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Abstract such a classifier is that an extremely large number of train-

ing examples are required to ensure good performance in

Boosting based detection methods have successfullyhe test phase. For example, Zhang et al. [11] used around
been used for robust detection of faces and pedestrians 11000 positive and a 100000 negative labeled images for
However, a very large amount of labeled examples are re-face detection. Another issue related to the use of Boosted
quired for training such a classifier. Moreover, once trained, classifiers in the surveillance scenario is that the classifier
the boosted classifier cannot adjust to the particular sce- Parameters are fixed in the test stage. However it is prefer-
nario in which it is employed. In this paper, we propose a able to have a system that automatically learns from the ex-
co-trainingbased approach to continuously label incoming @mples in a specific scenario.
data and use it for online update of the boosted classifier ~ One possible way around the requirement of a large la-
that was initially trained from a small labeled example set. beled training set is the co-training approach proposed by
The main contribution of our approach is that it is anline Blum and Mitchell [1]. The basic idea is to train two clas-
procedure in which separate views (features) of the data aresifiers on two independent “views” (features) of the same
used for co-training, while the combined view (all features) data, using a relatively small number of examples. Then to
is used to make classification decisions in a single boosteduse each classifier's prediction on the unlabeled examples
framework. The features used for classification are derived to enlarge the training set of the other. Blum and Mitchell
from Principal Component Analysis of the appearance tem- prove that co-training can find a very accurate classification
plates of the training examples. In order to speed up the rule, starting from a small quantity of labeled data if the
classification, background modeling is used to prune away two feature sets are statistically independent. However, this
stationary regions in an image. Our experiments indicate assumption does not hold in many realistic scenarios [8].
that s_tarFi_ng from a classifier trained on a small training Levin etal. [5] use the co-training framework, in the con-
set, significant performance gains can be made through 0N~ of hoosted binary classifiers. Two boosted classifiers

line updation from the unlabeled data. are employed for co-training. If one classifier predicts a la-
bel for a certain example with a high confidence then that
1. Introduction & Related Work labeled example is added to the training set of the other, oth-

erwise the example is ignored. One of the two boosted clas-

The detection of moving objects, specifically people sifiers employed for co-training uses background subtracted
or vehicles, in a scene is of utmost importance for most image regions, while the other classifier is trained on the im-
surveillance system. In recent years, considerable progres@ge grey-levels directly. Note that the features are closely
has been made for detection of faces and pedestriangelated. However, their approach empirically demonstrates
through supervised classification methods. In this context, that co-training is S_tlll possible even in the case the inde-
a variety of approaches have been used including rlai\,epend_ence assumption does not hold. The co-training based
Bayes classifiers [9], Support Vector Machines [7] and Ad- Iear_nlng approach_havg also beer_1 used supcessfully for text
aboost [10]. Specifically for surveillance related scenarios, retrieval and classification by Collins and Singer [2].
Adaboost is particularly suitable since it has been demon- One important point to note is that co-training is not a
strated to give high detection rates using simple Haar-like classification framework. It is actually a training method
features in real-time [10]. However, one problem in training from unlabeled data. Co-training requires two separate



views of the data for labeling, however a better classifica- -
tion decision can be made by combining the two views of

data by a fully trained classifier. Thus, co-training is used -
to train a classifier in amwffline setting. Once training is

complete the combined view is used to make classification
decisions. The principal contribution of our approach is that

it is anonlinemethod, in which separate views (features) of m
the data are used for co-training, while the combined view
is used to make classification decisions in a single frame-
work. To achieve this, we have exploited the fact that the the
boosted classifier is a linear combination of simpler ‘base’
classifiers and the adaptive boosting selection mechanism Figure 1. First Row: The top 3 eigenvectors for the pedes-
discourages high correlation among the selected features. trian subspace. Second Row: The top eigenvectors for the
The co-training is performed through the base classifiers, vehicle subspace.

i.e., if a particular unlabeled example is labeled very confi-

dently by a small subset of the base classifiers then it is used

to update both the base classifiers and the boosting parame- ) .

