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Abstract

Boosting based detection methods have successfully
been used for robust detection of faces and pedestrians.
However, a very large amount of labeled examples are re-
quired for training such a classifier. Moreover, once trained,
the boosted classifier cannot adjust to the particular sce-
nario in which it is employed. In this paper, we propose a
co-trainingbased approach to continuously label incoming
data and use it for online update of the boosted classifier
that was initially trained from a small labeled example set.
The main contribution of our approach is that it is anonline
procedure in which separate views (features) of the data are
used for co-training, while the combined view (all features)
is used to make classification decisions in a single boosted
framework. The features used for classification are derived
from Principal Component Analysis of the appearance tem-
plates of the training examples. In order to speed up the
classification, background modeling is used to prune away
stationary regions in an image. Our experiments indicate
that starting from a classifier trained on a small training
set, significant performance gains can be made through on-
line updation from the unlabeled data.

1. Introduction & Related Work

The detection of moving objects, specifically people
or vehicles, in a scene is of utmost importance for most
surveillance system. In recent years, considerable progress
has been made for detection of faces and pedestrians
through supervised classification methods. In this context,
a variety of approaches have been used including naive
Bayes classifiers [9], Support Vector Machines [7] and Ad-
aboost [10]. Specifically for surveillance related scenarios,
Adaboost is particularly suitable since it has been demon-
strated to give high detection rates using simple Haar-like
features in real-time [10]. However, one problem in training

such a classifier is that an extremely large number of train-
ing examples are required to ensure good performance in
the test phase. For example, Zhang et al. [11] used around
11000 positive and a 100000 negative labeled images for
face detection. Another issue related to the use of Boosted
classifiers in the surveillance scenario is that the classifier
parameters are fixed in the test stage. However it is prefer-
able to have a system that automatically learns from the ex-
amples in a specific scenario.

One possible way around the requirement of a large la-
beled training set is the co-training approach proposed by
Blum and Mitchell [1]. The basic idea is to train two clas-
sifiers on two independent “views” (features) of the same
data, using a relatively small number of examples. Then to
use each classifier’s prediction on the unlabeled examples
to enlarge the training set of the other. Blum and Mitchell
prove that co-training can find a very accurate classification
rule, starting from a small quantity of labeled data if the
two feature sets are statistically independent. However, this
assumption does not hold in many realistic scenarios [8].

Levin et al. [5] use the co-training framework, in the con-
text of boosted binary classifiers. Two boosted classifiers
are employed for co-training. If one classifier predicts a la-
bel for a certain example with a high confidence then that
labeled example is added to the training set of the other, oth-
erwise the example is ignored. One of the two boosted clas-
sifiers employed for co-training uses background subtracted
image regions, while the other classifier is trained on the im-
age grey-levels directly. Note that the features are closely
related. However, their approach empirically demonstrates
that co-training is still possible even in the case the inde-
pendence assumption does not hold. The co-training based
learning approach have also been used successfully for text
retrieval and classification by Collins and Singer [2].

One important point to note is that co-training is not a
classification framework. It is actually a training method
from unlabeled data. Co-training requires two separate
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views of the data for labeling, however a better classifica-
tion decision can be made by combining the two views of
data by a fully trained classifier. Thus, co-training is used
to train a classifier in anoffline setting. Once training is
complete the combined view is used to make classification
decisions. The principal contribution of our approach is that
it is anonlinemethod, in which separate views (features) of
the data are used for co-training, while the combined view
is used to make classification decisions in a single frame-
work. To achieve this, we have exploited the fact that the the
boosted classifier is a linear combination of simpler ‘base’
classifiers and the adaptive boosting selection mechanism
discourages high correlation among the selected features.
The co-training is performed through the base classifiers,
i.e., if a particular unlabeled example is labeled very confi-
dently by a small subset of the base classifiers then it is used
to update both the base classifiers and the boosting parame-
ters using an online variant of the multi-class Adaboost.M1
algorithm [6]. Note that only few of the observed examples
might qualify for co-training. Meanwhile the classification
decision for each example is made by the boosted classifier,
whose parameters have been updated from the labeled ex-
amples observed so far. The advantage of this approach is
that the classifier is attuned to the characteristics of a par-
ticular scene. Note that, a classifier trained to give the best
average performance in a variety of scenarios will usually
be less accurate for a particular scene as compared to a clas-
sifier trained specifically for that scene. Obviously, the spe-
cific classifier would not perform well in other scenarios and
thus it will not have widespread application. Our proposed
approach tackles this dilemma by using a classifier trained
on a general scenario that can automatically label examples
observed in a specific scene and use them to fine tune its
parameters online.

