-ranked list using our method. YouTube ranking has a bias toward meta-
data coming with the videos and our method can retrieve videos containing the actual concepts
instead.

4.8 Qualitative Analyses

We show some videos and their ranks using f V
avg and also after applying f VS

latent
in Figure 5. In

general, our approach works especially well under the following two scenarios. One is when the
concepts appear in different video shots, and the other is when the concepts are not very relevant
and more unlikely to happen in the same video (e.g., bridge, chair, and highway).

We also show how our method can correctly rank videos for a given query. In Figure 6, we
show top five videos retrieved by our method for one of the pair-concept queries and a comparison
with the average baseline. The top-ranked videos are more important especially for common users
searches, since people tend to find a proper video at the top of their searching list result.

5 CONCLUSION

In this work, we have introduced a new baseline for multi-concept-based video retrieval. Our
method uses a principled model that can be integrated and leveraged from other existing
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Fig. 5. Some examples of queries and the rank of one video containing all the concepts. We show two num-
bers for each video, the red one is the rank of the video using the Average baseline and the green one is the
rank of the video using our method. We show queries with pair concepts and triplet concepts on the left and
right columns, respectively. In all of the provided examples, the ranking value has been improved using our
method.

Fig. 6. Top-ranked videos for the query “Cheering-Night Time.” The left panel shows the first top five videos
ranked by our method and the right panel shows the same for the average baseline method. We also show
which of the videos are tagged as positive in ground truth. Note that a positive video must have both concepts
included.

methods of video/image retrieval. We have designed a multi-latent variable scoring function that
can deal with noisy and incomplete annotations of large datasets, while it can learn both inter- and
intra-shots dependencies of concepts. We show a technique named 0-1 loss-based early stopping
criterion, which can make the training process more robust to outlier data. Our extensive exper-
iments show our model superiority over other methods. As multi-concept-based video retrieval
plays a central role in video retrieval systems, we expect our model to advance the state-of-the-art
research in video retrieval.
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