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This paper presents a theory and practical computations for vi-
sual age classification from facial images. Currently, the theory has
only been implemented to classify input images into one of three age-
groups: babies, young adults, and senior adults. The computations
are based on cranio-facial development theory and skin wrinkle
analysis. In the implementation, primary features of the face are
found first, followed by secondary feature analysis. The primary
features are the eyes, nose, mouth, chin, virtual-top of the head and
the sides of the face. From these features, ratios that distinguish
babies from young adults and seniors are computed. In secondary
feature analysis, a wrinkle geography map is used to guide the de-
tection and measurement of wrinkles. The wrinkle index computed
is sufficient to distinguish seniors from young adults and babies. A
combination rule for the ratios and the wrinkle index thus permits
categorization of a face into one of three classes. Results using real
images are presented. This is the first work involving age classifica-
tion, and the first work that successfully extracts and uses natural
wrinkles. It is also a successful demonstration that facial features
are sufficient for a classification task, a finding that is important
to the debate about what are appropriate representations for facial
analysis. c© 1999 Academic Press

1. INTRODUCTION

o
u
i

n

g
i

e
is

r

term too, an improvement of our understanding of how humans
may classify age from visual images can be used in the domain

area
lica-
ually
and
ud-

, we
rical
the-
riate
ead
ns-

e,
me
ead
s all

top
rts
hus,
the
ote
ing

d is
uth,
ish
ated

liza-
, and

e
s

nt

g the
As humans, we are easily able to categorize a person’s
group from an image of the person’s face and are often able t
quite precise in this estimation. This ability has not been purs
in the computer vision community. In order to begin research
the issues involved in this process, this research addresse
limited task of age classification of a mugshot facial image i
a baby, young adult, and senior adult.

Any progress in the research community’s understandin
the remarkable ability that human’s have with regard to fac
image analysis will go a long way toward the broader goals
face-recognition and facial-expression recognition. In the lo
run, besides leading to a theory for automatic precise age id
fication which would assist robots in numerous ways, analys
facial features such as aging-wrinkles will assist in wrinkle an
ysis for facial-expression recognition. However, in the sho
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of indexing into a face database by the person’s age, in the
of newspaper-story understanding [10, 11], and in the app
tion areas such as gathering population age-statistics vis
(for example, getting the ages of patrons at entertainment
amusement parks or in television network viewer-rating st
ies.)

To gain an understanding for the aging process of the face
consulted studies in cranio-facial research [1], art and theat
makeup [2, 7], plastic surgery, and perception [5]. The main
ory in the area of cranio-facial research is that the approp
mathematical model to describe the growth of a person’s h
from infancy to adulthood is the revised cardioidal strain tra
formation, written in polar form as:θ ′ = θ, R′ = R(1+ k(1−
cosθ )), whereθ is the angle formed from theY-axis, R is the
radius of the circle,k is a parameter that increases over tim
and (R′, θ ′)’s are the successive growths of the circle over ti
[1]. The revised cardioidal strain transformation describing h
growth can be visualized as a series of ever growing circle
attached at a common tangent “base” point, in this case the
of the head. With this transformation the growth of lower pa
of the face is more pronounced than that of the upper part. T
for example, within the top and bottom margins of the head,
eyes occupy a higher position in an adult than in an infant (n
that this is due not to eye migration, but instead to an outgrow
and dropping of the chin and jaw).

Another consequence of this development into adulthoo
that, relative to the margins formed by the eyes and the mo
the position of the nostrils (nose) drops. Hence, to distingu
babyfaces from the two older groups, this research has evalu
a set of ratios. These ratios only require the automatic loca
tion of primary features, namely the eyes, nose, mouth, chin
virtual top of the head (see Fig. 9). Ratio 1 is theT-ratio formed
by two segments: the segmentT1 joining the two eyes and th
segmentT2 between the midpoint ofT1 and the nose. Ratio 2 i
theT-ratio formed by two segments: the segmentT1 as above,
and the segmentT3 between the midpoint ofT1 and the mouth.
Ratio 3 is theT-ratio formed by two segments: the segme
T1 as above, and the segmentT4 between the midpoint ofT1

and the chin. Ratio 4 is the ratio of the segment representin
difference in height between nose and eye-midpoint, and the
ment representing the difference in height between mouth
1077-3142/99 $30.00
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eye-midpoint. Ratio 5 is the ratio of the segment represen
the difference in height between mouth and eye-midpoint,
the segment representing the difference in height between
and eye-midpoint. Ratio 6 is the height of the eyes within
top and bottom head-margins.

After distinguishing the face as belonging to the union of
two older classes, our classification goals require us to determ
whether the person is a young adult or a senior. Bone struc
changes do not occur after the person is fully grown (i.e.,
geometric relationships of primary features do not vary); he
secondary features need to be identified and exploited. F
studying the aging process of adult humans, one can obs
that the facial skin of an older person is not as taut as i
younger adult.

Wrinkles are a good indication of the loosening skin; thus
have selected wrinkles as the next important feature (althoug
general, these aging-wrinkles must not be confused with cre
formed from facial expressions).

2. PREVIOUS WORK

No previous work has been reported on any aspects of
information in images of human faces. However, it is app
priate to review research on facial image analysis, as man
the issues encountered in our problem are similar to those
countered in related problems. Previous computational wor
face-images has been carried out in two distinct paradigms
the first paradigm researchers first extract features such a
eyes, nose, etc., then they relate these features geometricall
finally they use the geometric relationships to aid in analysis
recognition. The current research has adopted this paradig
locating features and analyzing them for age classification.
second paradigm treats the complete face image as an
vector and bases analysis and recognition on algebraic tran
mations of the input space.

Attempts at performing automated analysis of facial ima
using geometrical features date back to Bledsoe [3]. A su
quent attempt at this task was undertaken by Kanade [13]
started by detecting 16 features. Then he analyzed inter- an
traclass variances, finding that some of the parameters wer
effective. The remaining 13 parameters were used for the re
nition task. However, the features were not always accura
located.