We demonstrate the performance of our classifier in the
context of detection of pedestrians and vehicles observed
through fixed cameras. In the first step of our detection
framework, we use a background model [4] to select regions
of interest in the scene. The boosted classifier searches
within these regions and classifies the data into pedestrians,
vehicles and non-stationary background. Co-training deci-
sions are made at the base classifier level, and both the base
classifiers and the boosting parameters are updated online.

In the next section we discuss the features used for object
representation and the base classifiers learned from these
features. In Section 3, we describe the co-training frame-
work in the context of an online boosted classifier. In Sec-
tion 4, we present the results and give the concluding re-
marks in Section 5.

Figure 1. First Row: The top 3 eigenvectors for the pedes-
trian subspace. Second Row: The top eigenvectors for the
vehicle subspace.

2. Feature Selection and Base Classifiers

One approach for object representation in boosted clas-
sifiers is to use local Haar like features. The advantage of
using the Haar features is that they can be calculated very
efficiently [10]. However, it has been shown, in the context
of face detection, by Zhang et al. [11] that base classifiers
trained from global features are more reliable and the re-
sulting boosted classifier has a higher detection rate. The
drawback is that global features are usually more expensive
to compute. However, in our approach, background sub-
traction is used to discard most of the stationary regions in
an image before further processing, therefore we can afford
to use global features for classification and still handle real-
time processing requirements.

We employ Principal Component Analysis (PCA) to ob-
tain the global features. The principal component model is
formed by takingm example images of dimensionalityd in
a column vector format, subtracting the mean, and comput-
ing thed×d dimensional covariance matrixC. The covari-
ance matrix is then diagonalized via an eigenvalue decom-
positionC = ΦEΦT , whereΦ is the eigenvector matrix
andE is the corresponding diagonal matrix of its eigenval-
ues. Onlym eigenvectors, corresponding to them largest
eigenvalues are used to form a projection matrixSm to a
lower dimension subspace.

We construct a pedestrian subspace with ad×m1 dimen-
sional projection matrixSm1and a vehicle subspace with a
d × m2 dimensional projection matrixSm2 by performing
PCA on the gradient magnitudes of respective training im-
ages. The parametersm1 andm2 are chosen such that the
eigenvectors account for99% of the variance in pedestrian
and vehicle data respectively. The top three eigenvectors for
the pedestrians and vehicles are shown in Figure 1. The fea-
tures for the base learners are obtained by projecting each
training exampler in the two subspaces and obtaining a fea-

2



Online Co-Train
-if atleastk base classifiers confidently predict a labelcp for in-
coming examplex, wherep ∈ {1, . . . , numclasses}, then

• if
((∑

n:hn(x)=cp
log( 1

βn
)
)
/
( ∑N

n=1 log( 1
βn

)
))

< T ada
cp

– β1, . . . , βN ← OnlineBoosting(HN , x, cp)

– add example with assigned labelci to the validation
set.

