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Atlas-based Rib-bone Detection in Chest X-rays 

 Automated system which detects the rib-bones in patient chest X-rays 

 In addition to traditional atlas, two alternative atlases usage 

 Successfully rib-bone localization for patient X-rays 

 Comparable results with the state-of-the-art algorithm 

 Good results on challenging X-rays: successfully addressing the rib-shape variance 

between patients, and number of visible rib bones due to inhale condition of the patient 

*Highlights (for review)
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Abstract

This paper investigates using rib-bone atlases for automatic detection of rib-bones in chest X-rays (CXRs). We built a system
that takes patient X-ray and model atlases as input and automatically computes the posterior rib borders with high accuracy and
efficiency. In addition to conventional atlas, we propose two alternative atlases: (i) automatically computed rib bone models using
Computed Tomography (CT) scans, and (ii) dual energy CXRs. We test the proposed approach with each model on 25 CXRs from
the Japanese Society of Radiological Technology (JSRT) dataset and another 25 CXRs from the National Library of Medicine CXR
dataset. We achieve an area under the ROC curve (AUC) of about 95% for Montgomery and 91% for JSRT datasets. Using the
optimal operating point of the ROC curve, we achieve a segmentation accuracy of 88.91 ± 1.8 % for Montgomery and 85.48 ± 3.3
% for JSRT datasets. Our method produces comparable results with the state-of-the-art algorithms. The performance of our method
is also excellent on challenging X-rays as it successfully addressed the rib-shape variance between patients and number of visible
rib-bones due to patient respiration.

Keywords: Chest X-rays, Rib bone extraction

1. Introduction

The National Library of Medicine has developed a portable
chest X-ray (CXR) screening system to automatically detect the
lung abnormalities in countries where health resources are con-
strained [1, 2, 3]. The system extracts the texture and shape
properties of lung regions from CXR images, and identifies the
abnormality using image processing and machine learning al-
gorithms. On a typical CXR, the bone structures overlap with
the lung tissue due to the 2D projection of the chest. The rib-
cage causes a cross-hatching pattern on the lung region, which
misleads the texture analysis [4, 5, 6, 7]. A straightforward so-
lution to this problem would be to extract textures only from the
inter-costal regions. This strategy indeed increases the accuracy
of normal/abnormal lung classification [5]. Another way to im-
prove the texture analysis is to suppress the rib-bone by reduc-
ing the intensities for rib regions, and to work on soft-tissue-like
images [8, 9, 7]. The soft-tissue-like images can be obtained by
subtracting the rib region from the input X-ray. Automatic rib-
bone extraction is not only useful for better texture analysis,
but also useful for pediatric CXR screening where rib borders
could be used to detect the rib abnormalities, such as rickets
or neurofibromatosis [10]. Rib boundaries also need to be de-
tected accurately in stereo radiography in order to reconstruct
an accurate 3D rib-bone model [11].

Email address:
sema.candemir@nih.gov,stefan.jaeger@nih.gov,
sameer.antani@nih.gov, ulas.bagci@nih.gov,
les.folio@nih.gov, ziyue.xu@nih.gov,
george.thoma@nih.gov (Sema Candemir1, Stefan Jaeger1, Sameer
Antani1, Ulas Bagci3, Les R. Folio, Ziyue Xu2, George Thoma1)

Rib-bone detection is challenging due to (i) spurious bound-
aries caused by overlapping anatomical structures, (ii) multi-
plicative noise and sampling artifacts during acquisition, and
(iii) deformation of tissues and anatomical shape variations
caused by disease. Rib border contrast is generally poor/low
because of the similar intensity values at the rib boundaries and
nearby tissues. In addition to these challenges, rib bone appear-
ance varies between patients due to differences in bone mineral
density, respiration, and body movement during X-ray capture.
Fig 1 shows a typical rib shape variance across patients, as well
as spurious boundaries.

Figure 1: Example X-ray images of the right lung from different patients. The
rib-bone structure (the bone curvature and interval between the bones) is differ-
ent for each patient.