More recently, Yuille, Hallinan, and Cohen [29] used d
formable templates to detect features of faces, in particular,
and lips. External energy functions of valley, peak, edge, and
age intensity are defined. These external images are comp
from the original intensity image. The internal energy consist
of the template parameters interact dynamically with the ex
nal energy. The best fit occurs when the total energy equa
consisting of internal and external energy, is minimized.

Pursuing the approach of Yuille, Hallinan, and Cohen [2

Shackleton and Welsh [26] performed feature-locating steps
detecting the eye, having first added template parameters
D LOBO
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regions of enhanced whites (of the eyes). Once they dete
the eye, they performed geometric normalization of the ey
preparation for a recognition step. This recognition step uses
eigen analysis approach (see below) of Turk and Pentland
and Kirby and Sirovich [15]. The contribution of Shackleton a
Welsh’s method is that most of the background is eliminated
only the feature of interest, in this case the eye, is considere
recognition.

Yang and Huang [28] use pyramids to find bright regions
the coarsest level) and then confirm the location of a face
finding supporting features.

Craw, Tock, and Bennett [8] designed a system to locate
features in a face using statistical knowledge to create an i
template. This system is capable of labeling the hair, the e
the mouth, and the nose in a mugshot image.

Reisfeld and Yeshurun [25] use generalized symmetry to
calize the eyes and mouth in images of human faces. Their
tem is able to cope with a wide variety of sizes, rotations, a
orientations.

Nagamine, Uemerra, and Masuda [20] have developed m
ods to match features in range images of faces. These im
might be produced by, for instance, a binocular system.

Using color images of light-skinned faces, Novak [21] us
skin tones to find the face, lip-pinks to find the lips, and blu
greens to find the eyes.

In an attempt at recognizing facial expressions, Matsuno, L
and Tsuji [19] use potential nets, which undergo structural
formations at features such as the eyebrows, nose, and m
Based on the pattern of deformations, classification is achie

Working in the other paradigm, Turk and Pentland [27] co
vert anN× N image of a face into a single vector of sizeN2 by
concatenating scan lines. Then they compute the eigenve
of the covariance matrix of the set of face images. Only a
of the eigenvalues are significant, thus characterizing the l
dimensional “face-space.” A face can be represented in this
space by a few weights. Recognition is considered succe
when an image’s weights fall within some neighborhood o
set of weights already stored in a database. This method is
sitive to scale, viewing angle, lighting changes, and backgro
noise. Similar work in this paradigm has been reported by Ki
and Sirovich [15].

As another embodiment of this approach, O’Toole, Ab
Deffenbacher, and Bartlett [23] used autoassociative mem
techniques, and this proved useful in classifying faces by ge
and race, and in recognition. This method sets up an autoa
ciative memory ofJ completely interconnected units, whereJ
is the number of pixels in an image. The connection streng
were stored in aJ× J matrix. Eigenvectors were extracted a
the first seven eigenvectors were used to differentiate ge
and race. For the training sets they used, it was discovered
the difference in coefficients for the eigenvectors is useful
female/male classification and for Caucasian/Japanese c

for
for
fication. For other work that examined the ability to classify
gender using neural networks, see [9].
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Recently, Brunelli and Poggio [4] have compared the util
of the two paradigms described above, in the task of face rec
nition. They concluded that the paradigm of using the comp
image patches and a correlation technique (which is relate
eigen-analysis in the sense that eigenvectors are linear co
nations of the image patches in the database) outperforms
feature-based geometric approach (note that they called
correlation approach “template-matching,” which truly must
distinguished from the templates used in the feature-based
metric approaches described earlier). However, in their exp
ments, their features were not located with precision (exam
for example, the location of the left eye in their Fig. 6), a
hence, their conclusion about the inferiority of the approa
may be incorrect. In this research, we determine that facial
tures, when they can be found, are robust for performing
classification. In addition, since we need to detect wrinkles
the age classification task and since we expect to be ab
transfer insight from its performance here to the area of fa
expression analysis in the long run, we have chosen to adop
plicit feature extraction and analysis. It should be noted that
a task such as ours, in which there are only a finite number (
possibly only a handful) of categories, a few types of geom
ric relationships of explicit feature analysis may suffice. On
other hand, recognition of a specific individual amongst a la
set of possibilities (possibly hundreds) requires a much lar
parameter space. It may be that the few geometric relations
measured and tested by other researchers (e.g., Kanade
carry insufficient information on which to base recognition.

3. OVERVIEW OF THE APPROACH
IN THIS RESEARCH

A high level description of the steps in the approach taken
this research is presented next.

A. Find facial features
1. Find initial rough oval
2. Find chin; adjust oval
3. Find sides of face
4. Compute virtual top of head
5. Find eyes
6. Find mouth
7. Find nose

B. Compute facial feature ratios
C. Compute wrinkle analysis
D. Combine B and C to conclude age category.

Our approach to finding the initial oval, and the eyes follows t
of Yuille, Hallinan, and Cohen [29] and Shackleton and We
[26]. An energy equation is defined according toEtotal= Eext+
Eint, whereEext= Eeye+Eedge+Evalley+EintensityandEint con-
tains the geometric template for the face. These energy te
are related to potential fields that guide the template fitting p

cess. The potential fields are formed from the image operatio
Corresponding to the image forces used in previous work (wh
ROM FACIAL IMAGES 3
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used morphological operators such as open, close, erode, an
late) we employ appropriate image transformations to local
the features.

A series of stages (similar to epochs in previous work) are
up where at each stage an intermediate goal is accomplis
The minimization is performed using gradient descent. Onc
stabilized energy sum is reached, the intermediate goal of
stage has been realized and processing continues to the
stage.

Our approach to finding the chin and the sides of the fa
involves dropping a population ofsnakelets[14] around the
boundaries of the initial oval, in three rectangular regions, a
performing a Hough transform to find a parabolic curve in ea
of the three regions. Asnakeletis a small snake segment de
signed to find a small individual curve segment in the imag
The nose and the mouth are found by convolution with dark-b
detectors. From these features, geometric ratios are compu

Next, snakelets are used to find wrinkles. A wrinkle geogr
phy map drops multiple snakelets in polygonal regions, whe
wrinkles may typically be found. The main focus of this stage
analysis is concentrated on the wrinkles on the forehead, w
kles next to the eyes, and the wrinkles near the cheek bones.
presence of wrinkles in a region is concluded positively if the
are several curves in the region. The different locales of evide
for the presence of wrinkles are then weighted appropriately
infer the age group within adults.