– for j = 1, . . . , N

∗ for i = 1, . . . , numclasses

· T base
j,ci

=max posterior probability, for classci

by hj , of a negative example in the valida-
tion set

– for i = 1, . . . , numclasses

∗ T ada
ci

=maxHN normalized score, for classci, of
a negative example in the validation set

——————————————————————————-
returnsβ1, . . . , βN :OnlineBoost(HN,x, label)
-Set the example’s initial weightλx = 1.
- For each base modelhn,in the boosted classifier

1. Setz by sampling Poisson(λx).

2. Doz times :hn ← OnlineBase(hn, x, label)

3. if hn(x) is the correct label,

• λsc
n = λsc

n + λx, εn =
λsw

n
λsc

n +λsw
n

, λx = λx( 1
2(1−εn)

)

4. else

• λsw
n = λsw

n + λx, εn =
λsw

n
λsc

n +λsw
n

,λx = λx( 1
2(εn)

)

5. calculateβn = log( 1−εn
εn

)

Figure 2. The co-training method. Note that bothT base

andT ada are automatically computed from the validation
set. The subfunctiononlineboost() was proposed in [6].
λsc

n are sum of weights for examples that were classified
correctly by the base model at the stagen while λsw

n is sum
for incorrectly classified examples.

ture vectorv = [v1, . . . , vm1 , vm1+1, . . . , vm1+m2 ], where
[
v1, . . . , vm1

]
= rT Sm1 ,[

vm1+1, . . . , vm1+m2

]
= rT Sm2 .

We construct each base classifier from a single subspace
coefficient. Thus we will have a total ofm1 + m2 base
classifiers.

We use the Bayes classifier as our base classifier. Let
c1, c2 andc3 represent the pedestrian, vehicle and the non-
stationary background classes respectively. The classifi-
cation decision by theqth base classifier is taken asci

if P (ci|vq) > P (cj |vq) for all j 6= i. The posterior is

given by the Bayes rule, i.e.,P (ci|vq) = p(vq|ci)P (ci)
p(vq) .

The pdfp(vq|ci) is approximated through smoothed 1D his-

togram of the of theqth subspace coefficients obtained from
the training data. The denominatorp(vq) is calculated as
Σ3

i=1p(vq|ci)p(ci). Note that the sum of posterior probabil-
ities over all classes for a particular coefficient instance is
one, i.e., for the three class case,Σ3

i=1P (ci|vq) = 1.
Once the base classifiers are learned, the next step is to

train the boosted classifier from the initial set of labeled
data. We use the Adaboost.M1 algorithm [3] for learning
the boosted classifier. In the next section, we discuss the co-
training framework for augmenting the initial training set.

3. The Co-Training Framework

Boosting is an iterative method of finding a very accu-
rate classifier by combining many base classifiers, each of
which may only be moderately accurate. In the training
phase of the Adaboost algorithm , the first step is to con-
struct an initial distribution of weights over the training set.
Then the boosting mechanism selects a base classifier that
gives the least error, where the error is proportional to the
weights of the misclassified data. Next, the weights asso-
ciated with the data misclassified by the selected base clas-
sifier are increased. Thus the algorithm encourages the se-
lection of another classifier that performs better on the mis-
classified data in the next iteration. If the base classifiers
are constructed such that each classifier is associated with a
different feature, then the boosting mechanism will tend to
select features that are not completely correlated. Note that,
for co-training we require two classifiers trained on sepa-
rate features of the same data. Therefore, we propose to la-
bel the unlabeled data by using the base classifiers selected
by Adaboost. Basically, if a base classifier selected through
the boosting mechanism confidently predicts the label of the
data, then we can add this data to our training set to update
the rest of the classifiers. The confidence thresholds for the
base classifiers can be determined through the training data
or by using a small validation set.

SupposeHN is the boosted (strong) classifier learned
through the Adaboost.M1 [3] algorithm. Lethj , where
j ∈ {1, . . . , N}, be the base classifiers selected by the
boosting algorithm. In order to set confidence thresholds on
the labels given the base classifiers, we use a validation set
of labeled images. For the classci, the confidence threshold
T base

j,ci
is set to be the highest posterior probability achieved

by a negative example. This means that all examples in the
validation set labeled asci by hj with a probability higher
thanT base

j,ci
actually belong to the classci. Thus during the

online phase of the classifier, any example which has a prob-
ability higher thanT base

j,ci
is very likely to belong to the class

ci. The thresholds for all base classifiers selected by the
boosting algorithm are similarly calculated.