ters using an online variant of the multi-class Adaboost.M1 2. Feature Selection and Base Classifiers
algorithm [6]. Note that only few of the observed examples

might qualify for co-training. Meanwhile the classification One approach for object representation in boosted clas-
decision for each example is made by the boosted classifiergifiers is to use local Haar like features. The advantage of
whose parameters have been updated from the labeled €Xising the Haar features is that they can be calculated very
amples observed so far. The advantage of this approach igiciently [10]. However, it has been shown, in the context

that the classifier is attuned to the characteristics of a par-y¢ t5ce detection, by Zhang et al. [11] that base classifiers
ticular scene. Note that, a classifier trained to give the best.o.\a4 from global features are more reliable and the re-
average performance in a variety of scenarios will usually g,iting hoosted classifier has a higher detection rate. The
bfe_ less accurate fc_)r a particular scene as compared to aclagyawback is that global features are usually more expensive
sifier trained specifically for that scene. Obviously, the spe- ;, compute. However, in our approach, background sub-
cific classifier would not perform well in other scenarios and 1,5tion is used to discard most of the stationary regions in

thus it will not have widespread application. Our proposed 4 image before further processing, therefore we can afford
approach tackles this dilemma by using a classifier trainédy, ;se global features for classification and still handle real-
on a general scenario that can automatically label exampleg;a processing requirements.

observed in a specific scene and use them to fine tune its
parameters online.

We employ Principal Component Analysis (PCA) to ob-
tain the global features. The principal component model is
formed by takingn example images of dimensionalifyin
a column vector format, subtracting the mean, and comput-
We demonstrate the performance of our classifier in theing thed x d dimensional covariance matrix. The covari-
context of detection of pedestrians and vehicles observedance matrix is then diagona"zed via an eigen\/a|ue decom-
through fixed cameras. In the first step of our detection positionC = ®E®7, where® is the eigenvector matrix
framework, we use a background model [4] to select regionsand £ is the corresponding diagonal matrix of its eigenval-
of interest in the scene. The boosted classifier searchegies. Onlym eigenvectors, corresponding to thelargest

within these regions and classifies the data into pedestriansgijgenvalues are used to form a projection mafjx to a
vehicles and non-stationary background. Co-training deci- |ower dimension subspace.

sions are made at the base classifier level, and both the base \\e construct a pedestrian subspace wihan,; dimen-
classifiers and the boosting parameters are updated online.gjgng| projection matriss,,,and a vehicle subspace with a

d x mo dimensional projection matris,,, by performing
PCA on the gradient magnitudes of respective training im-
In the next section we discuss the features used for objectages. The parametens; andm, are chosen such that the

representation and the base classifiers learned from theseigenvectors account f@% of the variance in pedestrian
features. In Section 3, we describe the co-training frame-and vehicle data respectively. The top three eigenvectors for
work in the context of an online boosted classifier. In Sec- the pedestrians and vehicles are shown in Figure 1. The fea-
tion 4, we present the results and give the concluding re-tures for the base learners are obtained by projecting each
marks in Section 5. training example in the two subspaces and obtaining a fea-



Online Co-Train
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Figure 2. The co-training method. Note that baftes
andT%% are automatically computed from the validation
set. The subfunctioanlineboost() was proposed in [6].
AyS are sum of weights for examples that were classified
correctly by the base model at the stagehile A;” is sum

for incorrectly classified examples.
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togram of the of theg'” subspace coefficients obtained from
the training data. The denominatpfv,) is calculated as
21 p(vglei)p(e;). Note that the sum of posterior probabil-
ities over all classes for a particular coefficient instance is
one, i.e., for the three class cas¥, , P(c;|v,) = 1.

Once the base classifiers are learned, the next step is to
train the boosted classifier from the initial set of labeled
data. We use the Adaboost.M1 algorithm [3] for learning
the boosted classifier. In the next section, we discuss the co-
training framework for augmenting the initial training set.