4. FACIAL FEATURE DETECTION
AND LOCALIZATION

The localization of the facial features is performed in stag
At each stage, a particular facial feature parameter is found.
center position of the head in the image is initialized manua
with an allowance for a large margin of error. In separate wo
we show how the center of a face can be located automatic
with no knowledge of the scene [18] (another approach is d
cussed in [28]). The initial oval-finding stage finds an oval th
best fits the face/head, and consequently the center positio
the head is automatically updated. The chin-finding stage fin
the best chin in the rectangular area specified by the oval p
meters. The face sides-finding stage finds the left and right si
of the face in the area specified by the chin and oval pa
meters. The virtual top of the head is then acquired from t
oval generated from the chin and the two face sides. The c
parameter, if it is found robustly, is then used to refine the init
oval. Otherwise, the initial oval is used for the remaining stag
The iris-attracting stage places both the left and the right
centers of the template near the respective iris centers in the
age specified by the oval parameter. The iris-fitting stage trie
fit more accurately the iris contour by estimating the iris radi
and simultaneously improving estimates of both iris center p
sitions. The mouth-finding stage finds the position of the cen

ns.
ich
of the mouth and finally the nose-finding stage finds the position
of the bottom of the nose.
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FIG. 1. This shows a face template, including the parameters used in o
fitting and eye-fitting.

Figure 1 explains some of the parameters used. For the g
ent descent process, potential images are created. The pot
image for the edge,8edge, was generated by first applying a mo
phological operator ofdilate(5)− erode(5) and then blurring it
by using an exponential filtere−α(x2+y2)1/2

with anα value of 0.8.
Thedilate operator causes expansion while theerodeoperator
causes shrinkage. Further details of morphological operators
be found in Haralick and Shapiro [12]. The potential image
the valley,8valley, was generated by first applying a morph
logical operator ofclose(21) and then blurring it by using an
exponential filter with anα value of 0.4. A similar operator was
used by Shackleton and Welsh [26]. Thecloseoperator smooths
contours and fills gaps [12]. The eye potential image8eye was
generated with a first-order difference operator of size 3, in b
X andY directions.

4.1. Initial Oval-Finding Stage

The initial oval-finding stage uses the edge-image poten
8edgeto find the best oval that fits the outline of the face:

Eoval total = Eedge+ Einternal,

Eedge= c2

length

∫
face edge

8edge(x) ds,

Einternal= k1(Xe− Xc)+ k1(Ye− Yc − (0.1) fb)

+ k2( fa − 0.7 fb)+ k3e−β1 fa + k3e−β3r .

The coefficients used are:c2= 200, c3= 100, k1= 100,
k2= 100, k3= 100000,β1= 0.04, β2= 0.028. These numeric
values were chosen by a combination of trial/error and conte
plation about their roles in the computation.

The oval axes half-lengths (fa, fb) are initialized and the ova
is positioned inside the face perimeter. Thek1-term force draws
the oval center (Xc,Yc) downward because the oval center fou

in stage 1 is biased towards the top due to the inclusion of h
in stage 1. Thek1-term also maintains the horizontal compone
D LOBO
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of the center close to where it was initially dropped at (Xe,Ye).
The k3-terms are outward-forcing for each half-length to pre
vent the oval from becoming too small. Thek3-term also helps
to overcome the possibility of the lower edge of the oval stab
lizing around the mouth. Thek2-term tries to maintain a ratio
that is reasonable for a face. The fitting of the oval is perform
by iteratively updating the oval center position and the oval ax
half-lengths (fa, fb). The update formula is obtained by gradi
ent descent with respect to these four parameters. The stag
complete when the total energy stabilizes around a minimu
value. Figure 2 illustrates the outcome of this stage.

4.2. Chin-Finding Stage

The chin-finding stage uses the edge-image potential to fi
the bottom of the chin. First, multiple snakelets are dropped
random orientations in a grid, one per grid point, in a recta
gular region of width3

2 fa centered at the vertical axis of the
oval center, and of height14 fb to the top and1

8 fb to the bottom,
positioned from the horizontal axis tangent to the bottom of th
oval. After all the snakelets have stabilized, they are used to o
tain a Hough transform for the strongest parabola in that regio
The Hough transform is implemented in two stages. First, ea
snakelet votes for a coarse candidate position for the base of
parabola. Nonmaximal suppression is performed on these vo
and the best five are chosen. Amongst these five, the one th
located in the highest position on the face (to eliminate parabo
corresponding to necklines of clothing, or of the shadow form
by the chin) is chosen. Then, the snakelets that voted for t
winning position of the base are identified, and a finer search
the base is performed in a similar manner. This leads to rob
identification of the chin, when it is delineated in the raw imag
If the image quality is poor, or illumination conditions are bad
the correct position of the chin is very difficult to find.

Determination of whether a chin is found is currently done b
human visual inspection. If it has been found, it is used in thr
places: to refine the initial oval; to find the virtual top of the hea
using also the sides of the face (see upcoming sections on “f
side-finding stage” and “finding the virtual top of the head”)
and to be used in ratios 3a and 5a. If it is determined that it
not found, the bottom of the initial oval is used in the ratios, thu
requiring ratios 3b and 5b. In these ratios, the chin is referr
as “ochin” (for oval-chin). Further research should explore ho
it can be automatically determined whether the chin has be
found robustly. Figure 3 shows the stages involved in locati
the chin.

