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We compare features and classification methods to locate decidu-
ous trees in images. From this comparison we conclude that a back-
propagation neural network achieves better classification results
than the other classifiers we tested. Our analysis of the relevance
of 51 features from seven feature extraction methods based on the
graylevel co-occurrence matrix, Gabor filters, fractal dimension,
steerable filters, the Fourier transform, entropy, and color shows
that each feature contributes important information. We show how
we obtain a 13-feature subset that significantly reduces the feature
extraction time while retaining most of the complete feature set’s
power and robustness. The best subsets of features were found to be
combinations of features of each of the extraction methods. Methods
for classification and feature relevance determination that are based
on the covariance or correlation matrix of the features (such as eige-
nanalyses or linear or quadratic classifiers) generally cannot be used,
since even small sets of features are usually highly linearly redun-
dant, rendering their covariance or correlation matrices too singu-
lar to be invertible. We argue that representing deciduous trees and
many other objects by rich image descriptions can significantly aid
their classification. We make no assumptions about the shape, loca-
tion, viewpoint, viewing distance, lighting conditions, and camera
parameters, and we only expect scanning methods and compression
schemes to retain a “reasonable” image quality. c© 1999 Academic Press
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detection of deciduous trees in unconstrained images. For our
work we use images found on line, like those in Figs. 10 and
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Locating trees in images is useful for processing World W
Web images and image and video databases and in robot
gation and may generally help us with the image understan
problem. We will probably deny a robot the attribute “intel
gent” unless it can act and react in our environment. To ach
this, robots may need to perceive their environment similarl
the way humans do so. Most certainly it would help if robots h
a notion of the different types of objects around them, decidu
trees being one such class of objects.

Over the past few years we got used to searching the W
Wide Web for textual information. Similarly the efficient loc
tion of visual information in images and videos on the Wo
Wide Web is desirable. While interfaces already exist that al
users to specify types and shapes of objects of interest [17
our contribution provides a reliable tool that enables the rob
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11. These images demonstrate that we cannot make assum
about the shape and location of deciduous trees in images
viewpoints or viewing distances, the lighting conditions, or
camera parameters. Likewise, we must allow imperfect scan
methods, lossy compression schemes, and other postproce
with the only constraint that the resulting images retain a “r
sonable” quality and are not unreasonably distorted.

1.1. Previous Work

Previous work can be grouped into four basic categories.
each category we briefly mention representative approache

Remote sensing.The remote sensing community has a co
tinuing interest in terrain classification [26, 27]. Their work
similar in that they too have to deal with the fusion of mu
modal information. On the other hand, their work differs in th
images are obtained by the same camera and through a fixe
age formation process. Images are taken from a fixed viewp
and viewing distance. But most significantly, they use elec
magnetic waves from outside the visual spectrum to help in
classification of terrain.

Texture-based classification.Work by Haralicket al.([16])
used texture measures to classify regions of aerial and sat
images, photographed in the visual spectrum, into eight clas
Old Residential, New Residential, Lake, Swamp, Marsh, Urb
Rail, and Scrub/Wood. Scrub and wood were classified toge
as “Scrod” due to their visual similarity.

Color-based classification.Work by Fischler ([10]) dealt
with terrain classification solely based on the color of individ
pixels. He classified natural scenes into five classes: Sky, W
Rocks, Ground, and Live Vegetation. Work in the area of im
and video retrieval describes color-histogram-based method
simple retrieval.

Image and video retrieval. With little processing per imag
we can obtain relatively meaningless but fast image desc
tors like color histograms. With minutes, hours, or even d
of processing, existing computer vision systems can be us
locate and recognize one of a small number of known obje
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Image and video retrieval methods try to provide more inform
tion about a larger number of objects faster. Recent approa
describe images in terms of blobs [3] of coherent color and
ture attributes to facilitate the interpretation of image conten
a meaningful way, or they focus on dichotomies like indoor
outdoor scenes [37] or city images vs landscapes [38].

We present a method that focuses on the task of locating
ciduous trees, while significantly relaxing the constraints on
imaging conditions under which they can be recognized.

1.2. Object Recognition

Much of object recognition research has concerned itself w
the problem of locating a small number of known objects i
scene containing one or more of these objects [18, 29]. View
and object-centered approaches to object recognition tend t
cus on the geometric arrangement of simple features obta
using a unique method (edges/lines from edge detectors,
terest points” from interest operators, etc). These feature va
are either taken directly as “signatures” for the depicted obje
[1] or taken indirectly through the derivation of “invariants
from them [18, 32]. An alternative approach uses Shape-fromX
methods to infer the shape of the depicted objects before re
tering 3D models to the inferred object shape. Such descript
are then used to generate hypotheses as to the size and
tation/viewpoint of the known objects. Apart from the “Shap
from-X,” “point correspondence,” and “segmentation” problem
with these approaches, they mostly assume that one of the kn
objectsis present and visible in the image. Therefore, obje
are even detected and recognized in images that do not s
them. The uniformity of the extracted features leads to an
tractable number of possible alignments between noisy fea
points in the image and potential candidates from the mode
Our approach attempts to deal with all the mentioned proble
through the use of richer bottom-up descriptions of images
by training a classifier to tell deciduous trees from everyth
but deciduous trees. Admittedly the latter class (nondecidu
trees) is rather large and diverse, and the classifier must gen
ize well to achieve good classification. Richer descriptions of
depicted object form “signatures” even before they are relate
each other by their geometric relationships (of course geom
ric combinations of such signatures can be used to enhanc
power of this approach further). For example, while many
jects may be green, fewer objects both are green and exhibit
directional energy, and even fewer objects are green, exhibit
directional energy, have high entropy, few collinear step ed
appear similar at a range of scales, etc. Our approach aims t
ploit the fact that in many cases objects are more easily ident
by an array of different observable measures than by the m
surements of one kind of feature at a number of “key” locatio

1.3. Our Approach
Thus, we argue that a single measure, observation, or mo
is unlikely to enable robust recognition of deciduous trees. Va
VITORIA LOBO
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ations in the objects themselves, the imaging conditions,
image compression complicate the classification task.

