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ABSTRACT
Studying human brain signals has always gathered great attention
from the scientific community. In Brain Computer Interface (BCI)
research, for example, changes of brain signals in relation to specific
tasks (e.g., thinking something) are detected and used to control
machines. While extracting spatio-temporal cues from brain signals
for classifying state of human mind is an explored path, decoding
and visualizing brain states is new and futuristic. Following this
latter direction, in this paper, we propose an approach that is able
not only to read the mind, but also to decode and visualize human
thoughts. More specifically, we analyze brain activity, recorded by
an ElectroEncephaloGram (EEG), of a subject while thinking about
a digit, character or an object and synthesize visually the thought
item. To accomplish this, we leverage the recent progress of adver-
sarial learning by devising a conditional Generative Adversarial
Network (GAN), which takes, as input, encoded EEG signals and
generates corresponding images. In addition, since collecting large
EEG signals in not trivial, our GAN model allows for learning dis-
tributions with limited training data. Performance analysis carried
out on three different datasets – brain signals of multiple subjects
thinking digits, characters, and objects – show that our approach
is able to effectively generate images from thoughts of a person.
They also demonstrate that EEG signals encode explicitly cues from
thoughts which can be effectively used for generating semantically
relevant visualizations.
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Figure 1: Overview of our proposed method where an EEG
signal from brain is sent to the encoder and the encoded sig-
nal is used to generate a visualization corresponding to the
captured EEG signal.

22–26, 2018, Seoul, Republic of Korea. ACM, New York, NY, USA, Article 4,
9 pages. https://doi.org/10.1145/3240508.3240641

1 INTRODUCTION
Deep learning has been very successfully applied to many computer
vision and multimedia tasks such as image understanding, speech
recognition, and natural language processing. One elusive goal that
still remains is to apply deep learning to understand and interpret
the inner workings of the human brain. Many of the earlier works in
this area focus on decoding informative patterns from brain signals
to control machines via a brain computer interface [9, 10, 19, 28]
and somemedical applications [1]. Brain activity is usually captured
by recording the electric potentials produced by neurons using an
Electroencephalogram (EEG) or by brain imaging techniques such
as MRI (magnetic resonance imaging) and Functional MRI (fMRI).
In these earlier studies it has been demonstrated that brain signals
contain informative cues reflecting human cognitive processes and
can be effectively used in various applications.

Recent works have investigated how to decode visual and lin-
guistic content from brain signals [12, 13, 23, 30] – recorded with
EEG or fMRI – of subjects while they are either involved in ver-
bal communication or in a visual task. These works have shown
some promising results mainly because they have demonstrated
that brain signals contain informative cues corresponding to the
visual or linguistic exposure of the subject.

Motivated by these studies, we want to take a step further and
study the brain activity of a person’s thoughts. Our goal is to extract
some cues from the brain activity, recorded using low-cost EEG
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devices1, and use them to visualize the thoughts of a person. More
specifically, we attempt to visualize the thoughts of a person by
generating an image of an object that the person is thinking about.
EEG data of the person is captured while he is thinking of that
object and is used for image generation. We use a publicly available
EEG dataset [16] for our experiments and propose a generative
adversarial model for image generation. We make the following
contributions in this work: 1) we introduce the problem of inter-
preting and visualizing human thoughts, 2) we propose a novel
conditional GAN architecture, which generates class-specific im-
ages according to specific brain activities; 3) finally, we also show
that our proposed GAN architecture is well suited for small-sized
datasets and can generate class-specific images even when trained
on limited training data.

We demonstrate the feasibility and the effectiveness of the pro-
posed method on three different object categories, i.e., digits, char-
acters, and photo objects, and show that our proposed method is,
indeed, capable of reading and visualizing human thoughts.

The rest of the paper is organized as follows. In Section 2, we
discuss previous works related to Brain Computer Interface (BCI)
applications using EEG data and image generation using Gener-
ative Adversarial Networks (GAN). In Section 3, we provide the
details of our approach for EEG classification and image generation.
Section 4 presents the experiments we performed to evaluate our
approach, the evaluation metrics used, and discusses the results of
the experiments. Finally, in Section 5 we provide the conclusions
and possible directions for future work.