4.2.1. Parabola-fitting algorithm. The following is a nu-
merical description of the parabola-fitting process.

With two known points on the parabola,

y = k(x − h)2+ c (U-shaped parabola equation)
2

air
nt

y1 = k(x1− h) + c (c, h, k are the same for both equations)

y2 = k(x2− h)2+ c.
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FIG. 2. Oval-fitting: (a) original image; (b) ed

Algebriac manipulations yield

c = (x2− h)2y1− (x1− h)2y2

(x2− h)2− (x1− h)2
.

e (x1, y1) and (x2, y2) are known, solve forc andh by are modified to suit the left and right open-ended parabolas.

using a Hough transform. Figure 4 shows the right and left open-ended parabolas.
Chin-finding: (a) initial snakelets dropped on the negative of edge
hich is the chin.
e potential; (c)–(f) various stages before the final fit.

4.3. Face Side-Finding Stage

The face side-finding stage uses the edge-image potenti
find the left and right sides of the face. This stage uses
parabola-fitting algorithm, except that the parabola equati
potential image; (b) stabilized snakelets; (c) the winner in Hough space is markedwith
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FIG. 4. (a) Right open-ended parabola to fit the left side of the face. (b) L
open-ended parabola to fit the right side of the face.

The following are the parabola equations for the right op
ended parabola and the left open-ended parabola, respecti

x = k(y− c)2+ h, x = −k(y− c)2+ h.

Figure 5 shows the stages in locating the left and right side
the face. This process is also very robust, except when the e
too close to the side of the face, or when there is disheveled
within the lower half of the face. Evaluation of the goodne
of fit for the side-finding stage is performed by human visu
inspection.

4.4. Finding the Virtual Top of the Head

The top of the skull is very difficult to estimate when th
person has hair. Hence, an alternative strategy is used here
described next.

At this stage, the three pools of snakelets that voted for w
ning parabolas are pooled, and a single oval is fit to all
snakelets’ points. The goal here is experimental and tentativ
its purpose. The oval is used to find the virtual top of the head

confined by the snakelets that support the parabolas of the chinif the refinement cannot be computed), both the left and the right

rises
and sides of the face. The purpose of this is to have an estimateiris centers of the template are placed near the respective i
FIG. 5. Face side-finding: (a) the “X” on each side marks the base point o
down; (c) snakelets that support the three parabolas; (d) the fit of the face-o
D LOBO
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of the ratio of the height of the eyes from the chin, relative to
virtual top of the head. This process is obviously affected by
errors in finding the sides of the face, which in turn are affec
by disheveled hair in the lower half of the face, and a ear tha
too close to the side of the face. Figure 5 shows the outcom
one of the successful cases.

The following is a numerical description of the process
estimating the oval that yields the virtual top of the head. T
parametric form of the oval equation is

x = fa ∗ cosθ + x0

y = fb ∗ sinθ + y0,

where

(x0, y0) = oval center,
(x, y) = point on the ovaledge,

θ = angle from thex-axis,
( fa, fb) = the respectivex andy distances

from the ovalcenter.

Given (x, y), (x0, y0), and fb, we can solve forfa:

θ = sin−1[(y− y0)/ fb]

fa = (x − x0)/ cosθ.

Figure 6 shows the resulting snakelets of the parabola-fit
for the three groups. These snakelets are then used as an
to the virtual top of the head finding algorithm.

4.5. Eye-Finding Stage

This consists of an iris-attracting stage and an iris-fitting sta

4.5.1. Iris-attracting stage. The iris-attracting stage place
both the left and the right iris centers of the template near the
spective iris centers in the image specified by the computed o

Using the parameters from the refined oval (or the initial ov
f the parabola for that side of the face. Virtual head finder: (b) snakelets after settling
val has been refined. The virtual top of the head is the top of this oval.
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FIG. 6. This shows the snakelets and the chin-point used in the virtual to
the head finding algorithm.

in the image. The left iris center is placed110 fb above the oval
center fory and 1

2 fa left of the oval center forx. Similarly, the
right iris center is placed1

10 fb above oval center fory and 1
2 fa

right of the oval center forx. The iris-attracting stage uses th
valley image potential8valley and the intensity image potentia
8intensity to attract both left and right iris centers to their tru
positions. The following expression is minimized:

Eeye total = Eintensity+ Evalley+ Eeye

Eintensity= − c5

area

∫ ∫
left iris area

8intensity(x) d A

− c5

area

∫ ∫
right iris area

8intensity(x) d A

Evalley = c5

area

∫ ∫
left iris area

8valley(x) d A

+ c5

area

∫ ∫
right iris area

8valley(x) d A

Eeye= c4

length

∫
left iris edge

8eye(x) ds

+ c4

length

∫
right iris edge

8eye(x) ds.

The coefficients used arec4= 100, c5= 300, and their numeric
values were selected after deliberation about their roles rela
to each other.

The iris centers are initially positioned, guided by the ov
parameters. The valley potential is strong around the actua
area and it draws the iris/eye template over a substantial dista
The update is by gradient descent. The oval parameters ar
allowed to change in this stage. Thus, only a change in the
parameters will update the total energy.

4.5.2. Iris-fitting stage. For the iris-fitting stage, the equa
tions from the iris-attracting stage and additional equations

each of the energy potentials are used. An internal energy te
is also introduced to prevent the iris radius from collapsing to
ROM FACIAL IMAGES 7
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point. The relevant expression that is minimized is

Eiris total = Eintensity total+ Evalley total+ Eeye total+ Einternal

Eintensity total = Eintensity eye+ Eintensity iris

Evalley total = Evalley eye+ Evalley iris

Eeye total = Eeye eye+ Eeye iris

Eintensity eyeis the same as in iris-attracting stage

Eintensity iris = − 2× c9

r × length

∫
left iris edge

8intensity(x) ds

+ 2× c9

r × area

∫ ∫
left iris area

8intensity(x) d A

Evalley eyeis the same as in iris-attracting stage

Evalley iris = 2× c8

r × length

∫
left iris edge

8valley(x) ds

− 2× c8

r × area

∫ ∫
left iris area

8valley(x) d A

Eeye eyeis the same as in iris-attracting stage

Eeye iris = c7

length

∫
left iris edge

8eye(x) ds

Einternal= k4e−β3r .

The coefficients used arec4= 100, c5= 300, c7= 200, c8=
100,c9= 150,k4= 80000,β3= 0.6, and these were picked b
thoughtful observation about their relative importance.