Ideally, if a single base classifier confidently predicts a
label with a probability higher than the established thresh-
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old then we should assume that the label is correct and use
that example for further training the classifier. However,
training from only a few wrongly labeled examples can
severely degrade the performance of the classifier. There-
fore, we choose to be more conservative and only select an
unlabeled example ifk, wherek ≈ .1N , base classifiers
confidently label an example.

It would be very inefficient to use every confidently la-
beled example for online training. The example labeled
through co-training will improve the performance of the
boosted classifier only if it has a small or negative margin,
i.e., if the example lies close to the decision boundary in
the solution space. If the example has been labeled unam-
biguously by the boosted classifier, i.e., it has a large mar-
gin, then using it for training will have little effect on the
boosted classifier. Thus, we need unlabeled examples which
have a small (or negative) margin and are also confidently
labeled by the base classifiers. The limits on the score of
the boosted classifier can also be established through the
validation set. The score of an example for the labelci is
computed by Adaboost.M1 asΣn:hn(x)=ci

log( 1
βn

), where

βn is the coefficient of thenth classifier selected by the al-
gorithm. The label that gets the highest score is assigned
to the example. For the classci, the threshold to determine
the usefulness of employing the example for retraining, i.e.,
T ada

ci
, is set to be the highest normalized score achieved by

a negative example. Thus an example, assigned the label
ci by base classifiers should only be used for retraining if it
gets a score of less thanT ada

ci
by the boosted classifier.

Once an example has been labeled and if it has a small
margin, the next issue is to use this example for updating
the boosting parameters and the base classifiers online. The
co-training and online updation algorithm is given in Figure
2.

3.1 Online Learning

Note that an online algorithm does not need to ‘look at’
all the training data at once, rather it process each train-
ing instance without the need for storage and maintains a
current hypothesis that has been learned from the training
examples encountered so far. To this end we use an on-
line boosting algorithm proposed by Oza and Russel [6].
The inputs to the algorithm are the current boosted classi-
fier HN , the constituent base classifiers, and parametersλsc

n

andλsw
n , wheren = 1, . . . , N . λsc

n andλsw
n are the sums

of the weights of the correctly classified and misclassified
examples, respectively, for each of theN base classifiers.

The main idea of the algorithm is to update each base
classifier and the associated boosting parameter using the
incoming example. The example is assigned a weightλ
at the start of the algorithm. For the first iteration, the base
classifier is updatedz times, wherez = Poisson(λ). Then,

if h1 misclassifies the example,λsw
1 is updated which is

the sum of weight of all incorrectly classified examples by
h1. The weight of the exampleλ is increased and it is
presented to the next base classifier. Note that in the reg-
ular ‘batch’ Adaboost method the weight of the example
is also increased in case of misclassification. However, all
the weights are assumed to be known at the next iteration.
In the online boosting method only the sums of weights of
correctly classified and misclassified examples (seen so far)
are available. The boosting parameters,β1, . . . , βN , are up-
dated using these weights. Also, since the boosted classi-
fier continues to learn online, no base classifiers are actually
permanently discarded. however, to classify a new example,
we only use the firstk base classifiers such that classifier
k+1 has the normalized error greater than random guess on
the training data observed till then [6]. The algorithm also
needs to update the base classifiers online. Since our base
classifiers are represented as normalized histograms, they
can easily be updated, i.e., the training example is added
to the histogram representing the probability distribution of
the feature, and the histogram is re-normalized. The online
learning algorithm is shown in the bottom half of Figure 2.

4. Results

For the initial training of the multi-category classifier,
we used 50 training images per class. Images of pedestri-
ans and vehicles from a variety of poses were used. For
the non-stationary background class, we selected the sce-
narios where the background modeling is likely to fail, for
example sporadically moving tree branches, or waves in a
pond. All extracted objects were scaled to the same size
(30x30 pixels). Features were obtained by projecting gradi-
ent magnitudes of the regions in the pedestrian and vehicle
subspaces. The base and boosted classifier thresholds were
determined for a validation set consisting of 20 images per
class for a total of 60 images.