Theappearanceandshapeof trees, even if unoccluded an
from only one deciduous species, vary greatly. Images of tr
vary inviewpoint(frontal views, views from below trees, pano
ramic views, or aerial or elevated views),viewing distance(any-
thing between a distant forest and a number of individual lea
is considered a tree),lighting conditions(natural vs artificial
lighting, broad daylight vs sunrise/sunset, or clear vs overc
vs foggy/misty). Additionally, we have no information about th
camera parameters, and images are obtained or transforme
noisy processes such as scanning and lossy compression
compressed images, for example, only have 256 unique co
If texture features are based on grayvalue representations o
ages, some of the colors may collapse to the same gray le
The resulting severe quantization has complex conseque
for many texture measures. The range of JPEG compres
schemes, their lossy representations of 8× 8 blocks in the im-
age, and the aliasing effects at the borders of these blocks fu
complicate the task for texture measures.

Hence, we believe that no one feature, such as texture, c
size, or inferred shape, can robustly locate trees in unconstra
images. We derived 51 features from seven methods base
the gray-level co-occurrence matrix [16], Gabor filters [25
box-counting-based fractal dimension estimators [6], Four
transform-based features [5], color, entropy, and steerable fi
[31]. The underlying methods are described in detail in [6,
16, 22, 31, 39].

We use a back-propagation neural network to combine
features and to obtain a consistent and robust classification. S
extracting the feature space representation for images tak
long time we show how a greedy algorithm can improve on go
random selections of features. This approach produces a su
of 13 features which reduces the computation time significan
while retaining the classification accuracy and robustness.

1.4. Deciduous, Coniferous, and Evergreen Trees

The appearance of deciduous trees during spring, sum
and fall is dominated by their foliage cover. Their branches
largely hidden. During the winter season, on the other hand,
foliage of deciduous trees is not visible. Instead their appe
ance is now dominated by the branches that were hidden du
the other seasons. Visually deciduous trees during winter
the other seasons have little in common. Therefore, their reco
tion during the winter season should probably be treated as a
arate problem. We believe that telling deciduous trees from
ergreen trees (including most coniferous trees) in winter sho
be easier than their detection during the remaining seasons
we have not attempted this so far.

Our intuitive emphasis on tree color turns out to be a rat
week cue for the detection of deciduous trees. The follow

del
ri-
two observations may help to explain this somewhat surprising
result:
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FEATURES AND CLAS

• Throughout the year their leaves may take on all co
except blue.
• Areas exposed to direct sunlight appear slightly more

low and orange than their surface hues. Areas that are no
posed to direct sunlight often show asignificant biastoward
blue. In absence of direct sunlight the ambient blue of the
becomes the second most powerful light source, coloring
shaded objects.

1.5. Outline

We describe the features we extract from images in Sectio
and the classifier, used to recognize deciduous trees, in Sect
We show the results of that classifier on a number of differ
feature sets in Section 4.

In Section 5 we contrast the performance of a numbe
different classifiers and we compare a number of alterna
methods to determine the relevance of features. Finally, Sect
concludes with a summary of all our findings.

2. THE FEATURES

We classify trees using features extracted from color ima
Some of these features are representations of individual p
in the image, such as the hue, saturation, and value; other
the outputs of grayimage-patch-based filters.

2.1. Fourier-Transform-Based Features

Some measures commonly used with Fourier-transfo
based methods are (i) wedge sampling, (ii) annular-ring s
pling, and (iii) parallel-slit sampling.

Many textures differ significantly in the domains of the a
nular-ring and parallel-slit measures; however, for our purp
of discriminating tree and non-tree areas, angular wedge
pling is most expressive. Fourier transforms (FTs) of images
image patches containing humanmade structures often have
or wedge-shaped areas of high spectral power that pass thr
the center as shown in the image/FT pairs in Figs. 1a and
Summing the power in fixed angular intervals for all directions
the FT of the image lets us separate common from uncom
orientations in the image. The shaded wedge in Fig. 2 sh
such an angular interval. A circular mask has been impose
that the power in the diagonal directions is not unfairly bias
Once the power in each angular interval has been determ
we obtain the minimum and maximum angular power and
the normalized ratio (max−min)/(max+min) to determine the
amount of structure in the patch.

Larger values for this wedge measure indicate greater “r
larity” in some direction in the image patch; smaller values in
cate less “regularity,” in terms of parallel lines, bars, and ed
Since we are comparing the ratios between the maximum
minimum values, this measure is rotation invariant.
Performing the above procedure on fixed-size image patc
we obtain local measures of the regularity of these patches
SIFICATION METHODS 135
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FIG. 1. An image containing humanmade and tree areas (a) and its Fo
transform (b). An image of leaves of a tree (c) and its Fourier transform
The numbers associated with (b) and (d) are the structure measure (des
in Section 2.1) for images (a) and (c). Images (a) and (c) are copyright Ger
Ortner, with whose permission they are used.

obtained very similar results for patch sizes 16× 16, 32× 32,
and 64× 64 pixels.

2.2. Gabor Filter Measures

The image (in the spatial domain) is described by its 2D int
sity function. The Fourier transform of an image represents
same image in terms of the coefficients of sine- and cosine-b
functions at a range of frequencies and orientations. Simila
the image can be expressed in terms of coefficients of other b
functions. Gabor [13] used a combined representation of sp
and frequency to express signals in terms of “Gabor” functio

Fθ,ν(x) =
n∑

i=1

ai (x)gi (θ, ν), (1)

whereθ represents the orientation andν the frequency of the
hes,
. We

FIG. 2. The sum of the power of the Fourier transform inside the shaded
vertical angular interval is a measure of the “structure” present in an image patch.
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136 HAERING AND D

complex Gabor function

gi (θ, ν) = exp(i ν(x cos(θ )+ y sin(θ ))) exp

(
−x2+ y2

σ 2

)
. (2)

Gabor filters have gained popularity in multiresolution i
age analysis [11, 13], despite the fact that they do not form
orthogonal set, which means that their coefficients canno
obtained by convolution of the image with the basis function
is done in the next section, where we employ steerable ba
step-edge detectors. Gabor-filter-based wavelets have rec
been shown by Manjunath and Ma [22] to be fast and usefu
the retrieval of image data.