2 RELATEDWORK
Brain activity signals have been widely used mainly for BCI (brain
computer interface) applications [9, 10, 19, 28] and for medical
applications [3, 32, 33]. Some of the most recent works involve
recognizing simple patterns from brain signals to identify the stim-
uli that evoke specific responses [12, 13, 30]. Brain activity can be
recorded using multiple techniques such as fMRI, EEG, and MEG,
whose spatial and temporal resolutions have allowed computational
methods to decode specific visual and linguistic stimuli [12, 13, 33].
Among the available neuro-imaging techniques, EEG presents sev-
eral advantages that makes it particularly suited for this kind of
research. Indeed, EEG is a low-cost technique which can provide
higher temporal resolution than MRI/fMRI.

With the recent rediscovery of deep learning [17] and its suc-
cess in solving a variety of tasks, different deep learning-based
approaches processing EEG data to discriminate semantically dif-
ferent stimuli sources have been proposed [2, 25, 27]. The main
outcome of these works is that both convolutional neural networks
(CNNs) and recurrent neural networks (such as LSTM) can effec-
tively tackle EEG classification tasks. Accordingly, in this paper
we present different CNN and LSTM architectures to a) perform
classification of EEG data related to human thoughts and, b) use
them for encoding EEG data in order to condition a downstream
generative method for converting high-level classes to images.

Image generation from a latent feature space is currently an
active research area. Several deep learning approaches have been
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proposed from variational autoencoders [15] to autoregressive mod-
els [22] to generative adversarial networks (GAN) [8]. Among these
techniques, GANs have arisen as the most promising paradigm
for image generation. A typical GAN framework consists of two
networks, a generator G and a discriminator D which are trained
adversarially to improve by competing with each other. In this work
we mainly focus on developing a generative adversarial network
for generating images.

A traditional GAN architecture allows us to synthesize data
samples using noise input. A specific type of GAN model is the
conditional GAN [18], where the generator is conditioned to gener-
ate samples from specific classes. Usually, conditioning is achieved
by providing as input to the generator either one-hot vectors or
specific features describing classes along with the noise. There are
different variants of conditional GAN architectures [4, 7, 18, 21].
In these models, the discriminator is usually tasked with classi-
fying the samples generated by the generator as fake ones. We,
instead, propose an architecture with an additional classifier aim-
ing at explicitly classifying the generated samples instead of using
the discriminator. We show with experiments that this leads to a
faster convergence of the GAN model.

In addition, GAN training is challenging with limited training
data, as in the case of cognitive studies involving EEG data record-
ings. To cope with lack of training data, we extend our GAN model
by integrating the idea proposed in [11], where the latent generative
space is reparameterized as a mixture model and it’s parameters
are learned along with the GAN training.

In this paper we tackle the problem of visually synthesizing
human thoughts. Visualizing brain activity of a person performing
a visual task has also been investigated [13, 14, 14, 20, 23]. In [13, 20]
the authors have used fMRI images to visualize the visual stimuli
generated in the brain signal when a person is watching amovie clip.
The brain activity captured with fMRI has shown great potential in
various applications, however it is not cost effective. More recently,
the authors in [14, 23] have proposed to use EEG signals to visualize
the visual stimuli in brain activity. The difference between these
works and ours lie in a) the stimuli that evokes the EEG signals, i.e.,
thoughts vs images; and b) the conditional GAN architectures; a
comparison between our method and [14] is given in Sect. 4.3.

3 PROPOSED METHOD
In this work we attempt to visualize the thoughts of a person using
brain activity captured by EEG signals. To this end we use a dataset
containing EEG signals which were collected frommultiple subjects
thinking of different objects. The details of the dataset are discussed
in section 4.1. For the generation of images from human thoughts,
we propose the use of an GAN model conditioned on EEG data. Our
approach consists of two phases: 1) classification of EEG signals
to identify the object a person is thinking about, and 2) image
generation using the EEG encoding learned in the previous phase
for conditioning the generation process. In the first step, we devise
and train an CNN-based classifier for discriminating EEG signals of
thoughts. Then we use this classifier to get an encoding for the EEG
signals. This EEG encoding extracted from the trained classifier
is then used for conditioning the GAN model. The GAN model
is trained using an adversarial and classifier loss, and the trained
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Figure 2: An overviewof the proposedGANarchitecture for image generation fromEEG signals. The EEG signal is passed to the
encoder, and the encoded signal is used as conditioning for the generator. The generated image is passed to the discriminator
for an adversarial loss and also to a classifier for classification loss.

generator is used to generate class-specific images. The complete
architecture of our approach is shown in Fig. 2. We will discuss the
proposed EEG encoding and the GAN architecture in the following
subsections.