It has been shown in numerous studies that prior-
information-based segmentation methods are more accurate
than those without prior information [12, 13, 3, 14, 15]. One
way to incorporate prior knowledge is to use a prototype ‘at-
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(a) Patient’s X-ray (b) Flowchart of system (c) Rib-bones probability map (d) Rib-bone boundaries

Figure 2: The flowchart of the proposed method. (a) Patient’s X-ray. (b) The main stages of the system: atlas building, model selection and atlas registration. (c)
The computed probability map of rib-bones overlapped on the patient’s X-ray. The probability map is normalized between 0 and 1. The red color indicates the high
probability of being rib-bone. (d) The rib-bone boundaries computed by thresholding the probability maps. The red contour is the computed boundary and the green
contour is the reference boundary.

las’. Herein, we investigated the use of atlases for automated
rib-bone extraction from CXRs. An illustrative flowchart of the
proposed approach is shown in Figure 2. An atlas, in the con-
text of this work, is defined as a set of model X-ray images
and their corresponding rib-bone boundaries. The models are
constructed via three methods: i) X-ray image with manually
delineated rib-bone boundaries (Fig 3.a); ii) simulated X-ray
and rib-bone model image generated from Computed Tomog-
raphy (CT) scans (Fig 3.b); and iii) CXRs obtained from a dual
energy scanner (Fig 3.c). The atlas is registered to the patient
X-ray, yielding a transformation for each pixel, which allows
the corresponding atlas rib mask to be transformed and treated
as segmentation for the rib-bone of the patient.

We summarized previous studies and our contribution in Sec-
tion 2. The datasets used in our study are listed in Section 3.1.
The methodology is described in Section 3.2, which includes
the atlas construction, model selection, and atlas registration.
We provide the experimental results in Section 4. We discuss
and conclude the study in Section 5.

2. Literature Review

Atlas-based Segmentation. In recent years, various re-
search efforts have been conducted for model-based segmen-
tation methods, such as active shape models [16] and active
appearance models [17]. Similarly, the use of atlas priors have
broad applications in medical image segmentation, especially in
computing the complex boundaries of anatomical organs such
as the heart [12] or brain [13, 18, 19]. A single atlas model
could be used as the segmentation of the target image, but some
studies have reported that a multi-atlas approach yields higher
accuracy than single-atlas segmentation methods [20, 14]. In
the multi-atlas approach, several atlas models are registered to
the target image. The combination of all registered atlas models
can be used as the final segmentation [14, 21, 22, 15, 23]. Stud-
ies showed that a selection of a specific subset of atlas models

(a)

(b)

(c)

Figure 3: Example members of our atlas containing (a) the model X-ray and its
manually delineated rib-bone model, (b) simulated X-ray and rib-bone model
computed from CT, and (c) X-ray and corresponding enhanced bone images
obtained from a dual-energy X-ray scanner.

for the target image produces more accurate segmentation re-
sults [3, 14, 15]. The registered atlas could be used as a prior
for further segmentation stages [3, 24].

Rib Boundary Detection. Researchers have developed var-
ious methods for automated rib detection. The general ap-
proach is first extracting the rib pixels using an edge detec-
tion algorithm [25]. Then, the candidate rib pixels/lines are
grouped into a complete rib boundary by applying a curve fit-
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ting technique [26], using a voting approach such as Hough
transform [10, 27], or applying a geometric model such as
parabolas [28, 29, 30, 7] or ellipses [31]. Although extract-
ing the rib borders with an edge detection algorithm is a well-
known approach, these algorithms produce spurious edges at
the apex of the lung due to overlapping bone structures. In ad-
dition, low rib contrast in the lower lung can cause problems.
Applying geometric models can help infer missing rib bound-
aries; however, relying on a rigid model is not suitable for vary-
ing rib shapes among multiple patients (cf. Fig 1) and deformed
ribs (e.g. in scoliosis cases [11]). Some authors use deformable
models to cope with the shape variability [10, 32]. A recent ef-
fort for rib-bone detection is presented in [11], which uses ori-
ented filtering and edge following with multiple-path branch-
ing. This algorithm addresses the large variability in rib bone
shape. However, the method is a semi-automatic approach that
requires user initialization for each rib in the target X-ray, which
makes the whole process less efficient. Apart from the edge-
based methods, some studies follow classification schemes to
classify rib/non-rib pixels. For example, in [31], lower/upper
margins of rib regions are classified by analyzing edge gradi-
ents and their orientations. In [33], pixels are classified using
gray-scale and neighborhood structural information. In [34],
rib-bones are extracted from CT images using Random Forest
classifiers.