We convolve each image patch with Gabor filters tuned to
different orientations at three different scales. Next, the ave
and range of the four measures at each scale are compute
nally, to also make the measurements somewhat scale-inva
we obtain the following four texture measures:

• The average of the orientation responses at all scales
• The average of the scales’ orientation response range
• The range of the scales’ averaged orientation respons
• The range of the scales’ orientation response range.

2.3. Steerable Bar- and Step-Edge Filters

Since many humanmade structures exhibit a large amou
regularity in the form of parallel lines and bars, patches with
dominant orientations are less likely to represent trees. On
other hand, the irregular leaf and branch structure of trees o
exhibits a greater variety of weak orientations.

By binning orientations appropriately, we can use thenumber
andstrengthof different orientations in an image patch to dist
guish between patches belonging to humanmade scenes (
usually have fewer but stronger distinct orientations) and th
belonging to natural scenes.

Steerable bar and step-edge detecting filters are used to o
the dominant orientation for each image patch. The result of
routine is an orientation image indicating the orientation of
predominant step or bar edge at each location.

To measure the energy of an image (in terms of line
step edges), the convolutions with two filters that are 90◦ out of
phase (i.e., filters that form a quadrature pair) can be squ
and summed. To detect lines, one filter type is an even func
that can be decomposed solely into cosine terms, while fo
detection of step edges, the other is an odd function that ca
decomposed solely into sine terms.

In order to obtain a good orientation resolution of lines a
step edges in the image, one could convolve the image w
large number of orientations of the quadrature pair. Howe
convolutions are slow, and the accuracy of such an appr
depends on (a) the sampling frequency and (b) the interpol
of the sampled convolutions.
Canny showed [4] how the outputs of only two orthogon
filters (the first derivatives of a Gaussian in thex andy directions)
VITORIA LOBO
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are sufficient to find the orientation and power of step edg
In order to handle both kinds of edges, Freeman and Ade
[12] use a quadrature pair consisting of the second deriva
of a standard Gaussian (the even part of the filter pair) an
Hilbert transform (the odd part of the filter pair). Instead
finding the outputs at all orientations, the concept ofsteering
was introduced, in which the convolution with a filter at a
orientation can be synthesized by a linear combination of
convolutions with a small basis set of filters,

F [n]
θ =

n∑
i=1

σi ai (x)bi (θ ). (3)

Using three basis and interpolating functions for the Gaus
part and four for the Hilbert transform part of the filter, th
can locate both lines and step edges exactly (as opposed t
double edges detected at a line by using the methods of C
and others). Since the standard Gaussian has a low orient
selectivity, the kernels are only optimal in the presence of a
gle line or step edge in the image and blur the responses in
presence of more than one edge or line. To improve the orie
tion selectivity, they suggested using higher-order derivative
Gaussians as kernels. However, even a fourth-order deriv
of a Gaussian together with its Hilbert transform does not yi
good results if lines or step edges cross each other at an
other than 90◦. Perona [31] demonstrated a general constr
tive method to construct basis and interpolating functions
showed that all functions that are polar-separable with s
soidalθ components are steerable. Examples of such funct
are shown in Fig. 3.

We used this method to obtain a steerable function set f
quadrature pair (Gyy, Hyy), whereGyy is the second derivative
along they-axis of an elongated Gaussian kernelG(x, y, σx, σy)
= exp(−((x/σx)2 + (y/σy)2)) shown in Fig. 4a andHyy is the
Hilbert transform ofGyy shown in Fig. 4b.

For multiple occurrences of lines and step edges, good ang
resolution (orientation selectivity) was obtained when the ra
σx
σy

was at least14. Perona [31] showed an efficient method th
places the second derivative of the Gaussian in the real pa
the complex kernel and its Hilbert transform in the imagina
part.
alFIG. 3. Examples of polar separable functions with sinusoidalθ component
corresponding toa0, . . . ,a7.
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FIG. 4. Filters used to measure the edge energy in an image. The se
derivative of an elongated Gaussian (left) is used to detect lines in the imag
Hilbert transform (right) is used to detect step edges in the image.

The n-term approximation of the function we want to ste
can be written as

F [n]
θ =

n∑
i=1

σi ai (x)bi (θ ), ∀θ ∈ S1, ∀x ∈ R2, (4)

where theσi weight the product of thei th filter basis functionai

(the coefficients of the 2D Fourier series) and the correspon
interpolating functionbi (note that thebi are the frequency bas
functions of the Fourier series).

The values forσi ,ai , andbi are obtained by finding the Fourie
series of the functionh(θ ), which is the integral of the produc
of the function with rotated versions of itself,

h(θ ) =
∫
R2

Fθ (x)Fθ ′=0(x) dx, (5)

where the integral ranges over all 2D space (R2) and(·) repre-
sents the complex conjugate. Note thatFθ ′=0(x) = F(x).

Expandingh(θ ) as a Fourier series we can read off the
ter’s (2D) basis functionsai and the corresponding interpolatin
functionsbi :

σi =
√

h(νi ) (6)

bi (θ ) = exp(i νθ ) (7)

ai (x) = σ−1
i

∫
S1

Fθ (x) exp(i νθ dθ ). (8)

Theσi terms are used only for error analysis. For details
[31].

These filters are used to obtain the oriented energy of both
and bar edges. Although we initially envisaged them as aid
in the recognition of deciduous trees in winter, when their lea
are missing, the orientation analysis also turned out to be u
for the recognition of leaves and trees in summer.

2.4. Graylevel Co-occurrence Matrix Measures
Let p(i, j, d, θ ) = P(i, j, d, θ )/R(d, θ ), whereP(·) is the
graylevel co-occurrence matrix (GLCM) of pixels separated
SIFICATION METHODS 137
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distanced whose orientation isθ and whereR(·) is a normal-
ization constant that causes the entries ofP(·) to sum to 1.

In texture classification, the following measures have be
defined, see for example [5, 16]: Theangular second momen
(E) (also called theenergy) assigns larger numbers to texture
whose co-occurrence matrix is sparse,

E(d, θ ) =
Ng∑
j=1

Ng∑
i=1

[ p(i, j, d, θ )]2.

Thedifference angular second moment (DASM)assigns larger
numbers to textures containing only a few graylevel patches

DASM(d, θ ) =
Ng∑

n=0

px−y(n, d, θ )2,

wherepx−y(n, d, θ ) =∑Ng

j=1

∑Ng

i=1|i− j |=n
p(i, j, d, θ ).