The iris-fittingstageuses the intensity imagepotential8intensity,
the valley image potential8valley, and the eye image potentia
8eye to fit the iris template to the actual image. Thek4-term is
an outward force that prevents the radius of the iris from bec
ing too small. The darkness of the iris area from the inten
image and the brightness of the iris area from the valley im
potential, along with the iris edge information from the eye i
age potential, guide the fitting of the iris template to the ima
The eye parametersa, b, c (which are constants controlling th
boundary of the eye) are scaled with respect to the radiu
the iris and these parameters are used to clip the iris disc
partial disc. The only parameters allowed to change in this s
are both the iris centers and the scale of the iris template.
parameters are updated by gradient descent. Figure 7 show
outcome of the iris-attracting and -fitting stages. Evaluation
the goodness of fit for the eye-finding stage is conducted
human visual inspection.

4.6. Finding the Mouth

After finding both iris centers, a vertical axis half way betwe

rm
a

the two irises is computed. The search area for the mouth is
determined by a rectangular region of width4

3 fa centered at
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FIG. 7. Iris-attracting and iris-fitting: (a) original image; (b) valley potentia

the vertical axis, and of height 0.5 fb centered at 0.5 fb from the
bottom of the oval. This area is large enough so that the mou
guaranteed to be within this region. An averaging filter (sim
arithmetic average) with mask size of 31× 5 is convolved with
the mouth area of the intensity image to produce the mo
image potential8mouth. From the mouth image potential, eac
horizontal line is summed and the one with the maximum s
is selected as the position of the center of the mouth.

4.7. Finding the Nose

After the mouth is found, an area for the nose is determin
guided by the vertical axis, the mouth, and the eye. The nos
searched for in a rectangular region bounded vertically by
middle 60% of the distance between the eyes and the mouth
bounded horizontally by the 2 eye-centers. Similar to the mo
stage, an averaging filter with mask size (31× 5) is convolved
with the nose area to produce a nose image potential8nose. From
the nose image potential, each horizontal line is summed and
one with the maximum is selected as the position of the bott
of the nose. The size of this mask varies with the size of the o
Figure 8 shows the outcome of locating the center of the mo

and the bottom of the nose. The correctness of the outcome
both processes can be evaluated by human visual inspection
(c) edge potential shown just for eyes; (d)–(e) iris-attracting stages; (f) final iris fit.
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5. EVALUATING DIFFERENT FACIAL
FEATURE RATIOS

After the primary facial features have been located, they
be used to compute the ratios for age classification. Six ra
are evaluated and their usefulness is discussed. A facial data
of 47 faces, comprising babies, seniors, and young/middle-a
adults, is used for this study. Figure 9 graphically explains th
ratios.

Tables 1 and 2 show the calculated ratio results. Ratio
not included because it was difficult to obtain robustly. The d
cussion of Ratio 6 is presented in the upcoming section tit
“Ratio 6.” Ratios 3 and 5 use the chin parameter and thus h
corresponding ratios 3b and 5b for when the chin is obtai
from the initial oval. In these tables, “ochin” refers to oval-chi

For the five ratios, the individual column data from Tables
and 2 are used to obtain thresholds for classification. The
five ratios were recomputed after dropping the data evalua
as unfavorable due to facial expression or rotation of the he
The bimodal threshold for each ratio is calculated according
Otsu’s method [22].

Table 3 tabulates the statistics of each ratio. The results u

of
.

Ratio 6 were not included as the virtual top of the head could
only be computed for a small set of faces.
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FIG. 8. Mouth- and nose-fitting: (a) final mouth and nose fit shown ove

5.1. Ratio 6—Eye–Chin : TopHead–Chin

Ratio 6 is the height of the eyes within the top and bott
head-margins. For this ratio, it is not practical to obtain the t
top of the head; hence, the virtual top of the head is used.
ratio makes use of features found in steps 1 through 5 of
overview. It is the most reliable of the ratios, if the top of the he
could be found. It has low intraclass variance, and high interc
riance. However, our method of measurement of the virtual
p of the he

is Ratio 1. This ratio uses features which are not affected by any
too is subject to
ad is not robust to how the hair lies around the ears,facial expressions or facial motions. However, it
FIG. 9. The s
original image; (b) mouth potential (from image); (c) nose potential (from im

m
ue
his
the
ad
ass

whether or not the person is bald, and to variation in the ac
shape of the lower part of the head. This measurement c
be improved with better methods for estimating hair configu
tions.

5.2. Discussion of Ratios

Several ratios have been examined above. The most prom
ix ratios used.
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TABLE 1
Results of the Ratio Computation with Real Images for Baby Class

Ratio1 Ratio2 Ratio3a Ratio3b Ratio4 Ratio5a Ratio5b
Subject nose-T mth-T chin-T ochin-T e-n-m e-m-c e-m-och

baby01 1.4857 0.9286 0.5843 0.5909 0.6250 0.6292 0.636
baby02 1.5385 0.9836 0.6186 0.6250 0.6393 0.6289 0.635
baby03 1.4167 0.8947 0.5763 0.5313 0.6316 0.6441 0.593
baby04 1.5000 0.9333 0.5753 0.5833 0.6222 0.6164 0.625
baby05 1.2941 0.9362 0.5789 0.5714 0.7234 0.6184 0.610
baby08 1.3500 0.8710 0.5455 0.5510 0.6452 0.6263 0.632
baby10 1.5556 0.9825 — — 0.6316 — —
baby12 1.5625 0.9434 — 0.5495 0.6038 — 0.5824
baby13 1.5862 0.9583 — 0.6216 0.6042 — 0.6486
baby14 1.4483 0.9130 0.6000 0.5833 0.6304 0.6571 0.638
baby15 1.5152 0.9434 — — 0.6226 — —
baby16 1.5172 0.9778 — — 0.6444 — —
baby17 1.5429 0.9153 — 0.6000 0.5932 — 0.6556
baby18 1.3684 0.8387 0.5200 0.5361 0.6129 0.6200 0.639
baby19 2.0769 1.0189 — — 0.4906 — —
baby20 1.6296 0.9565 0.6667 0.6377 0.5870 0.6970 0.666
baby21 1.7333 0.9811 — — 0.5660 — —
baby22 1.4286 0.9302 — 0.5263 0.6512 — 0.5658
baby24 1.7333 1.1304 0.6047 0.6047 0.6522 0.5349 0.534
baby25 1.8000 0.9818 — — 0.5455 — —
b02 1.5484 0.8727 — — 0.5636 — —
b06 1.3939 0.9020 0.5169 — 0.6471 0.5730 —
b07 1.4545 0.9057 — 0.5581 0.6226 — 0.6163
b09 1.7419 1.0588 — — 0.6078 — —
b18 1.7391 1.0000 — — 0.5750 — —