3.1 EEG Classification
As a first step in our approach we need to encode the EEG signals to
a lower dimensional feature vector to be used for conditioning in the
next step i.e., image generation. EEG signals are two-dimensional
signals where the first dimension corresponds to channels and
the second dimension corresponds to time. Each EEG recording
corresponds to a specific object which the subject was thinking
about. Therefore to encode the EEG signals, we train a classifier
to discriminate between these object classes. Later we extract the
output from an intermediate layer of the trained classifier model as
the EEG encoding.

There can be different ways to classify EEG time-series. In [2,
25, 27] the authors proposed to use an CNN, LSTM, and a combi-
nation of these architectures to classify EEG signals for varying
tasks. Based on these works, we experimented with various ar-
chitectures to encode EEG signals. Figure 3 shows four different
network architectures we tried on our EEG data for classification.

We observed that a network architecture where 1D-CNN is fol-
lowed by 2D-CNN performs better for EEG classification as com-
pared with other networks. This corresponds to the first architec-
ture in Figure 3. In this network architecture, we first apply 1D
convolutions along the time axis with a kernel size of 4, and then
another 1D convolution along the channels axis with kernel size of
14 i.e., the number of channels. These 1D convolutions are followed
by two sets of alternating 2D convolution and 2D max pooling
layers. Finally, two fully connected layers with 100 neurons are
added for classification. The other network architectures shown in
Figure 3 do not perform well across all three EEG datasets.

3.2 Image generation
We propose a Generative Adversarial Network (GAN) to visualize
thoughts which are encoded from EEG signals. A traditional GAN
architecture consists of two main components, a generator (G) and
a discriminator (D). A generator is used to generate a sample image

from a random noise input (z), and the discriminator takes this
generated sample as input and determines whether it is a generated
sample or a real sample. The generator is trained so that it can
generate realistic looking samples and the discriminator is trained
so that it can distinguish between fake, generated, samples and real
samples. The goal of the generator is to fool the discriminator in
believing that the generated samples are real samples. This is done
by solving the following optimization problem,

min
G

VG (D,G) = min
G

(
Ez∼pz [loд(1 − D(G(z)))]

)
(1)

In the case of the discriminator, we try to maximize the scores for
real samples (D(x)) and minimize the scores for the fake generated
samples (G(z)) by minimizing (D(G(z))). This can be achieved by
solving the following optimization problem,

max
D

VD (D,G) = max
D

(
Ex∼pdata [loдD(x)]+

Ez∼pz [loд(1 − D(G(z)))]
) (2)

The generator G(z;θд ), learns to generate samples from the target
distribution pdata by mapping the input noise sample(z) from a
lower dimensional space(pz ) to the target distribution pdata . The
discriminator D(x;θd ), learns to distinguish between the samples
generated by the generator pдen and the samples from the target
distributionpdata . The overall objective function of a GAN network
can be written as,

max
D

min
G

VD (D,G) = max
D

min
G

(
Ex∼pdata [loдD(x)]+

Ez∼pz [loд(1 − D(G(z)))]
) (3)

A traditional GAN architecture can generate sample images from
random noise sample, but the generated samples are not class spe-
cific. To generate class-specific samples, we have conditional GAN
architectures which also consider the class of a sample during gener-
ation. There are some existing methods, such as [4, 7, 18, 21], which
can generate class-specific samples from noise with additional con-
ditioning on the generator. In one of the most recent works [21],
the authors have proposed an architecture where conditioning is
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provided to the generator, and the discriminator is used to classify
the generated sample as well as to discriminate it as real or fake.
In this architecture, the discriminator also plays a non-adversarial
role as it helps the generator when it tries to classify the generated
sample. Both the adversarial loss as well as the classification loss
are back-propagated though the same discriminator network.