One of the aims of extracting the rib bones is suppressing
the bones and obtaining soft-tissue-like images for better tex-
ture analysis. Although soft-tissue images can be obtained with
dual-energy scanners, this imaging technology is newly devel-
oped, so a limited number of hospitals have access to this tech-
nology. Therefore, researchers proposed automatically simu-
lated alternatives to produce soft-tissue images. For example
in [8] the bone regions are computed by training an artificial
neural network. In [9] the bone-like structures are extracted by
applying regression filters learned from the training data. In [7],
authors first delineate the rib-bone candidates with parabola
curve fitting, and then the delineated ribs are suppressed using
an unsupervised regression model which also takes into account
the proximal thickness of bone.

Our Contribution. In this study, we used rib-bone atlases
to automatically extract the patient rib-bone on conventional
frontal CXRs. To the best of our knowledge, no study on atlas-
based rib-bone detection has been previously reported. The pro-
posed system chooses the most similar models in the atlas set
and then registers them to the patient’s X-ray. The average of
all registered models constitutes the rib bone probability map
for the patient’s X-ray. In addition to manual delineation, we
propose two alternative ways to build the rib-bone atlases: sim-
ulated models computed from CT images and bone images ob-
tained from a dual energy scanner. The advantages of our detec-
tion system are: (i) The system automatically detects rib bones
from conventional X-rays without any user interaction. (ii) The
rib-bone models incorporate the anatomical knowledge of rib
structures (e.g., spatial relations between rib bones). Therefore,
the system takes into account the inter-rib spaces and fills the
gaps between ribs using the information in the rib-models. (iii)
Contrary to classical techniques, the texture-based registration

can cope with the large variation in rib shapes and curvatures.

3. Methods

3.1. Data

JSRT dataset is a set compiled by the Japanese Society of
Radiological Technology (JSRT) [35]. It contains 247 CXRs, of
which 154 X-rays have lung nodules, and 93 X-rays are normal
with no nodules. All CXRs have a size of 2048×2048 pixels and
a gray-scale color depth of 12 bits. The X-rays were captured
using an analogue imaging system by exposing film that was
later scanned into digital format [36]. The JSRT set is publicly
available and has reference masks for clavicle bones, lung, and
heart [36]. An expert manually labeled the rib-bone masks of
25 X-rays for our experiments serving as reference standards.

Montgomery dataset is a set from the Department of Health
and Human Services, Montgomery County, Maryland, USA.
The data set consists of 138 CXRs; 80 X-rays are normal and 58
X-rays are abnormal with manifestations of tuberculosis. The
X-ray images are stored in 12-bit gray-scale with dimensions of
4020×4892. Since the X-rays were acquired using digital scan-
ners, the images have much higher contrast; rib-bone edges are
stronger and intensity variations are more heterogeneous com-
pared to the JSRT dataset. The Montgomery dataset is publicly
available for research [1, 3]. For our experiments, participat-
ing expert manually labeled the rib-bone masks of 25 X-rays
serving as reference standards.

Belarus dataset is a set collected for a drug resistance study
initiated by the National Institute of Allergy and Infectious Dis-
eases, the United Institute of Informatics Problems of the Na-
tional Academy of Sciences of Belarus, and the Republican Re-
search and Practical Center for Pulmonology and Tuberculosis,
Ministry of Health, Republic of Belarus [37]. The set contains
both CXRs and chest CTs of 169 patients. Chest radiographs
were taken using the KODAK Point-of-Care 260 system with
2248× 2248 pixel resolution. CT scanning was performed by a
GE LightSpeed Pro 16 scanner with a slice thickness of 2.5 mm
and a number of axial slices varying from 100 to 160 depending
on the region of interest [38]. Reference boundaries of the lung
regions are available for each patient. We used the CT images
of this dataset to build reference rib-bone boundaries.