3. The Co-Training Framework

Boosting is an iterative method of finding a very accu-
rate classifier by combining many base classifiers, each of
which may only be moderately accurate. In the training
phase of the Adaboost algorithm , the first step is to con-
struct an initial distribution of weights over the training set.
Then the boosting mechanism selects a base classifier that
gives the least error, where the error is proportional to the
weights of the misclassified data. Next, the weights asso-
ciated with the data misclassified by the selected base clas-
sifier are increased. Thus the algorithm encourages the se-
lection of another classifier that performs better on the mis-
classified data in the next iteration. If the base classifiers
are constructed such that each classifier is associated with a
different feature, then the boosting mechanism will tend to
select features that are not completely correlated. Note that,
for co-training we require two classifiers trained on sepa-
rate features of the same data. Therefore, we propose to la-
bel the unlabeled data by using the base classifiers selected
by Adaboost. Basically, if a base classifier selected through
the boosting mechanism confidently predicts the label of the
data, then we can add this data to our training set to update
the rest of the classifiers. The confidence thresholds for the
base classifiers can be determined through the training data
or by using a small validation set.

SupposeH  is the boosted (strong) classifier learned
through the Adaboost.M1 [3] algorithm. Lét;, where
N}, be the base classifiers selected by the
boosting algorithm. In order to set confidence thresholds on
the labels given the base classifiers, we use a validation set
of labeled images. For the clagsthe confidence threshold

We construct each base classifier from a single SUbSpaC%—vbaqe is set to be the highest posterior probability achieved

coefficient.
classifiers.
We use the Bayes classifier as our base classifier.

Thus we will have a total of:; + my base

stationary background classes respectively. The classifi-

cation decision by the/" base classifier is taken as
if P(cilvg) > P(cjlvg) for all j # 4. The posterior is

given by the Bayes rule, i.eP(c;|v,) = %&5(")

by a negative example. This means that all examples in the
validation set labeled as by h; with a probability higher

I-erthanTb“se actually belong to the class. Thus during the
c1, co andes represent the pedestrian, vehicle and the non-

onllne phase of the classifier, any example which has a prob-
“ability higher tharﬂ“b““ is very likely to belong to the class
ci. The thresholds for all base classifiers selected by the
boosting algorithm are similarly calculated.

Ideally, if a single base classifier confidently predicts a

The pdfp(vg|c;) is approximated through smoothed 1D his- label with a probability higher than the established thresh-



old then we should assume that the label is correct and useéf h; misclassifies the exampleyj" is updated which is
that example for further training the classifier. However, the sum of weight of all incorrectly classified examples by
training from only a few wrongly labeled examples can h;. The weight of the exampla is increased and it is
severely degrade the performance of the classifier. Therepresented to the next base classifier. Note that in the reg-
fore, we choose to be more conservative and only select arular ‘batch’ Adaboost method the weight of the example
unlabeled example ik, wherek =~ .1, base classifiers is also increased in case of misclassification. However, all
confidently label an example. the weights are assumed to be known at the next iteration.
It would be very inefficient to use every confidently la- In the online boosting method only the sums of weights of
beled example for online training. The example labeled correctly classified and misclassified examples (seen so far)
through co-training will improve the performance of the are available. The boosting parametgts,. . ., v, are up-
boosted classifier only if it has a small or negative margin, dated using these weights. Also, since the boosted classi-
i.e., if the example lies close to the decision boundary in fier continues to learn online, no base classifiers are actually
the solution space. If the example has been labeled unampermanently discarded. however, to classify a new example,
biguously by the boosted classifier, i.e., it has a large mar-we only use the firsk base classifiers such that classifier
gin, then using it for training will have little effect on the k41 has the normalized error greater than random guess on
boosted classifier. Thus, we need unlabeled examples whichihe training data observed till then [6]. The algorithm also
have a small (or negative) margin and are also confidentlyneeds to update the base classifiers online. Since our base
labeled by the base classifiers. The limits on the score ofclassifiers are represented as normalized histograms, they
the boosted classifier can also be established through thean easily be updated, i.e., the training example is added
validation set. The score of an example for the lahédb to the histogram representing the probability distribution of
computed by Adaboost.M1 ﬁn:hn(m):cilog(ﬁin), where the feature, and the histogram is re-normalized. The online