We propose a slightly different strategy where we design sep-
arate networks for these two roles. In our architecture we have a
discriminator which has an adversarial role and a separate classifier
which is non-adversarial and helps the generator by classifying the
generated images as one of the classes. We observe that apart from
generating better images, this network was also able to converge
much faster as compared to [21].

In our proposed approach, along with the generator G and dis-
criminator D, we introduce one other component to the GAN frame-
work, a classifier C(x;θc ) which is pre-trained and can classify the
sample generated by the generator. The generator loss includes
both the discriminative loss from D and the classification loss from
C. The generator tries to minimize the classification loss while max-
imally fooling the discriminator. The updated objective function
for the proposed architecture can be represented as,

max
D

min
G

min
C

VD (D,G,C) = max
D

min
G

min
C

(
Ex∼pdata [loдD(x)]+

Ez∼pz [loд(1 − D(G(z)))]+

Ez∼pz [loд(C(G(z)))]
)

(4)
The training of a GAN architecture requires a large amount

of data, and getting such large-scale data of EEG recordings can
be very difficult. In a recent work [11], the authors proposed a
variation on traditional GAN models which can be used to train
a GAN architecture even on a small sized dataset. The authors
introduced a trainable Gaussian layer which makes it easier for the
generator to learn mappings for complex distributions. However,
their proposed method generates class independent samples. In
this work we have adapted their approach for class-dependent
sample generation. We have added a trainable Gaussian layer in
our generator where the EEG encoding is used as weights for the
Gaussian layer. The Gaussian layer has trainable weights in the
form of mean (µ) and variance (σ ). With this additional layer, a
sampled point (ϵ) from the noise distribution translates to,

z = µi + σiϵ where ϵ ∼ N(0, 1) (5)

and, we use EEG (eeд) as weights for this Gaussian layer and
with the conditioning the latent sample then translates to,

w = eeд ∗ (µi + σiϵ) where ϵ ∼ N(0, 1) (6)

We call this a weighted Gaussian layer which takes a random
noise and EEG encoding as input and µ and σ are trainable network
parameters. In our experiments we observed that introducing a
weighted trainable Gaussian layer can be very effective when we
use small amount of data for training a GAN architecture.

4 EXPERIMENTS
In this section we will describe the datasets used, evaluation metrics
employed, and the results achieved for the different models used
for EEG classification and image generation tasks.

4.1 Datasets
In our experiments, we have used EEG data from [16]. The dataset
contains EEG recording from 3 different subsets: Digits, Characters
and Objects. The Digits dataset has EEG recordings (230 in total)
from participants when they were thinking of one of the 10 dig-
its (0-9). Similarly, the Characters dataset consists of EEG signals
when participants were thinking of one of the 10 characters chosen
from the English language. Finally, the Objects dataset has EEG
recordings when participants were thinking of one of the 10 ob-
jects shown to them. Each of these subsets have EEG signals from
23 participants for all 10 classes of images and each recording is
of 10 seconds. The EEGs were recorded using the Emotiv EPOC+
device which records 14 channels with a sampling rate of 128Hz
per channel. Please refer to [16] for more details on the dataset.

We have trained three different generators, one each for the three
subsets. To train these, we have used images from 3 different sources.
For Digits, we have used the MNIST [17] dataset, for Characters we
have used the fonts subset (gray scale) images from the Chars74K [5]
dataset, and for Objects we have used images from the ImageNet [6]
dataset. As we have EEG recordings for only 10 classes of Characters
and Objects, we have picked the images of only those classes from
the Chars74K and ImageNet datasets for GAN training.

4.1.1 Preprocessing. We apply a sliding window with overlap on
the 10 second (128Hz x 10seconds = 1280 samples) EEG recording
to split the signal into chunks with a window size of 32 samples
and an overlap of 8. The resulting chunks are used for training
the EEG classifier. For digit generation, we have used all of 50,000
images from the MNIST training set without any preprocessing.
For character generation, we have used a total of 10,000 images
with 1000 images per class from the Chars74K dataset. All the
images were inverted and resized to 28 x 28 before training to be
consistent with the MNIST dataset. The input images, both MNIST
and Chars74k, are normalized to have the pixel values in the range
[-1, 1]. For the Object generation, we picked 1000 images from the
ImageNet dataset, with 100 images per class (10 classes). These
images were picked manually to avoid large intraclass variance
in the training data. All the images are reshaped to 64 x 64 and
normalized to have their pixel values in range [0, 1] before training
the generator.