The contrast (Con)is the moment of inertia around the co
occurrence matrix’s main diagonal. It is a measure of the spr
of the matrix values and indicates whether pixels vary smoo
in their local neighborhood,

Con(d, θ ) =
Ng−1∑
n=0

n2

 Ng∑
j=1

Ng∑
i=1

|i− j |=n

p(i, j, d, θ )

 .
The inverse difference moment (IDM)measures the local ho

mogeneity of a texture. It weights the contribution of the c
occurrence matrix entries inversely proportional to their dista
to the main diagonal,

IDM(d, θ ) =
Ng−1∑
i=1

Ng−1∑
j=1

1

1− (i − j )2
p(i, j, d, θ ).

The mean (M)is similar to the contrast measure above b
weights the off-diagonal terms linearly with the distance fro
the main diagonal, rather than quadratically as for the contr

M(d, θ ) =
Ng−1∑
n=0

n

 Ng∑
j=1

Ng∑
i=1

|i− j |=n

p(i, j, d, θ )

 .
Similar to the angular second moment, theentropy (H) is

small for textures that give rise to co-occurrence matrices wh
sparse entries have strong support in the image. It is max
for matrices whose entries are all equally large,

Ng∑ Ng∑

by

H (d, θ ) = −
j=1 i=1

p(i, j, d, θ ) log(p(i, j, d, θ )).
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Other measures aresum entropy (SH),

SH(d, θ ) = −
2∗Ng−1∑

n=0

px+y(n, d, θ ) log(px+y(n, d, θ )),

where px+y(n, d, θ )=∑Ng

j=1

∑Ng

i=1|i+ j |=n
p(i, j, d, θ ), differ-

ence entropy (DH),

DH(d, θ ) = −
Ng∑

n=0

px−y(n, d, θ ) log(px−y(n, d, θ )),

anddifference variance (DV),

DV= −
2Ng∑
n=2

(n− DH)2 px−y(n, d, θ ).

Thecorrelation (Cor)measure is an indication of linear stru
ture of a texture. This and the next two measures useµx =∑

i i
∑

j p(i, j, d, θ ) andµy =
∑

j j
∑

i p(i, j, d, θ ),

Cor(d, θ ) =
∑Ng−1

i=1

∑Ng−1
j=1 i j p(i, j, d, θ )− µx ∗ µy

σ 2
.

Shade (S):

S(d, θ ) =
Ng∑
i

Ng∑
j

(i + j − µx − µy)3 p(i, j, d, θ ).

Prominence (P):

P(d, θ ) =
Ng∑
i

Ng∑
j

(i + j − µx − µy)4 p(i, j, d, θ ).

Note that the directionality of a texture can be measured
comparing the values obtained for a number of the above m
sures asθ is changed. The above measures were computed a
angles (0◦, 45◦, 90◦, and 135◦) usingd= 1. To make the mea
sures rotation-invariant, we use the average and range ove
four orientations to obtain two features for each type of meas
For further discussion of these graylevel co-occurrence m
measures, see [5, 16].

2.5. Fractal Dimension Measures

The underlying assumption for the use of thefractal dimen-
sion (FD)for texture classification and segmentation is that
ages or parts of images are self similar at some scale.

Various methods that estimate the FD of an image have
suggested:

• Fourier-transform-based methods [28],

• box-counting methods [6, 21], and
• 2D generalizations of Mandelbrot’s methods [30].
VITORIA LOBO
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The principle of self-similarity may be stated as: If a bound
setA (object) is composed ofNr nonoverlapping copies of a s
similar to A, but scaled down by a reduction factorr , then A
is self-similar. From this definition, the fractal dimensionD is
given by

D = log Nr

logr
.

The FD can be approximated by estimatingNr for various val-
ues ofr and then determining the slope of the least-squares li
fit of (log Nr / log(1/r )). The differential box-counting metho
outlined in Chaudhuriet al. [6] is used to achieve this task.

Three features are calculated based on

• The actual image patchI (i, j ),
• the high-graylevel transform of

I (i, j ), I1(i, j )=
{

I (i, j )− L1 I (i, j ) > L1

0 otherwise,

• the low-graylevel transform of

I (i, j ), I2(i, j )=
{

255− L2 I (i, j ) > 255− L2

I (i, j ) otherwise,

whereL1 = gmin + (gavg/2), L2 = gmax− (gavg/2), andgmin,

gmax, andgavg are the minimum, maximum, and average g
values in the image patch, respectively.

The fourth feature is based on multifractals, which are u
for self-similar distributions exhibiting nonisotropic and inh
mogeneous scaling properties. Letk andl be the minimum and
maximum gray level in an image patch centered at position (i, j ),
let nr (i, j ) = l − k + 1, and letNr = (nr /Nr ); then the multi-
fractal,D2 is defined by

D2 = lim
r→0

log
∑

i, j N 2
r

logr
.

A number of different values forr are used, and the linear r
gression of (log

∑
i, j N 2

r )/ logr yields an estimate ofD2.

2.6. Color Measures

While the intensities of the red, green, and blue compon
of a color image are highly correlated, the hue, saturation,
value decomposition offers a more independent represent
that captures complementary information about the image.

The hue component (θ ) can be computed by finding the ang
between the color of a pixel and thered corner of the color
triangle in Fig. 5a (see for example [19] for details),

θ = cos−1

(
2r − g− b

2
√

(r − g)2+ (r − b)(g− b)

)
,

wherer, g, andb are the intensities of the red, green, and blue
components of the corresponding pixel.
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FIG. 5. The color triangle and the function mapping a pixel’s hue to its pr
ability of being a leaf pixel.

Thesaturation (S)andvalue (V)components are also define
in terms ofr, g, andb:

S= 1− 3

r + g+ b
min(r, g, b),

V = 1

3
(r + g+ b).

The color–value discontinuity between magenta-red
orange-red (which have maximally different feature values
the hue scale but appear very similar in images) complic
the task unnecessarily. Therefore, each hue value is assign
corresponding value of a function that transforms the hue
the likelihood of the pixel being a leaf pixel (see Fig. 5(b)).