Sum 38.9609 23.7579 6.3870 8.6702 15.3384 6.8453 9.281

Num elements 25 25 11 15 25 11 15
Average 1.55844 0.95032 0.58064 0.57801 0.61354 0.62230 0.618

Std. deviation 0.16851 0.06086 0.04138 0.03434 0.04352 0.03988 0.03469

1

h
i
y
ti

t

t
e
a

h
io

,

e
r-
de-
is

for
Variance 0.02840 0.00370 0.0017

imprecise localization. If it can be made robust to shading, s
owing, and occlusion effects, it should serve as a good class
Ratio 2 appears to be the ratio that can be measured reliabl
also shows promise in providing reliable classification. Ra
3, 4, and 5 are not as promising. In theory, Ratio 6 is the m
reliable, but, in practice, suffers from errors in estimating
virtual top of the head.

Ratios 1, 2, and 3 will suffer if the face is rotated in dep
and, as such, some measure needs to be adopted to comp
for this rotation, before the ratios are computed. Ratios 4, 5,
6 are more robust to this occurrence.

Further research should explore enhancing this approac
combining several ratios to make the final ratio classificat
Such combination could be based on statistical analysis.

6. WRINKLES

6.1. Finding Wrinkles

Once the primary features have been found for the face

phy map is used to determine where snake
ped to search for wrinkles (see Fig. 10).
0.00118 0.00189 0.00159 0.00120

ad-
fier.
and
os
ost
he

h,
nsate
nd

by
n.

the

Since the resolution of a 256× 256 image does not captur
any wrinkle information, it is necessary to zoom in to the a
eas depicted by the wrinkle geography to capture further
tail. For now, to prove our concept, the zooming-in process

FIG. 10. Wrinkle geography. This shows the regions that are searched

letsfacial wrinkles, after the eyes, nose, mouth, chin, and sides of the face have been
located.
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TABLE 2
Results of the Ratio Computation with Real Images for Adult and Senior Classes

Ratio1 Ratio2 Ratio3a Ratio3b Ratio4 Ratio5a Ratio5b
Subject nose-T mth-T chin-T ochin-T e-n-m e-m-c e-m-ochin

snr01 1.1923 0.9118 — 0.6019 0.7647 — 0.6602
snr02 1.7333 — — 0.5778 — — —
snr03 — — — — — — —
snr05 1.4286 0.9434 — — 0.6604 — —
snr06 1.6800 0.9767 — 0.6176 0.5814 — 0.6324
snr07 — — — — — — —
snr10 — — — — — — —
snr11 — 1.0000 — 0.5455 — — 0.5455
snr15 1.3621 0.7119 — 0.4468 — — 0.6277
snr18 1.1481 0.8158 — 0.5439 0.7105 — 0.6667
s01 1.4737 0.9333 0.5957 0.5657 0.6333 0.6383 0.6061
s10 1.3500 0.8710 0.5934 0.5934 0.6452 0.6813 0.6813
s11 1.4359 0.9492 — — 0.6610 — —
s12 1.5263 0.9355 0.6042 0.5979 0.6129 0.6458 0.6392

adult01 1.4167 0.8718 0.5313 0.5440 0.6154 0.6094 0.6240
adult04 1.2778 0.7931 0.5055 0.5111 0.6207 0.6374 0.6444
a01 1.1765 0.8333 0.5195 — 0.7083 0.6234 —
a02 1.2941 0.9362 0.5714 0.5789 0.7234 0.6104 0.6184
a04 1.2121 0.9302 0.5405 0.5479 0.7674 0.5811 0.5890
a06 1.1111 0.8163 0.5263 0.5479 0.7347 0.6447 0.6712
a12 1.2000 0.8571 — — 0.7143 — —
a19 1.6296 0.9778 0.5867 0.5867 0.6000 0.6000 0.6000

Sum 23.2862 16.0644 5.5745 8.4071 10.7537 6.2718 8.8060

Num elements 18 18 10 15 16 10 14
Average 1.36977 0.89247 0.55745 0.56047 0.67210 0.62718 0.6290

Std. deviation 0.15074 0.05675 0.03475 0.02681 0.05445 0.02700 0.02971
Variance 0.02272 0.00322 0.00121

und

ask
her
e ar-
ially
TABLE 3
Results of the Ratio Computation with Real Images (47 Faces),

Indicating That It Is Possible to Computationally Distinguish be-
tween Baby and Nonbaby Images

Correctly Sample %
Ratio Threshold labeled size Correc

1 1.48 Baby 14 21 67%
Adult 9 13 69%

2 0.91 Baby 16 21 76%
Adult 7 13 54%

3a 0.57 Baby 7 9 78%
Adult 4 9 44%

3b 0.53 Baby 12 13 92%
Adult 2 13 15%

4 0.62 Baby 8 21 38%
Adult 8 12 67%

5a 0.64 Baby 6 9 67%
Adult 3 9 33%
3 Baby 6 13 46%
Adult 7 12 58%
0.00072 0.00296 0.00073 0.00088

t

accomplished manually. Figure 11 shows how the area aro
an eye could be zoomed into to obtain a new 256× 256 im-
age. With an actively controlled zoom lens, the zooming-in t
could be made automatic. Another possibility is to take hig
resolution images at the outset and search for wrinkles in th
eas depicted by the wrinkle geography. Recently, commerc
FIG. 11. Zooming in to increase resolution. While this could be automated
with a camera that has software-controlled zoom capability, it is accomplished
manually at this stage of the research.
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FIG. 12. This shows the directional derivative orthogonal to the snakelet c
for each side of the snakelet.

available high resolution cameras (1280× 1024) have becom
available from manufacturers such as Kodak. Pursuing this
proach with such high resolution images is a topic for furt
research.