4.2 Evaluation Metrics
As mentioned in Section 3, we follow a two step approach. We first
train a classifier on the EEG signals to extract the EEG encoding
and then train a GAN to generate images using the EEG encoding
as conditioning. In this section we present the evaluation metrics
employed in both of these steps.

To evaluate the performance of an EEG classifier, we use clas-
sification accuracy on the test set (20 % of the total data). Metrics
for evaluation of the quality of generated images when employ-
ing a generative model is still an unsolved problem, and not many
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Figure 3: CNN architectures for classification of EEG signals. The intermediate feature vector from the first fully connected
layer is considered as the EEG encoding for a given input EEG signal. We compared the performance of these different archi-
tectures and found that the first architecture with 1D-Convolutions followed by 2DConvolutions performs better as compared
with others. (TD): These are time-shared convolution networks sharing weights and passing the time-series encoding to the
LSTM network.

approaches are proposed in the literature. The only well know
metric is Inception Score [26], which can be used for images of
objects. In our work, we employ this metric to evaluate the gener-
ated images for the Objects dataset. Apart from this metric, for all
the three datasets, we use the classification accuracy of generated
images from a trained image classifier as a metric to evaluate the
performance of the generator. To this end, we train three image
classifiers (one for each of the three subsets: digit, character and
object datasets) whose architecture is based on VGG-16 [29]. The
image datasets collected for GAN training (MNIST, Chars74K and
ImageNet) are split into train(60%), validation(20%) and test(20%)
sets and are used to train the image classifiers used for evaluating
generator models.

4.3 Results
4.3.1 EEG Classification. For EEG classification, we tried four dif-
ferent architectures as explained in Section 3.1. Of the four architec-
tures, we picked the architecture which gives the best classification
accuracy on the test set. We trained three classifiers with this archi-
tecture, one each for the three EEG datasets.We use ReLU activation
for all the layers in our network and Softmax for the final classifi-
cation layer. We also use batch normalization layers after each of
the final two fully connected layers. We train the classifiers with
SGD optimizer with batch size of 32, a learning rate of 1e-4, mo-
mentum set to 0.9 and with decay of 1e-6. We train the network
until it converges on the validation set. After training, the classi-
fiers are evaluated by computing the classification accuracy on the
test set. We obtained a test classification accuracy of 71-72% for
all three EEG datasets. The results are presented in Table 1. With
2D convolution and LSTM architectures we obtained an average
classification accuracy of around 40%, and with the time-shared
convolution network we obtain an average classification accuracy
of around 60%.

4.3.2 Image Classification. To evaluate the performance of the
generator, we use a trained image classifier as explained in Section
4.2. To this end, we train three image classifiers, one on each of the

Digits Characters Objects

Accuracy 72.88% 71.18% 72.95%
Table 1: Classification accuracy of EEG classifiers. These
EEG classifiers are used to extract conditioning vectors for
generator training.

Digits Characters Objects

Accuracy 99.12% 98.81% 83.24%
Table 2: Classification accuracy of image classifiers. These
pre-trained classifiers are used both in GAN training and to
evaluate the trained generators.

three image datasets. We use the VGG-16 [29] network architecture
for all three classifiers and set the size of the final dense layer to 10.
We train these classifiers from scratch with a batch size of 32 using
Adam optimizer. We use a learning rate of 5e-4 with decay of 1e-3
and train the network until convergence on the validation set. The
test set is used to evaluate the performance of these classifiers. The
classification scores on the three datasets are shown in Table 2.

4.3.3 Image Generation. To evaluate the generator, we employ
two metrics : Inception Score and image classification accuracy
as explained in Section 4.2. To evaluate the generator using the
trained image classifier we follow the same two step process that
we followed to train the generator. We first extract the EEG en-
codings using the trained EEG classifier for the EEG signals from
the test set. We use these EEG conditioning vectors from the test
set to generate images using a trained generator. The generated
images are classified by the trained image classifier to give us the
classification accuracies. The ground truth labels used to calculate
classification accuracy are the class labels of the EEG signals from
the test set. In Table 3 we present the classifier accuracies achieved
by our approach on all three datasets. As you could observe from
the results, we achieve very high classification accuracies on all
three datasets.