We also use opponent color measures that contrast the i
sities of red vs green (red/(green+α)), red vs blue (red/(blue+
α)), and green vs blue (green/(blue+α)), where we usedα =
0.01 to bound the ratios.

2.7. Entropy Measures

Since leaves and branches appear as rough and “messy”
at most scales at which trees can be identified, we can use th
tropy of image patches to separate them from uniform, smo
and smoothly varying object surfaces. IfVmax is the maximum
value in an image patch, the entropy is defined as

Entropy= −
Vmax∑
i=0

hi log(hi ),

wherehi = ni /N is thei th histogram countni divided by the
total number of pixels in the image patch (N). We measure the
entropy in both the gray-value image and the orientation im
described above; both measures are largely rotation-invaria

3. CLASSIFICATION
A number of factors prevent zero error results.Often the object
identity is unclear. For instance, should bushes be labeled as t
IFICATION METHODS 139

b-

d

nd
on
tes
d the
nto

ten-

reas
en-
th,

ge
nt.

or nontree areas? What if a bush is actually a small tree?There
is no correct class for class border pixels. How should an image
patch be labeled if roughly half of it depicts a tree and the ot
half does not?

A related issue concerns the importance of the classifica
result. Misclassifying a distant coniferous tree as a distant de
uous tree is not as severe as, for example, classifying humanm
structures as trees.

3.1. The Back-Propagation Neural Net

We use a back-propagation neural network to arbitrate am
the different features describing the image. Some alterna
classification methods are discussed in Section 5. Our back-
pagation neural network [8] has a single hidden layer and use
sigmoidal activation function8(act) = 1/(1+ exp(−act))−
0.5, whereact is the activation of the unit before the activatio
function is applied. A single hidden layer in a back-propagat
neural network has been shown to be sufficient to uniform
approximate any function (mapping) to arbitrary precision [
Although this existential proof does not state that the best
work for some task has a single hidden layer, we found o
hidden layer adequate. The architecture of the network is sh
in Fig. 6. The back-propagation algorithm propagates the (inp
function values layer by layer, left to right (input to output) an
back-propagates the errors layer by layer, right to left (outpu
input) as shown in Fig. 6. As the errors are propagated bac
the input units, part of each unit’s error is being corrected.

3.2. Reducing Feature Redundancy

An important consequence of our approach of combinin
large number of different measures to locate tree regions in
ages is that it is very time-consuming if done sequentially. P
allelism could be exploited easily at the feature and pixel le
to produce speedier solutions.

To find the 51D feature space representation for an im
of size 512× 512 takes just under 1 day on a 200-MHz Ultr
SPARC. Labeling each pixel of an image of this size as belong
ree FIG. 6. The network architecture.
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to a tree or non-tree region takes about 20 s. The eliminatio
redundancy in the feature set is therefore an important t
While finding the best set ofn features for our classification
problem is an intractable problem, we will present a method
Section 4) that can be used to determine good subsets of feat
thus speeding classification.

4. RESULTS

As a means for comparison, we contrast the classifica
results using all 51 features and those using various subse
features. In Section 4.4 we show how the architecture of
neural network affects the classification results.

4.1. Subsets of Features

There is a prohibitively large number of subsets even for m
erate numbers of features. To establish a lower bound of pe
mance for subsets of varying size we first averaged the pe
mance of the classifier on random feature samples. We ass
that the discriminatory power of a set of features can be e
mated by averaging over the differences due to initialization
Figs. 7, 9, 17, and 18 the average performance of a given fea
set is represented by horizontal lines, while the variation of th
solutions is shown by vertical lines.

4.1.1. Random sets of features.Figure 7 shows the errors
on the training set as the number of randomly selected featur
increased from 1 to all (51) features. Horizontal lines show
average error for the feature sets of the various sizes; ver
lines indicate the range of errors for each feature set. Th
results should form a lower bound on the performance of
feature selection method. Difficulties with the correct label
each pixel, problems with pixels on the border between tree
nontree regions, and problems due to compression preven
FIG. 7. The performance of random feature sets of various sizes.
VITORIA LOBO

of
sk.

(in
ures,

ion
ts of
the

d-
for-
for-
ume
sti-
In
ture
se

s is
he
ical
ese
ny
or
nd
t us

from eliminating the error completely. This partly accounts f
the fact that the exponential error curve does not approach
as the number of features is increased. This is not to say
using additional/alternative methods, we cannot reduce the e
further.

4.2. Good Subsets of Features

Transitivity does not hold for subsets of features: Given
optimal subset withN features we cannot expect that the additi
of the “best” feature not yet in the set will produce an optimal
of size N+ 1. Likewise, eliminating the “least useful” featur
from an optimal set of sizeN+ 1 need not produce the bes
subset of sizeN. Determining an optimal subset ofN features
from the entire feature set hence requires the consideratio
2N such subsets.

4.2.1. A greedy algorithm. Since determining the set of fea
tures that enables the best classification performance is a
tractable task, we have to settle for methods that can find
good, but suboptimal, feature sets. One such method is a gr
algorithm that starts from the empty set and includes the sin
most “useful” feature at each step (or its opposite, a greedy a
rithm that starts with the entire set and discards the single l
“useful” feature at each step). Since this strategy makes lo
decisions it cannot be expected to find globally optimal so
tions. In fact we found that after a number of steps the gre
algorithm has made so many suboptimal decisions that the
sulting set cannot be improved further by the inclusion of n
features.

We can reduce this effect somewhat by addingdeleteandre-
placeoperations to the algorithm that are used to check whe
the deletion or replacement of features in the current set
proves the performance further (many classifiers perform wo
in the presence of “distracting” and redundant features).

4.2.2. Combining random feature sets and a greedy al
rithm. We ran the greedy algorithm from scratch (the emp
set) to produce a 15-feature set that achieved results equiv
to about 31 randomly selected features. Since the performa
increases due to the greedy algorithm are significant during
first few steps of its execution we also started it from a go
random collection of features.

The performance of a set of features varied strongly w
the initialization of the search. Therefore, we averaged over
performance of differently initialized searches. We generated
random sets containing six features. For each of the 30 set
averaged the performance of the classifier over 10 runs. Th
that achieved the best average classification results was take
starting point of an incremental greedy algorithm. As mention
earlier we also checked at each step whether deleting a fea
or replacing a feature was helpful.