NIH-Clinical Center-Dual Energy Images. The dual en-
ergy (DE) radiography involves taking two radiographs at dif-
ferent mean beam energies. The resulting radiographs highlight
either the soft-tissue or bone structures. The DE CXRs used in
this paper are routine CXRs obtained for clinical reasons using
a GE Discovery XR656 digital radiography system (120 and
133 kVp).

3.2. Atlases

As rib-bone atlases, we used (i) conventional CXRs and
manually delineated rib boundaries, (ii) simulated X-rays and
rib models computed from CT scans, and (iii) X-rays from dual
energy CXRs.

3
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3.2.1. Manually delineated rib-bones
We selected 50 PA CXRs from the JSRT and Montgomery

datasets and delineated the rib boundaries using the web-based
labeling tool FireFly [39, 40], which offers precise drawing
functionality and online labeling capabilities. Fig 3.a shows
an example X-ray with manually delineated borders. In this
example, the posterior ribs are marked in green while the ante-
rior ribs are shown in blue. The manual boundaries are used as
reference standard for quantitative analysis.

3.2.2. Simulated X-rays and corresponding rib-bone models
Manual delineation is a tedious process for rib borders, con-

sidering that most CXRs need at least 12 manual labels (six
visible rib pairs). We propose an alternative rib-bone atlases
computed from CT scans. The rib-bone models are constructed
using CT scans, which is a simplified version of the study
in [41]. For this task, we used the Belarus dataset. According
to the Hounsfield scale in CT, bone has the highest radiodensity
compared to other elements in tissue, ranging from +700HU to
+3000HU (Hounsfield Unit). Based on this information, we as-
sumed that the pixels with the maximum intensity at each col-
umn in the axial plane correspond to bone tissue. Therefore,
we project the maximum intensity of each column in the axial
plane to the coronal plane by

MIPIk =< max(Ik[ci]) >, ∀ci ∈ Ik, i = 1, 2, ...C, (1)

where MIPIk is the maximum intensity projection vector of im-
age Ik; Ik is the kth axial slice of CT scan; Ik[ci] is the intensity
value of image Ik at ith column.

We simulate the corresponding X-ray image with the same
fashion by projecting the average intensity at each column in
the axial plane to the coronal plane by

AIPIk =< avg(Ik[ci]) >, ∀ci ∈ Ik, i = 1, 2, ...C, (2)

where AIPIk is the average intensity projection vector of image
Ik; Ik is the kth slice of CT scan; and Ik[ci] is the intensity value
of image Ik at ith column. We repeat the projection process
for each axial slice, obtaining the simulated X-ray and rib-bone
model in the coronal plane. In order to reduce the noise, we
project the intensities only inside the thorax region. Fig 4 illus-
trates the rib-bone construction process from CT scans.

3.2.3. Dual Energy X-rays
As an alternative atlas model, we used tissue subtracted

(bone) images obtained from dual energy scanner. We applied
histogram equalization to increase the contrast between bone
and non-bone pixels (Figure 3.c).

3.3. Atlas Selection
Registration is a computationally expensive process. There-

fore, we registered only a subset of our atlas instead of register-
ing the full atlas. It is generally difficult to compute an accurate
mapping between images with large shape differences. In order
to decrease the shape difference between the patient’s X-ray
and the atlas, we used a selection strategy that chooses the rib-
models that are most similar to the patient’s X-ray. The shape

similarity between the patient and the model X-rays are mea-
sured using the edge information of lung regions. The promi-
nent edges in the lung regions are mostly caused by ribs. How-
ever, there are usually spurious edges which do not belong to
rib bones. Therefore, before measuring the edge similarity, we
applied bilateral filtering [42], which decreases the noise in the
image but preserves the prominent edges. After filtering, we
applied the Canny Edge detection algorithm [43] to obtain the
edge map of an X-ray. Fig 5 shows the edge detection results
on filtered X-rays. We measure the similarity of the edge maps
of X-ray images using the equation

d(IE
p , I

E
m) =

1
|IE

p |

∑
x∈IE

p ,x′∈IE
m

min|x − x′| (3)

where IE
p is the binary edge image of the patient X-ray, IE

m is the
binary edge image of the model X-ray, x and x′ are coordinates
of edge pixels, and |IE

p | is the number of edge pixels in IE
p .