The other metric that we use to evaluate the generator for the
Objects dataset is the Inception score. The Inception score is a
metric for automatic evaluation of the quality of images generated
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Digits Characters Objects

AC-GAN [21] 74.10% 52.57% 70.36%
(EEG Conditioning)
AC-GAN [21] 82.06% 79.95% 62.44%
(1-hot Conditioning)
Brain2Image [14] 28.32% 17.76% 12.05%
Our approach 99.27% 92.23% 97.12%

Table 3: Comparison of the image classification accuracy of
the proposed approach with the baseline approaches.

Object Class Mean Standard Deviation
Apple (n07739125) 5.477 0.065
Car (n02958343) 5.445 0.072
Dog (n02084071) 5.463 0.073
Gold (n03445326) 5.484 0.096
Mobile (n02992529) 5.511 0.068
Rose (n12620196) 5.470 0.088
Scooter(n03791053) 5.485 0.072
Tiger (n02129604) 5.502 0.035
Wallet(n04548362) 5.439 0.067
Watch (n04555897) 5.448 0.046

All 5.439 0.064
Table 4: Mean and standard deviation of Inception scores for
each class of objects dataset.

by generative models. It is calculated using a Inception v3 network
[31], which is pre-trained on the ImageNet database. To get an
accurate score it should be applied on a large number of generated
images, usually 50,000 samples [26]. We computed the Inception
score values for each of the 10 classes individually as well for all
the 10 classes combined. We obtained an average Inception score of
5.439 on the generated images. The class-wise results are presented
in Table 4.

4.3.4 Qualitative Results. Apart from the quantitative results, we
also present qualitative results of our model. The images generated
using our proposed model for digits, characters, and objects are
shown in Figure 4, Figure 5, and Figure 6 respectively. In Figure 4,
the final column shows random sample images fromMNIST dataset
and the remaining columns show the images of digits generated
by our model. Similarly in Figure 5 and Figure 6, we present the
generated samples of characters and objects. The images generated
by our model are not only visibly crisper but also diverse and this
can be observed across all three datasets.

Our model does a better job in generating characters of some
classes than others as shown in Figure 5. Character classes which
are visibly distinct are generated better than the ones which look
similar like classes H, M and F, P. As a result of this, the overall
classification accuracy of the model on the character dataset is
comparatively lower than the other two datasets as shown in Table
3.

4.4 Comparison
To further evaluate our approach, we compare our performance
with the baselines. The first baseline is using AC-GAN [21] with
EEG encoding as conditioning and the second baseline is again

Figure 4: Images of digits generated by our GANmodel. Col-
umn 1-10 shows the generated images and the last column
is a random sample of same class drawn from training data.

Figure 5: Sample images of Characters generated by our
GAN model. Column 1-10 shows the generated images and
the last column is a random image of same class.

Method Inception Score
AC-GAN [21] 4.93

AC-GAN [21] (1-hot) 3.10
Our Approach 5.43

Table 5: Comparison of Inception Score values (on all
classes) between our approach and the two AC-GAN base-
lines.

using AC-GAN [21] but with ground-truth labels (1-hot vectors)
as conditioning. We chose the AC-GAN model for comparison as
our proposed network architecture is comparable to the AC-GAN
network architecture. We train individual networks for both these
baselines using the same generator and discriminator models we
used to train our GAN architecture. The pre-trained classifier is
removed and the discriminator is modified to output both probabil-
ity distribution over sources and probability distribution over class
labels. The third baseline is the Brain2Image [14], where both the
generator and discriminator are conditioned. We also trained their
GAN model on our datasets for comparison.

We compare our approach with the baselines using the two
evaluation metrics we proposed in Section 4.2. In Table 3 we present
the comparison of the pre-trained classification accuracies. Our
model outperforms all the baselines on all three datasets with a
considerable margin. We observed that the Brain2Image model
could not generate images of the classes for which the conditioning
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Figure 6: Sample images of 10 classes of objects generated by our GAN model. Column 1-9 are generated images, and the last
column is a random image of the same class from training data.