Using this strategy we determined 13 features that ach
a total error of 28,373 on the training set, which is only abo

3% worse than that found in the collection of all 51 features
combined (27,500). The error figures are the number of
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FIG. 8. Stages of the greedy algorithm.

misclassified pixels in the entire training set of over half a m
lion pixels. The execution time of the feature extraction sta
on the other hand, is reduced from about 1 day to under 5 h for
an image of size 512× 512 pixels.

Figure 8 illustrates the steps of the method for a particu
set of features. The initial six-feature set is shown in colu
0 of feature IDs (the features are numbered 1 through 51
the first step it was found that feature 20, which was not in
six-feature set, reduced the error the most among all feature
in the six-feature set. The resulting seven-feature set is sh
in column 1. In the next two steps, features 16 and 38 w
replaced by features 15 and 37, respectively. In step 4 fea
8 was found to be the best addition to the existing set. In s
6 and 7, features 19 and 12 were replaced by features 47
11, respectively. The feature sets in steps 8 and 9 both achi
roughly equally good classification. Therefore, both were kep
possible expansions of the previous feature set. At the next
(10), however, it turned out that reintroducing feature 38, wh
was replaced with feature 37 in step 3, was not as benefici
adding feature 21 to the set. The dead Tamagotchi marks
elimination of an alternative feature set. Finally, in steps 11
12, features 40 and 32 were added to the set of features.

The first five of these features are based on the grayleve
occurrence matrix, the 6th is a Gabor filter measure; the 7
a multifractal measure; the 8th, 11th, 12th, and 13th are ba
on color measurements; the 9th is based on entropy; and
10th, is based on the Fourier transform. With the exception
the steerable filter-based features all types of measures are
resented. This confirms the need for the combination of feat
of different types for good classification.

The main reason for the inclusion of the steerable fea
measures was to facilitate the detection of branches and f
in images in the future (not used in this work). But we a
used the orientation and edge type information to see if t

could contribute directly to the classification process, rather th
just indirectly through the detection of branches and forks. T
SIFICATION METHODS 141
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absence of these features from the final 13-feature set indi
that without further processing they are not very useful.

Efficient subsets of features, like the one used for this st
generally contain representatives of most types of feature
traction methods. We found that combinations of feature
different methods clearly outperform features based on only
feature extraction method (e.g., using only Gabor filters).

Figure 9 compares the performance of random feature
from Fig. 7 and the performance of the feature sets show
Fig. 8 (the circles in the graph).

From Fig. 9 it can be seen that the performance of thes
features is roughly equivalent to the performance of the en
feature set. As we mentioned earlier, it also can be seen tha
performance increases taper off as the number of steps o
greedy algorithm increases.

4.3. The Performance of the Resulting Feature Set

Figures 10 and 11 show previously unseen images with t
classification results horizontally adjacent to them. Brighter
gions in the labeled images represent areas that are like
depict deciduous trees and darker regions represent area
are less likely to depict deciduous trees. Due to the filter w
of the texture measures we do not generate labels aroun
edges of the images where the filters have incomplete im
support.

Measures of every seventh pixel of 25 training images w
obtained and combined with labeled images to train the netw
Note that from these 25 images we obtained well over half a
lion data points. The 51D data set is about 119 MB; the 13D
set is about 30 MB. Subsampling speeds up the training pro
without (noticeably) affecting its outcome, since neighbor
pixel locations are highly correlated.

FIG. 9. The circles in the graph show the average performance of seven fe

an
he
sets obtained starting from the best six-feature set (the lower tip of the vertical
line corresponding to the performance range of random feature sets of size 6).
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FIG. 10. Test images and the corresponding classification results. The following images are from Compact Discs of Corel Professional Photos,
Corel Corporation, and used under license: row 1 right and row 4 left. The following image is used with the permission of the Corporation for N
Research Initiatives (http://www.cnri.reston.va.us/), with whose permission it is used: row 7 left. The following images are used with the permission of John Frett
(http://bluehen.ags.udel.edu/homepage/plsc/plscstaff/frett.html) and Betsy Mackenzie (http://bluehen.ags.udel.edu/betsy) and the University of Delaware Botanic
Gardens: row 9 mid left and mid right. The following images are courtesy Philip Greenspun (http://photo.net/philg): row 2 left and center, row 4 center, row 6 right.
The following images are copyright Gerhard Ortner, with whose permission they are used: row 1 left and center, row 2 right, row 3 all, row 4 right, row 5l, row
6 left and center, row 7 center and right, row 8 all, row 9 extreme left and extreme right.
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FIG. 11. Test images and the corresponding classification results. The following images are from Compact Discs of Corel Professional Photos, copyr
Corporation, and used under license: row 1 all, row 2 all, row 3 all, row 4 left, row 5 all, row 6 right, row 7 all, and row 8 all. The following image is
with the permission of John Frett (http://bluehen.ags.udel.edu/homepage/plsc/plscstaff/frett.html) and Betsy Mackenzie (http://bluehen.ags.udel.edu/betsy) and the
University of Delaware Botanic Gardens: row 4 center. The following image is courtesy Philip Greenspun (http://photo.net/philg): row 6 center. Thefollowing
images are copyright Gerhard Ortner, with whose permission they are used: row 4 right, row 6 left.
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We would like to point out that some of the test images sh
trees in fall with the leaves’ colors ranging from green, throu
yellow, orange, and red, to a magenta-ish red. Thus the c
based features illustrate a typical problem the classifier ha
solve; color is often a useful cue, but leaves are not always g
and not everything green depicts leaves.

The first image pair on the second row in Fig. 10 shows the
formance of the approach for an image taken on a foggy day,
low contrast and low color saturation. The second image pa
row four in the same figure shows the approach’s robustness
respect to scale and color. This fall image shows trees at dista
ranging between 5 m and over 500 m whose colors range fr
magenta to green. The output image shows that almost a
gions were correctly labeled. Not all deciduous trees are g
and not everything green is a deciduous tree; in fact decid
trees take most hues except those from a thin band around
The same is true for the other measures we use; they all pe
poorly in isolation. The classifier combines these measure
improve on the performance of the individual measures.