The system computes the distance d between the edge map
of the patient X-ray and the edge map of each X-ray in the at-
las, and retrieves the most similar top-n rib-bone atlas models.
After creating the subset, we registered the selected x-rays to
the patient’s x-ray to build a patient-specific rib-bone model.

3.4. Registration of Atlases

The aim of the registration stage is to build a rib-bone model
for the patient X-ray using other patient X-rays with their corre-
sponding rib-bone models. We employed a non-rigid registra-
tion method [44] that solves the registration process with a flow-
based approach. The algorithm computed the corresponding
pixels (the transformation mapping) between the models and
the patient X-ray. Then, we aligned the rib-model to the patient
X-ray by applying the transformation mapping. The registered
model is used as the rib-bone model of the patient’s X-ray. For
the correspondence computation, the local regions are modeled
with Scale Invariant Feature Transform (SIFT) [45]. The SIFT
feature of a local region is the concatenation of the gradient ori-
entation histograms of its sub-regions. To enhance the texture
and rib contrast, histogram equalization is applied to chest X-
rays before SIFT extraction. Once the SIFT features are com-
puted for all atlas X-rays, the algorithm computes the pixel-to-
pixel correspondences using the following objective function:

E(w) =
∑
p∈P

min(||S 1(p) − S 2(p + w(p))||, t)

+
∑

p
(|u(p)| + |v(p)|)

+
∑

(p,q)∈N

min(|u(p) − u(q)|, d) + min(|v(p) − v(q)|, d), (4)

where P is the set of pixels in the X-ray; N is the spatial neigh-
borhood set, S 1 and S 2 are the SIFT images in which each pixel
is represented by a SIFT descriptor vector; w(p) = (u(p), v(p))
are the flow vectors at p; t and d are the truncated thresholds.
The minimization algorithm calculates the SIFT-flow w by op-
timizing the objective function. The first term of the objective

4



Page 6 of 10

Acc
ep

te
d 

M
an

us
cr

ip
t

(a) (b) (c)

Figure 4: An illustration of the X-ray and rib-bone model simulation process. (a) An example slice (Image Ik) in the axial plane in a CT scan. (b) Algorithm
thresholds the image Ik with +1300 HU (the threshold value is decided empirically) to obtain the approximate torso region image (IT

k ). The maximum and average
intensity at each column of IT

k is projected to the coronal plane. (c) Algorithm computes the Average Intensity Projection (AIP) and Maximum Intensity Projection
(MIP) of all axial slices. Each AIP vector represents one image row of the simulated X-ray, and each MIP vector builds one row of the rib-bone model in the coronal
plane.

Figure 5: Canny Edge detection results for two filtered X-rays.

function forces the algorithm to match pixels according to their
SIFT descriptors, with warping based on the registration flow
vector w(p). The second term constrains the flow vectors to be
as small as possible. The third term constrains the flow vectors
of neighboring pixels to be similar. The SIFT-flow algorithm
calculates corresponding matches for each pixel between two
X-rays by solving the flow vectors w(p). The spatial shifts be-
tween corresponding matches define the transformation map-
ping for all pixels. We applied the transformation mapping by
shifting each pixel in the atlas model according to the computed
shift distance.

We repeated the registration stage for each of the top-n most
similar X-rays in the atlas set. The final rib-bone model for the
patient X-ray was built-up by using the mean of the top-ranked
registered masks. The intensity value of each pixel in the rib-
bone model for the patient X-ray is the probability that the pixel
belongs to the rib bones (cf. Fig 6).