6.2. Possible Strategies for Finding and Analyzing Wrinkle

Once an image (zoomed-in) in which the presence or abs
of wrinkles is to be determined has been obtained, the cho
outlined at the start of this paper for face analysis can be
applied. That is, one option is to treat the whole image a
input vector and conduct an algebraic analysis of the ve
space to achieve classification (for example, Shackleton

Welsh [26] used this strategy for recognition based on eye im-
ages) into wrinkled and nonwrinkled areas. The other option is

snakelet curve for each side of the snakelet. These are summed
separately for each side of the snakelet and normalized for
FIG. 13. Wrinkle pattern test. This shows how pairs of snakelets are judge
reliable wrinkle patterns, as they both may belong to a single curve. The pa
D LOBO

rve

ap-
er

nce
ces
re-
an
tor
and

to detect individual features (in this case, individual wrinkl
candidates) and conduct geometric analysis of them to con
whether these features are wrinkles or not. As an embodime
the principles of geometric feature analysis, one could also
amine an individual wrinkle-candidate for its curvature and h
deeply it is embedded in the skin. Another embodiment wo
be to perform a match between a deformable template of a w
kle and the image. The elementary embodiment we use he
one where we simply confirm that the candidates for piece
wrinkle are not all lying on just one underlying curve. As suc
if all the candidates for wrinkles-pieces lie on one curve (w
very few outliers), the candidates are not labeled as wrinkles
this manner, curves arising from shading marks, or noisy spe
of skin, are not mistakenly labeled as wrinkles.

6.3. Steps for Detection and Classification
of Wrinkle-Candidates

First, snakelets [14] are dropped in random orientations al
the nodes of a grid using the raw intensity image as the poten
for the snakelets. The bounding region for the grid is chosen
the areas shown in the wrinkle geography map.

6.3.1. Steps for the detection of wrinkle-candidates.When
these snakelets have stabilized, those snakelets that have
shallow valleys are eliminated. A shallow valley is detected
cording to the following: For each point in a snakelet, the dire
tional derivative (of the raw image intensity) taken orthogon
to the snakelet curve is computed.

Figure 12 shows the directional derivative orthogonal to
d as to whether they are part of a wrinkle. The pairs on the left are classed as not being
irs on the right are taken as appropriate evidence for a wrinkle pattern.
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FIG. 14. Wrinkle-finding process for a region beneath the right eye. Top row shows data for an older adult, middle row for a young adult, and bottom

a baby. (a) Initial snakelets dropped in the image shown in 11. First column, except for (a), shows the original image. Second column (b, e, h) shows stabilized
snakelets. Third column (c, f, i) shows results of snakelets that survive the steepness test. It is obvious that only the older adult data will pass the Wrinkle Pattern

t

t

per

rn
, are
Test.

the number of points in the snakelet, to obtain two sums
indicate the steepness of the valley the snakelet is occupyin
these steepness sums do not exceed some preselected thre
the snakelet is eliminated. In this manner, only those snake
that lie in a deep enough intensity valley survive. The deep in

sity valleys correspond to narrow and deep wrinkles. Note t
the relationship between the depth of a wrinkle and the dept
hat
g. If
shold,
lets
en-

the intensity valley is fortuitous; shading effects cause dee
wrinkles to appear darker.

6.3.2. Classification of wrinkle-candidates: Wrinkle patte
test. Finally, the snakelets that survive the steepness test
hat
h of
analyzed for their group pattern, to ensure that there are enough
of them and that they do not all lie on only one curve. First,
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FIG. 15. Wrinkle-finding process for the forehead region. Top row shows data for an older adult, middle row for a young adult, and bottom row for a ba

column (a, d, g) shows the original image. Second column (b, e, h) shows stabilized snakelets. Third column (c, f, i) shows results of snakelets that survive the

n

t
t

tial
m

steepness test. It is obvious that only the older adult data will pass the Wri

it is verified that there are more than five snakelets. Next,
each pair of snakelets (there are a square number of pairs)
following is done. The line segment (Pi Pj ) joining the snakelets
is computed, and the average orientation for each of the
snakelets with respect to this line is computed. If either of
two orientations is sufficiently orthogonal to the line, or if the

satisfy directional constraints indicating they could not belon
to the same shallow curve, the snakes are taken to be mult
kle Pattern Test.

for
, the

wo
he
y

curves. The region is classified as wrinkled if there is substan
evidence for multiple curves. The evidence is computed fro∑

Pi ,Pj

e−(|Pi Pj |2/σ 2)
(
Pi Pj

⊥ · τ̂Pi

)(
Pi Pj

⊥ · τ̂Pj

)
,

g
iple
where Pi and Pj are centers of two snakelets,̂τPj is the unit
tangent to the snakelet centered atPj , Pi Pj

⊥
is the unit



AGE CLASSIFICATION FROM FACIAL IMAGES 15
col

k
t
r

d to
ead.

ted,
kin.
ets
FIG. 16. Wrinkle analysis process. First column: initial snakelets dropped
nonwrinkle snakelets.

perpendicular to the line joiningPi and Pj , ande−(|Pi Pj |2/σ 2)

is a decaying function of the distance between the two sna
To be classified as a region with multiple curves, this compu
evidence must exceed a preset threshold. (See Fig. 13 for
vant examples of wrinkle patterns.)
Figure 14 shows the outcomes of the process applied to a
nior, a young adult, and a baby in the area beneath the imag
into an image. Second column: wrinkle snakelets (including quantity). Thirdumn:

es.
ed
ele-

right eye. Figure 15 shows the outcomes of the process applie
asenior,ayoungadult,andababy in theareaaround the foreh

In addition, Figs. 16 to 21 show how snakelets are detec
counted, and used in confirming the presence of wrinkled s
In these figures, the first column shows the initial snakel

se-
e’s
dropped, the second column shows the snakelets that are found
to be candidates (the numbers in the columns are the quantities
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FIG. 17. Wrinkle analysis process. First column: initial snakelets dropped
nonwrinkle snakelets.

of snakelets), and the third column shows those snakelets
are not candidates.