3, is the coefficient of the:'” classifier selected by the al-  l€arning algorithm is shown in the bottom half of Figure 2.
gorithm. The label that gets the highest score is assigned
to the example. For the clasg the threshold to determine 4. Results
the usefulness of employing the example for retraining, i.e.,
ada ; H H i
Tz, is set to be the highest normalized score achieved by £ e initial training of the multi-category classifier,

a negative example. Thus an example, assigned the labef, ;504 50 training images per class. Images of pedestri-
¢; by base classifiers should only be used for retraining if it ans and vehicles from a variety of poses were used. For
gets a score of less thaif,** by the boosted classifier. the non-stationary background class, we selected the sce-

Once an example has been labeled and if it has a smally5jos where the background modeling is likely to fail, for
margin, the next issue is to use this example for updating example sporadically moving tree branches, or waves in a
the boosting parameters and the base classifiers online. ThSond. All extracted objects were scaled to the same size
co-training and online updation algorithm is given in Figure (30x30 pixels). Features were obtained by projecting gradi-
2. ent magnitudes of the regions in the pedestrian and vehicle

) ) subspaces. The base and boosted classifier thresholds were
3.1 Online Learning determined for a validation set consisting of 20 images per
class for a total of 60 images.

Note that an online algorithm does not need to ‘look at’  We evaluated our algorithm for person and vehicle detec-
all the training data at once, rather it process each train-tion in three different locations. In each location, the view
ing instance without the need for storage and maintains aconsisted of the road, with walkways near by. The pedes-
current hypothesis that has been learned from the trainingtrian and vehicular traffic along the paths was fairly con-
examples encountered so far. To this end we use an onsistent. We demonstrated the improvement through online
line boosting algorithm proposed by Oza and Russel [6]. co-training at each location in two different ways. Firstly,
The inputs to the algorithm are the current boosted classi-we divided the sequences in equal size chunks and show
fier Hy, the constituent base classifiers, and paramefrs  that classification accuracy improves with time through on-

and\J*, wheren = 1,...,N. X;¢ and A" are the sums  line learning. Figure 4 shows classification results over two
of the weights of the correctly classified and misclassified minute subsets for the three sequences. Note that with the
examples, respectively, for each of tNebase classifiers. exception of one interval in the second sequence, the per-

The main idea of the algorithm is to update each baseformance either consistently improves with time or remains
classifier and the associated boosting parameter using thetable. The performance measure was the classification ac-
incoming example. The example is assigned a welght curacy, i.e., the percentage of the number of valid vehicle
at the start of the algorithm. For the first iteration, the base and pedestrian detections to the total number of detections.
classifier is updatedtimes, where: = Poisson()). Then, For further analysis of the method, we divided each se-



Figure 3. Some classification results from sequence 1.
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Figure 4. Change in performance with increase in time for sequence 1,2 and 3 respectively. The performance was measured over
two minute intervals. Approximately 150 to 200 possible detections of vehicles or pedestrians were made in each time interval.