4. Experiments

4.1. Evaluation Strategy
One important challenge for medical image segmentation al-

gorithms is to obtain a reference to validate the algorithm per-

formance and compare different methods. Generally, several
experts are asked to delineate the borders, preferably multi-
ple times. Then, the collection of expert markings are com-
bined into one reference standard either taking the average of
markings or employing a more sophisticated algorithm such as
STAPLE (Simultaneous Truth And Performance Level Estima-
tion) [46]. However, expert delineation is a tedious process, es-
pecially for rib borders considering that CXRs need at least 12
manual labels (for visible ribs). Therefore, currently available
rib-bone detection studies suffer from a lack of standards and
such algorithms have been tested on limited datasets. For ex-
ample, the algorithm in [10] is tested only on 10 CXRs. In [33],
researchers manually delineated the rib borders of 30 X-rays,
and evaluated their algorithm on this set. Due to the lack of ref-
erence boundaries, some studies reported only subjective evalu-
ations of an expert or of the authors themselves. For this study,
we delineated the rib-bone boundaries of 50 CXRs, and each
CXRs has only one reference standard.

There are 12 pairs of ribs in a normal human rib cage.
Although the exact number depends on respiration, typically,
six to nine rib pairs are visible in the lung area. The rib
bones below the diaphragm are hardly visible in an CXR be-
cause of the abdomen shadow. Therefore, we define the lung
area as the search area for ribs. To detect the lung area, we
used a lung segmentation algorithm [3]. The resulting bound-
aries were compared with manual reference boundaries using
Overlap = |TP|/(|FP| + |TP| + |FN|), Dice = 2|TP|/(2|TP| +
|FN|+ |FP|), Accuracy = (|TP|+ |TN|)/(|TP|+ |TN|+ |FP|+ |FN|),
Sensitivity = |TP|/(|TP|+ |FN|), Specificity = |TN|/(|TN|+ |FP|)
and Precision = |TP|/(|TP| + |FP|) where TP (true positives)
represents correctly classified pixels, FP (false positives) rep-
resents pixels that are classified as rib but that are in fact back-
ground, FN (false negatives) represents pixels that are classified
as background but that are in fact part of the ribs, and TN (true
negatives) represents correctly classified non-pixels.

5
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4.2. Rib-bone Probability Map

In this section, we report the performance of the proposed
system with quantitative and qualitative evaluations of rib-bone
probability maps. Given a patient X-ray, our system retrieves
the top-n most similar X-rays in the atlas by comparing the edge
maps of X-rays, and it then registers the selected models to the
patient X-ray. The average of the registered models forms the
rib-bone probability map in which the intensity of each pixel
indicates its probability of being part of the rib-bone structure.
Fig 6 shows an example computed probability map and its over-
lap on the X-ray image.

Figure 6: The probability maps and their overlap on X-rays.

As we described in Section 3.2, we use three types of atlas
models: (i) conventional X-rays and manually-labeled bound-
aries, (ii) simulated X-rays and rib bone models computed from
CT scans, and (iii) conventional X-rays and dual energy bone-
tissue images. We tested the system performance with each
model. Fig 7 shows computed probabilities with each atlas
model for the same X-ray images. As can be seen from the over-
lapped figures, the algorithm assigns higher probabilities to rib
regions than to intercostal areas. The visual results also show
that the algorithm produces relatively less accurate boundaries
at the bottom part of the lung. This is due to weak rib-bone
edges in this region because of the lack of intensity difference
between rib-bone and soft tissue.

The intensities of probability maps represent confidence val-
ues that we thresholded to obtain different operating points on
the ROC curve. With a high threshold, high intensity values
are classified as rib, producing high specificity and low sensi-
tivity. On the other hand, with a low threshold, lower intensities
will also be classified as rib. This will reduce the specificity of
the model but increase its sensitivity. Figure 8 shows the ROC
curves obtained for JSRT and Montgomery datasets, for man-
ually delineated, simulated, and dual energy rib-bone models.