Figure 7: Qualitative comparison of our approach with the
baselines on the Objects dataset. The first row shows the
images generated by our model. The second and third rows
show images generated by the two baselines, AC-GAN [21]
with EEG as conditioning and AC-GAN [21] with 1-hot con-
ditioning respectively.

was provided on all three datasets and on the object dataset it fails
to generate any meaningful results. Hence, we do not include this
baseline model in Inception score comparison.

We also compare the Inception score achieved by our model with
the AC-GAN baseline models and the results are presented in Table
5. Qualitative comparison of images generated by our model with
the baseline models is shown in Figure 7. We chose the Objects
dataset for this qualitative comparison to show the capability of
our model in generating complex images of real world objects.

To evaluate the performance of our approach on smaller datasets,
we perform an experiment with the MNIST dataset with a reduced
number of images per class. We use only 20% of the training data,
i.e., 1000 images per class, for generator training in this experiment.

We refer to this dataset as MNIST-1K. We also set the number of
training epochs in these experiment to 50 to compare the pace
of convergence. We use AC-GAN [21] and Brain2Image [14] ap-
proaches as baselines for these experiments. We use EEG encoding
as conditioning for all three models.

In Figure 9, we present the comparison of classification accuracy
of the generated images for the three models after every epoch. As
can be seen from the plot, our model not only achieves the best
classification accuracy but also converges very fast when compared
to the other baselines. Our model achieved the highest classification
accuracy after only 30 epochs on the reduced MNIST-1K dataset.

We also present the qualitative comparison of the images gener-
ated by the three models after 50 epochs of training in Figure 10.
We can observe that not all images generated by the AC-GAN and
Brain2Image models are legible where as the images generated by
our model are sharp and clear. With the Brain2Image model we ob-
served that the digits generated by the model do not correspond to
the class of EEG conditioning resulting in a very low classification
accuracy even though the qualitative results look better.

Finally, we perform an experiment to check for signs of memo-
rization by our generator by walking along the latent space [24].
In this experiment, we pick two EEG conditioning vectors (for dif-
ferent classes of objects) and linearly interpolate between them to
generate a series of conditioning vectors. We use a constant noise
vector (z) and generate a series of images using the conditioning
vectors as weights. We present the results in Figure 8, Figure 11 and
Figure 12. We can observe that there is a smooth transition from
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Figure 8: Interpolation between EEG conditioning vectors of two different classes. The results show that the learned space has
a smooth transitions. Here we set the noise vector (z) constant while interpolating between the conditioning vectors.

Figure 9: Comparison of classification accuracies while
training the generator on MNIST-1K dataset.

Figure 10: Qualitative comparison of our approach with
AC-GAN [21] and Brain2Image [14] on MNIST-1K images
dataset. First and second row show the images generated by
AC-GAN and Brain2Image and the final row shows images
generated by our model.

an image of one object to another suggesting that the network has
learned relevant features required for image generation.

5 CONCLUSION AND FUTUREWORK
In this work we propose to visualize human thoughts using EEG
signals recorded when they were thinking of an object. We propose

Figure 11: Interpolation between EEG conditioning vectors
on digits dataset. In all the rows you see a smooth transition
indicating that the generator learned meaningful features
required for image generation.

Figure 12: Interpolation between EEG conditioning vectors
on characters dataset.

a novel conditional GAN architecture to generate images of the
objects that a person is thinking about using the EEG signals as
conditioning. Our approach consists of two main steps, we first
encode the EEG signals with a deep network and then the encoded
EEG signal is used as conditioning to generate images of the objects.
We performed our experiments on three different object categories
and showed that the proposed GAN architecture can generate class-
specific images using EEG signals as conditioning. We also showed
that our proposed architecture is well suited for even small sized
datasets. The results are a good indication that EEG signals contain
informative information corresponding to human thoughts. We
believe that the cues from EEG signals can be effectively encoded
and used for a wide range of applications. In our future work we
want to explore this idea further and visualize human thoughts in
the form of a video stream which is more intuitive.
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