4.4. Neural Network Issues

While varying the number and kind of features has a str
impact on the performance of the classifier, the architectur
the back-propagation neural network affects the performa
very little. The network we use for all our work has a sin
hidden layer with 25 hidden units in it. This is a safe architect
Generally we found that adding more hidden layers or m
hidden units in the hidden layer slows the convergence w
producing little performance improvement. Twenty-five hidd
units in a single hidden layer produced good results for fea
sets (input units) from the smallest (six-feature) set up to the
(51-feature) set.

5. ALTERNATIVE METHODS FOR CLASSIFICATION
AND FEATURE RELEVANCE ESTIMATION

Here, we discuss alternative classifiers and alternative
proaches to the determination of the most relevant features. S
the preprocessing stage is the slowest of the modules, we
sider classification without preprocessing in the first part of
section.

Since the “relevance” of a feature depends on the method
for classification, there is little benefit in using one appro
to decide on the importance of features and another appr
to classify images given these features. Therefore, we con
linear, quadratic, and eigenanalysis techniques to both th
termination of good subsets of features and classification
show how other approaches to feature selection compare t
greedy approach presented in Section 4.

5.1. Classification without Preprocessing

We considered classification without preprocessing and t

ed a convolutional neural network (CNN) [20] on raw imag
data. Unfortunately the results were discouraging. The train
VITORIA LOBO
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took significantly longer than for the back-propagation netwo
with separate preprocessing and labeling stages, and the pe
mance on both the training and the test set was worse (see Fig
and 16). One of the motivating factors for the use of CNNs
that they provide a degree of translation invariance by shar
weights among input units; at the same time this reduces
number of free parameters (weights) and hence speeds con
gence. In [20] a CNN is used for handwritten digit recognitio
In order to reduce the number of weights in the network all un
at the same level use a common set of weights (a convolut
kernel) to connect them to the units of the next higher level of t
network. Our comparison shows that this is not enough to obt
good classification results. Training a classifier on preproces
input therefore seems to be the better approach.

5.2. Linear Relationships between Pairs of Variables

Covariance and correlation matrices only measurelinear rela-
tionships betweenpairsof variables. Therefore, methods base
on them do not accurately capture (i) nonlinear relationships
tween pairs of variables (see Fig. 12), and (ii) linear or nonline
relationships between more than two variables at the same ti

FIG. 12. The upper plot shows two variables on thex- andy-axes that have
zero covariance and yet are dependent. The lower plot shows how the s

e
ing
linear relationship between the variables on thex- andy-axes might represent
very different nonlinear properties between the variables.
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Since the values of covariance and correlation matrices do
even reflect the true relation between pairs of variables, c
sification methods that are based on these matrices are fu
mentally flawed and we should not be surprised to see that
performance is inferior to that of the suggested nonlinear cla
fier (see Fig. 14). For example, a cubic relationship between
variables might make them linearly dependent even though
nonlinear relationship might contain valuable and exploita
information for the classification problem at hand.

5.3. Linear Analysis

If we restrict ourselves to linear classification metho
Fisher’s Linear Discriminant Functions (LDF) [9], Maximall
Discriminating Functions [24], or the Best Linear Discrimina
Function [35] can be used. To determine the redundancy and
tribution of features we can use theF-test or the Wilks test [34]
or the discriminant functions themselves. Fisher’s Linear D
criminant Function is widely used to classify an observation i
one of two classes. An observation is taken to belong to class

(x̄1− x̄2)TS−1
pl

(
x− 1

2
(x̄1+ x̄2)

)
> ln

(
π̂2

π̂1

)
and to belong to class 2 otherwise. Herex̄i denotes the mean o
classi , S is the pooled sample covariance matrix,x is the obser-
vation to be classified, and ˆπi reflects the prior information we
have about the likelihood of the observation belonging to clasi .

Linear classifiers are inferior in power to nonlinear classifie
and both the linear classifiers and the tests for redundancy re
the calculation of the inverse of the class or pooled covaria
matrices. Since our set of features is verylinearly redundant,
the associated covariance matrices are too singular to enab
stable computation of their inverse.

5.4. Quadratic Analysis

According to the quadratic discriminant function an obser
tion is taken to belong to class 1 if

xT
(
S−1

2 −S−1
1

)
x− 2x

(
S−1

2 x̄2−S−1
1 x̄1

)+ (x̄T
2S−1

2 x̄2− x̄1S−1
1 x̄1

)
> ln

( |S2|
|S1|

)
+ 2 ln

(
π̂2

π̂1

)
and to belong to class 2 otherwise. As beforex̄i denotes the
mean of classi, S1 andS2 are the pooled sample covarian
matrices,x is the observation to be classified, andπi reflects the
prior information we have about the likelihood of the observat
belonging to classi .

While quadratic discriminant functions [36] generally yie
better results than linear discriminant functions, they too
quire the calculation of the inverses of the near-singular c
covariance matrices. Therefore, they too are computation

too unstable to allow their use for a feature redundancy analy
or classification.
IFICATION METHODS 145
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5.5. Eigenanalyses

A global or class eigenanalysis of the covariance matrice
useful to describe the features but it is not designed to clas
feature vectors into their corresponding classes and hence, o
performs poorly as a basis for classification. Recent succes
applications of eigenanalyses for classification, e.g., [29], n
malize images of training and test objects prior to the classifi
tion to maximize the likelihood that differences in the descripti
are indeed due to differences in the identity of the objects. In
case it is unclear how to standardize/normalize the appeara
of an arbitrarily shaped tree of unknown size in arbitrary imag
especially if it has not already been segmented or recognize

In classification, therefore, we are mainly interested in findi
the features that maximize thedifferencesbetween the individ-
uals of the different classes. For this purpose the most discr
inating features can be obtained by maximizing the ratio of
between- andwithin-class sums of squares and products matri
(details in [2, 15, 23, 34]). Unfortunately, this method degen
ates to Fisher’s Linear Discriminant Function in the two cla
case (e.g., trees and non-trees, as in our case). Therefore
problems of Fisher’s LDF with the inverse of near-singular m
trices are inherited by the eigenanalysis of the class differen

5.6. Minimally Correlated Features

From the previous sections it is obvious that the discus
alternatives all suffer the same problem when (as in our case
correlation/covariance matrices are nearly singular. Theref
we asked the question: How powerful are features that al
the stable calculation of the inverse of the data set’s correla
matrix?