As an overall performance, we achieved an area under the
ROC curve (AUC) of approximately 95% for Montgomery
dataset and 91% for JSRT dataset (shown in Figure 8 and listed
in Table 1). The curves show that the computed rib probabili-
ties for the Montgomery set (blue curves) is better than the rib
probabilities for the JSRT set (red curves). As we reported in
Section 3.1, the JSRT set was captured using an analogue imag-
ing system by exposing film that was later scanned into digital

Dataset Models AUC opt. TP opt. FP
JSRT manually delineated 0.9105 0.7944 0.1270
JSRT simulated X-rays 0.8759 0.6783 0.1234
JSRT dual energy X-rays 0.7618 0.5823 0.1721

Montgomery manually delineated 0.9519 0.8718 0.0941
Montgomery simulated X-rays 0.9086 0.7962 0.1423
Montgomery dual energy X-rays 0.7711 0.6067 0.1626

Table 1: Optimal points on ROC curve: Area Under Curve (AUC), optimal
True Positive (TP) rate, and optimal False Positive (FP) rate.

format [36]. Therefore, the film-based images have a homo-
geneous intensity appearance. On the other hand, the X-rays
in the Montgomery set were acquired using digital scanners.
These images have much higher contrast with stronger rib-bone
edges. The intensity variations are more heterogeneous com-
pared to the JSRT dataset.

The curves also show that rib segmentation based on manu-
ally generated rib models (solid lines) are superior to rib seg-
mentation based on models generated from simulated X-rays
(dashed lines), and to rib segmentation based on dual energy
bone images (dotted lines). We believe that the reason for the
lower accuracy obtained with simulated X-ray is that the av-
erage intensity projection produces a smooth simulated X-ray
that does not capture adequate texture information for similar-
ity computation during the registration process (cf. Figure 4).
Each X-ray of the Belarus dataset, which we used to compute
the simulated X-rays, contains 128 axial slices. The simulated
X-ray accuracy could be improved using CT scans with a higher
number of slices. On the other hand, the lower accuracy ob-
tained with dual energy X-ray images occurs due to overlap-
ping bone structures in bone X-ray images, and weak bone in-
tensity in mid-line region (Fig. 3-c). During registration of the
model to the patient X-ray, the anterior rib structures and weak
bone intensity deteriorated the posterior rib pixel estimation.
We computed the optimal points on the ROC curves (showed
as circles on curves in Figure 8) and listed the area under the
curve, optimal TP and FP rates in Table 1.

4.3. Challenging X-rays
Rib-bone segmentation is challenging due to rib-bone vari-

ances across patients. Rib bone mineral density, respiration,
body movement during X-ray capture and disease in the lung re-
gion affect the rib-bone shape and number of visible ribs. Fig 9
shows the performance of our system in these challenging situ-
ations.

The system is able to locate the ribs given adequate texture
information for the rib region. We register the rib models to the
patient X-ray using a non-rigid registration approach. There-
fore, our system successfully addresses the rib-shape variance
between patients. However, it can not detect the ribs when the
intensity difference between rib region and intercostal areas are
poor.

4.4. Comparison Results
Most studies have conducted subjective evaluations for their

rib detection algorithms because of the lack of a reference
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Figure 7: Example probability maps with a) manual atlas, b) atlas computed from CT scans, c) dual energy bone-tissue X-rays.

Figure 8: ROC curves for JSRT and Montgomery datasets, obtained with man-
ually delineated rib-bone models, simulated models, and dual energy X-ray
models.

boundary for quantitative evaluation. To the best of our knowl-
edge, only [33] have reported quantitative results for rib detec-
tion on a public set (JSRT dataset). In order to compare the
performance of our approach with the reported results in litera-
ture, we computed the rib boundary from the probability maps
estimated for the JSRT dataset. The values on the probability
map of each X-ray are between 0 to 1 (cf. Figure 6). We set
a threshold for the map with t = 0.5, which is also the optimal
threshold value in ROC curves. Table 2 lists the overall accu-
racy, sensitivity and specificity of algorithms. ICPC (iterated
contextual pixel classification) uses pixel classification [33] as
initial rib segmentation, and then re-classifies each pixel using
image features and class labels of pixels in their neighborhood
which are assigned in the initial segmentation. Pixel classifica-
tion (PC) [33] classifies the ribs based on intensities and uses
a supervised classification approach. The same authors pro-
posed a model-based approach [30], which fits a global rib-bone
model directly to the radiograph image. In the rib-bone model,
each rib is represented by two parallel parabolas. However, this
approach does not address the variable number of visible ribs
in the lung area. Researchers also measured the human vari-
ance by comparing two manual delineations, which is listed as
second observer performance. Our overall method performance
on the JSRT subset is comparable with ICPC and close to the
second observer performance. (Note that the experimental data
subset is not the same because the authors in [33] did not dis-
close the specific subset used). Our approach uses both image