6.3.3. Combining different locales of evidence for wrinkl
At this stage in the research, the different locales which
inspected for wrinkles (e.g., forehead and area beneath

eye) are weighted equally in determining whether the face h
wrinkles.
into an image. Second column: wrinkle snakelets (including quantity). Thirdumn:

that

s.
re
ach

7. COMBINING RATIOS AND WRINKLE
INFORMATION TO JUDGE AGE CATEGORY

With only three age groups to be categorized, the combina
rule is simple. If the ratios are baby-like and no wrinkles a
found, the face is labeled a baby. If wrinkles are found, and

asratios are adult-like, the face is labeled a senior adult. For all
other cases, the face is labeled a mid-aged adult. To decide if
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FIG. 18. Wrinkle analysis process. First column: initial snakelets dropped in an image. Second column: wrinkle snakelets (including quantity). Third column:

ld

le

only
assi-
0%
ults,
nonwrinkle snakelets.

the ratios are baby-like, we use Ratios 1 and 2, as they yie
the greatest correct percentages in Table 3. They are also
two ratios with the widest spread between their averages for
groups. Thus, a face is considered baby-like if it had no wrink
and if either Ratio 1 or 2 indicates it is a baby.
Our complete database contains 47 faces comprising bab
seniors, and young/mid-aged adults. Wrinkle detection was
ed
the

the
s,

performed on all faces because the zoomed-in images were
obtained for 15 faces. For these 15 faces, the complete cl
fication algorithm was run, and the classifications were 10
correct. The 15 faces contained five babies, five mid-age ad
and five seniors.

ies,
not

Table 4 summarizes the measurements and computed infer-
ences for the 15 faces. In it, column 2 shows Ratio 1, along
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FIG. 19. Wrinkle analysis process. First column: initial snakelets dropped in an image. Second column: wrinkle snakelets (including quantity). Third column:
nonwrinkle snakelets.
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FIG. 20. Wrinkle analysis process. First column: initial snakelets droppe
nonwrinkle snakelets.

with the threshold used to decide if the ratio is baby-like or n
Column 3 similarly shows Ratio 2. Column 4 shows the num
of dropped snakelets that passed the steepness test and ar
wrinkle snakelets. Column 5 shows the result of applying
wrinkle pattern test to these wrinkle snakelets. Column 6 sho

the final inference that combines the information from column
2, 3, and 5, in the manner described in this section.
in an image. Second column: wrinkle snakelets (including quantity). Thirdn:

t.
er
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ws

8. DISCUSSION AND CONCLUSION

We have outlined a computational theory for visual age cla
fication from facial images. For now, only three age-groups w
considered: babies, young adults, and senior adults. First,

smary features of the face, namely the eyes, nose, mouth, chin,

and virtual top of the head, are found. From these, ratios are
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TABLE 4
Results of the Complete Classification Scheme Applied to 15 Faces: 5 Babies, 5 Mid-age Adults, and 5 Seniors

Ratio 1 Ratio 2 Wrinkle Decide Computed
Subject threshold= 1.48 threshold= 0.912 snakelets found wrinkled? label

Baby14 1.45 0.913 0 No Baby
Baby17 1.54 0.915 0 No Baby
Baby22 1.43 0.930 3 No Baby
Baby24 1.73 1.13 1 No Baby
Baby25 1.80 0.982 0 No Baby
Adult01 1.41 0.872 0 No Adult
Adult04 1.28 0.793 5 No Adult
Adult05 1.30 0.731 4 No Adult
A02 1.29 0.936 0 No Adult
A12 1.20 0.857 0 No Adult
Snr01 1.19 0.911 56 Yes Senior
Snr09 1.39 0.78 77 Yes Senior
Snr13 1.25 0.81 102 Yes Senior
Snr15 1.36 0.71 59 Yes Senior
Snr18 1.14 0.81 114 Yes Senior

Note. Column 2 shows Ratio 1, along with the threshold used to decide if the ratio is baby-like or not. Column 3 similarly shows
Ratio 2. Column 4 shows the number of dropped snakelets that passed the steepness test and are thus wrinkle snakelets. Column 5
shows the result of applying the wrinkle pattern test to these wrinkle snakelets. Column 6 shows the final inference that combines
the information from columns 2, 3, and 5, in the manner described in this section.
FIG. 21. Wrinkle analysis process. First column: initial snakelets dropped in an image. Second column: wrinkle snakelets (including quantity). Third column:
nonwrinkle snakelets.
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computed that permit the distinguishing of babies from othe
Next, secondary features, namely wrinkles, are detected
analyzed. This step permits the distinguishing of seniors fro
those in the two younger categories.

This work has shown that computing ratios and detecting
presence of wrinkles can yield age categorization. These crit
were suggested by cranio-facial research and the observation
aging skin develops wrinkles. There are several directions t
need to be further explored. The problem of varying orientati
of the face needs to addressed. The work thus far has assu
mugshot viewpoints, and this makes the ratio computations e
For faces that do not satisfy this, analysis along the lines of t
using symmetry [25] will need to be employed to compute t
facial orientation, and to compensate for a nonfrontopara
orientation.

Next, skin-color and eye-color restrictions will need to b
loosened. Then, the computation of age in the presence of
patches and dark glasses, and other occlusions and shado
effects needs to be explored. Age computation must be m
robust to varieties of moustaches, facial scars, and dishev
hair. Finally, an accurate estimation of the top of the skull h
defied all approaches thus far. As we showed, this estimate
hances the ability to tell age and, thus, needs to be computed
all of these endeavors, additional age-related information can
exploited: the growth of the nose and the nose-bridge, and
relative shrinking of the iris-size over time, and changes to t
outline of the face. This work has but examined and documen
some computational cues that exist for this task.
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