guence into two sets. In the first set the classification resultsportant point in the use of examples obtained through co-
were obtained using the multi-class Adaboost.M1 classifier training for update of classifier parameters is that, if the ex-
without co-training. Then the other set was run with the co- amples are misaligned, or the target object is only partially
trainable classifier, stopping when a pre-determined numbetvisible, then updating the classifier parameters with that ex-
of labeled examples had updated the classifier parametersample can lower the classification accuracy. We reduce the
Once the updated parameters were obtained, the boostingikelihood of such a scenario by forcing the detected region
algorithm was re-run on the first sequence with the classi-to be within the foreground regions as determined by the
fier parameters frozen and the change in performance wadackground modeling algorithm. Moreover we only select
measured. The improvement in the performance of the al-those examples that are at peaks of the (boosted) classifier
gorithm in the first setup is shown in Figure 6. The hori- scoring function, as suggested in [5].
zontal axis shows the number of examples obtained through
co-training from the second sequence, and the vertical axis Another problem that might arise during co-training is
shows the detection rates on the test sequence. The detedbat if examples of one class are observed in much greater
tion rates improve significantly even with a small number numbers than other classes. Updating the classifier param-
of new training examples. Since the automatically labeled eters by training through examples of one class only can
training examples are from the specific scene on which thebias the classifier. This problem always occurs in a scenario
classifier is being evaluated on, only a few co-trained exam-when the background has to be distinguished from the ob-
ples are sufficient to increase the detection accuracy. Somgect by the classifier. In this case, the examples of the back-
detection results are shown in Figures 3 and 5. ground class outnumber by far the examples of the object
class. Since, we are removing most of the background re-
Upon analysis of the examples selected for co-training gion by background subtraction, this scenario is less likely
by the base classifiers we found out that approximaxefy to occur. To avoid this problem completely, if examples
of these were correctly labeled. The small number of mis- of one class are being confidently labeled in much greater
classification were caused mainly by occlusion. One im- number than others, then one can store the examples and



Figure 5. Moving object classification results from sequence 2.
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Figure 6. Performance vs. the number of co-trained examples, for sequences 1,2 and 3 respectively. The graphs for each sequence
show the improvement in performance with the increase in the use of examples labeled by the co-training method. Note that,
relatively few examples are required for improving the detection rates since these examples are from the same scene in which the
classifier is being evaluated. The classification accuracy was relatively low for sequence 2 since there was persistent occlusion
between vehicles.
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than using all of them for training.

[1] A.Blum and T. Mitchell. “Combining labeled and unlabeled
data with co-training”. Inl1th Annual Conference on Com-

putational Learning Theoryl998.
[2] M. Collins and Y. Singer. “Unsupervised models for named

. i . entity classification”. In“Empirical Methods in Natural
In this paper, we presented a unified boosting based Language Processing'99.,

framework for online training and classification of objects. [3] Y. Freund and R. Schapire. “Experiments with a new boost-
The examples that were confidently labeled by a small sub- ing algorithm”. In International Conference on Machine
set of base classifiers were used to update both the boosting  Learning 1996. _ _
coefficients and the base classifiers. We have demonstratedl4! ©- Javed, K. Shafique, and M. Shah. “A hierarchical ap-
that a classifier's performance can be significantly improved ~ Proach to robustbackground subtraction using color and gra-
. . . dient information”. InWorkshop on Motion and Video Com-
just by using a small numbers of examples from the specific puting pages 22-27, 2002

scenario in which the classifier is employed. This is because [5] A. Levin, P. Viola, ar’ld Y. F.reund. “Unsupervised improve-
the variation in the poses of objects, backgrounds and illu- ment of visual detectors using co-training”. IRCV, 2003.
mination conditions in a specific scene is far less than the [6] N. Oza. “Online ensemble learning”. Ph.D. dissertation

i iation i i i i 2002.

possible varl_atllon _|n al p0§5|ble defce.ct|c-)n scenarios. The [7] C.Papageorgiou and T. Poggio. “Trainable pedestrian detec-
use of co-training in an online classification framework al- tions”. InICIP. 1999

lows us to focus on the specific subset of poses and back- [8] D. Pierce and C. Cardie. “Limitations of co-training for natu-
grounds likely to be viewed in each scenario. ral language learning from large datasets”Clonference on

Empirical Methods in Natural Language Processi2g01.
[9] H.Schneiderman and T. Kanade. “A statistical method for 3d

Acknowledgements object detection applied to faces and cars”CMPR 2000.
[10] P. Viola, M. Jones, and D. Snow. “Detecting pedestrians us-

ing patterns of motion and appearance”l@QCV, 2003.
D. Zhang, S. Z. Li, and D. Perez. “Real-time face detection

using boosting in hierarchical feature spaces”Irn Conf.
on Image Processin@004.

5. Concluding Remarks

This material is based upon work funded in part by the U. S. 11]
Government. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of the U.S. Government.