7
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Figure 9: a) 8 visible ribs, slightly rotated body movement. b) 7 visible ribs on the left, 8 visible ribs on the right. c) 7 visible ribs, the rib intervals are narrow. d)
Rotated body shape, deformed lung shape, poor contrast at the bottom part of lung. e) Rotated body shape, the lung size is smaller due to black border around the
X-ray. f) Deformed lung shape due to disease.

information and a rib-bone model, therefore, it performs better
than the PC method on the challenging cases.

Procedure Accuracy Sensitivity Specificity
ICPC [33] 0.86 ± 0.06 0.79 ± 0.09 0.92 ± 0.04

PC [33] 0.79 ± 0.05 0.71 ± 0.08 0.85 ± 0.03
Model-based method [30] 0.74 ± 0.05 0.71 ± 0.08 0.85 ± 0.03

Second Observer [33] 0.94 ± 0.02 0.92 ± 0.03 0.95 ± 0.02
Our Method - with 10 model 0.84 ± 0.04 0.79 ± 0.06 0.87 ± 0.03
Our Method - with 15 model 0.85 ± 0.04 0.73 ± 0.06 0.92 ± 0.02
Our Method - with 20 model 0.86 ± 0.03 0.75 ± 0.06 0.92 ± 0.02

Table 2: Average Accuracy, Sensitivity and Specificity of Iterated Contex-
tual Pixel Classification (ICPC) [33], Pixel Classification [33], a rule-based
method [30], Human observer performance [33] and our method.

5. Conclusions

Here we propose an atlas-based system to extract the rib-
bone boundary on conventional CXRs. Given a patient X-ray,
the system first chooses the most similar models in the atlas set
and then registers them to the patient X-ray. As atlas models,
in addition to using manually delineated models, we propose
two alternative atlases: (i) simulated models computed from CT
scans, and (ii) bone-tissue images from dual energy machines.
During the registration process, we compute the transformation
mapping between the model X-ray and the patient X-ray by
computing the regional similarities between the X-rays. Then,
we apply the resulting transformation to the model rib-masks.
The average of all registered models constitutes the rib bone
probability map for the patient X-ray.

The proposed system builds the patient rib-bone model as
a probability map in which each pixel intensity indicates the
pixel’s probability of being part of the rib-bone structure. In
order to measure the performance of the system, we computed
the ROC curves based on the computed probability maps. We
achieved an AUC of approximately 95% for the Montgomery
dataset and 91% for the JSRT dataset. To compute the rib
boundaries, we set the threshold for the probability map with
the threshold given by the optimal point on the ROC curve. We
achieved 85% accuracy, 75% sensitivity, and 92% specificity
on a public CXR set.

The probability maps and boundary results showed that the
system successfully locates the rib-bones if there is adequate
texture information. It successfully addresses the rib-shape
variance between patients and the number of visible rib bones
due to patient respiration. The algorithm produces relatively
less accurate boundaries at the bottom part of the lung. This is
due to the weak intensity difference between the rib-bone and
soft tissue. The anterior ribs are not as clearly visible as pos-
terior ribs on X-ray images. Therefore, our appearance-based
approach could not detect the anterior ribs as accurately as the
posterior ribs. We compared our findings with the algorithms in
the literature by testing the algorithm on a public set. Our over-
all method performance is comparable with the state-of-the-art
approach and close to human observer performance.

Appendix

The Montgomery dataset, as well as corresponding lung
boundaries, is publicly available for research purposes. To
submit the request, please visit the following webpage:
https://ceb.nlm.nih.gov/repos/chestImages.php.
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