We evaluated our algorithm for person and vehicle detec-
tion in three different locations. In each location, the view
consisted of the road, with walkways near by. The pedes-
trian and vehicular traffic along the paths was fairly con-
sistent. We demonstrated the improvement through online
co-training at each location in two different ways. Firstly,
we divided the sequences in equal size chunks and show
that classification accuracy improves with time through on-
line learning. Figure 4 shows classification results over two
minute subsets for the three sequences. Note that with the
exception of one interval in the second sequence, the per-
formance either consistently improves with time or remains
stable. The performance measure was the classification ac-
curacy, i.e., the percentage of the number of valid vehicle
and pedestrian detections to the total number of detections.

For further analysis of the method, we divided each se-
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Figure 3. Some classification results from sequence 1.
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Figure 4. Change in performance with increase in time for sequence 1,2 and 3 respectively. The performance was measured over
two minute intervals. Approximately 150 to 200 possible detections of vehicles or pedestrians were made in each time interval.

quence into two sets. In the first set the classification results
were obtained using the multi-class Adaboost.M1 classifier
without co-training. Then the other set was run with the co-
trainable classifier, stopping when a pre-determined number
of labeled examples had updated the classifier parameters.
Once the updated parameters were obtained, the boosting
algorithm was re-run on the first sequence with the classi-
fier parameters frozen and the change in performance was
measured. The improvement in the performance of the al-
gorithm in the first setup is shown in Figure 6. The hori-
zontal axis shows the number of examples obtained through
co-training from the second sequence, and the vertical axis
shows the detection rates on the test sequence. The detec-
tion rates improve significantly even with a small number
of new training examples. Since the automatically labeled
training examples are from the specific scene on which the
classifier is being evaluated on, only a few co-trained exam-
ples are sufficient to increase the detection accuracy. Some
detection results are shown in Figures 3 and 5.

Upon analysis of the examples selected for co-training
by the base classifiers we found out that approximately98%
of these were correctly labeled. The small number of mis-
classification were caused mainly by occlusion. One im-

portant point in the use of examples obtained through co-
training for update of classifier parameters is that, if the ex-
amples are misaligned, or the target object is only partially
visible, then updating the classifier parameters with that ex-
ample can lower the classification accuracy. We reduce the
likelihood of such a scenario by forcing the detected region
to be within the foreground regions as determined by the
background modeling algorithm. Moreover we only select
those examples that are at peaks of the (boosted) classifier
scoring function, as suggested in [5].

Another problem that might arise during co-training is
that if examples of one class are observed in much greater
numbers than other classes. Updating the classifier param-
eters by training through examples of one class only can
bias the classifier. This problem always occurs in a scenario
when the background has to be distinguished from the ob-
ject by the classifier. In this case, the examples of the back-
ground class outnumber by far the examples of the object
class. Since, we are removing most of the background re-
gion by background subtraction, this scenario is less likely
to occur. To avoid this problem completely, if examples
of one class are being confidently labeled in much greater
number than others, then one can store the examples and
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Figure 5. Moving object classification results from sequence 2.
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Figure 6. Performance vs. the number of co-trained examples, for sequences 1,2 and 3 respectively. The graphs for each sequence
show the improvement in performance with the increase in the use of examples labeled by the co-training method. Note that,
relatively few examples are required for improving the detection rates since these examples are from the same scene in which the
classifier is being evaluated. The classification accuracy was relatively low for sequence 2 since there was persistent occlusion
between vehicles.

sample them in numbers comparable to other classes, rather
than using all of them for training.

5. Concluding Remarks

In this paper, we presented a unified boosting based
framework for online training and classification of objects.
The examples that were confidently labeled by a small sub-
set of base classifiers were used to update both the boosting
coefficients and the base classifiers. We have demonstrated
that a classifier’s performance can be significantly improved
just by using a small numbers of examples from the specific
scenario in which the classifier is employed. This is because
the variation in the poses of objects, backgrounds and illu-
mination conditions in a specific scene is far less than the
possible variation in all possible detection scenarios. The
use of co-training in an online classification framework al-
lows us to focus on the specific subset of poses and back-
grounds likely to be viewed in each scenario.
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