The answer is “Not very.” Features for which linear classifie
can be used perform roughly as well as randomly selected fea
sets of the same size.

We estimated the condition number of the correlation matri
using the 1-norm LINPACK condition estimator. This measu
is an indication of the relative distance from a given correlati
matrix to the set of singular matrices. The condition numb
estimate is a defensive approximation; i.e., the actual condi
number is likely to be at least as bad.

Figure 13 contrasts the performance (error on the training
of the feature sets that have the least singular covariance m
and the average performance of random feature sets of siz
3, 6, and 11. The numbers in the right graph are the estimate
the covariance matrices’ condition. Estimates near one indic
sets of (linearly) uncorrelated variables, while larger estima
approach the set of singular covariance matrices. The rapid
crease in the singularity measure indicates that combination
20 features or more will cause even the set of features with
least singular covariance matrix to become too singular to al
the stable computation of its inverse.

From the left graph, we can see that features for which l

sisear classifiers can be used perform slightly better than randomly
selected feature sets of the same size. Increasing the feature set
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FIG. 13. The performance of feature sets most suitable for linear ana
(left) and the corresponding estimates of their covariances’ singularity me
(right).

size to more than 10 features yields no further performanc
crease. Note that the peak performance of sets selected thi
is about 20% worse than that of the nonlinear classifier (the
imum average error on the training set is 33,798). Dotted l
show the performance of random feature sets of the indic
size. The solid horizontal lines show the average performa
of the feature sets corresponding to the least singular covar
matrices; the solid vertical lines show the performance varia
due to initialization.

Fortunately we can circumvent the problems with singu
covariance and correlation matrices by using methods that d
require their use (such as a back-propagation neural netwo

The 13-feature set that produced the results in Figs. 10 an
have a condition number estimate of 1.9307× 10.5, indicating
that the 13-feature set is highly linearly redundant. Since
set achieves good classification and deleting any of the fea
from it deteriorates the results noticeably, we see that linea
dundancy is not useful for deciding on the importance of feat
for a nonlinear classifier.

5.7. A Comparison of Classification Methods

Figure 14 shows the performance differences between lin
quadratic, and nonlinear methods for a sample training im
The results for the linear and quadratic classifiers in Fig. 14
based on the 20-feature set determined in the redundancy
ysis described earlier. While other sets might theoretically h
better discriminatory powers, the inverses of their covaria
matrices cannot be computed stably and their performan
thus unreliable (and likely to be worse).

The results of the linear and quadratic classifiers in Fig

are typical for these classifiers and reflect their discrimininat
power. The convolutional neural network achieves classifi
VITORIA LOBO
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tion results on this training image that are equivalent to th
achieved by the back-propagation neural network.

When comparing the performance of both networks on
other training image, as in Fig. 15, and a previously unseen (t
image, as in Fig. 16, we can see that the performance of
convolutional neural network is inferior to that of the bac
propagation neural network.

Since the performance of the linear and quadratic classifi
is significantly worse than that of the nonlinear classifiers,
did not include their classification results in these figures.

5.8. Each Method in Isolation

As indicated in the Introduction the 51 features are obtain
using seven different methods. Since any single feature on
own has very little discriminatory power we compare each
the underlying seven methods in turn. Figure 17 plots the c
sification error on training images on they-axis for each of the
seven underlying feature extraction methods in isolation on
x-axis. The numbers in parentheses indicate the number of
tures derived from each feature extraction method. We can
that the methods in isolation are all inferior to feature sets of
same size drawn at random from the entire feature set (do

FIG. 14. A sample training image and the segmentation results obtained u

ory
ca-
various classifiers. The image is copyrigt Gerhard Ortner, with whose permission
it is used.
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FIG. 15. Another training image and the corresponding segmentation res
Courtesy Philip Greenspun (http://photo.net/philg).
FIG. 16. A test image and the corresponding segmentation results. The im
is copyright Gerhard Ortner, with whose permission it is used.
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lts.

FIG. 17. Performance of each method is isolation.

lines). The performance of the different methods is roughly p
portional to the number of features derived from them, givi
rise to the apparent strength of the 28 GLCM-based feature
Comparing its performance with that of random feature sets
similar size we can see that the 28 GLCM features are infe
to a random collection of 26 features. Therefore, it is obvio
that this approach does not allow us to determine good fea
subsets and to optimize our classification performance. Since
are interested in the best classification given all features we c
not judge the importance of features and methods by measu
their power in isolation.

5.9. Leaving One Out

It would therefore make more sense to consider a large
ture set and to measure how much the performance of the e
set of features deteriorates as various features are left out. S
the presence or absence of a single feature is virtually unnot
able, we measure the change of the performance if all featu
derived from one method are omitted (the horizontal axis
Fig. 18 shows the omitted method). Although from Fig. 18
seems that the omission of the GLCM-based features cause
largest deterioration in the error rate, this effect is almost entir
due to the large number of features based on that method.
performance of random sets shows that the GLCM features
neither particularly useful nor particularly redundant. Anoth
observation that can be made from this graph is that the e
ination of the features of some types of measures improves
the performance of the entire set of features. While this in
catesthat the complete set is redundant it does not showwhich
features to omit in order to maximize the performance.

6. CONCLUSIONS
ageWe represent images using 51 measures from seven funda-
mental feature extraction methods based on color, the graylevel
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FIG. 18. Performance of features from the Leave-One-Out method.

co-occurrence matrix, Gabor filters, fractal dimension, steer
filters, the Fourier transform, and entropy.

We present a method that extracts good subsets of fea
from the set of 51 features. The resulting subset is almos
powerful as the entire set but reduces the time for the fea
extraction phase by 75%. The fact that representatives from
but the steerable filter method are present in this subset le
conclude that the mixture of methods and features provides
better classification than the use of features derived from
one method (as was shown in Fig. 17). The 13-feature solu
we have found outperforms all the methods in isolation (e
the combined set of 28 GLCM-based features).

6.1. Linear Dependence

Covariance- (or correlation-) matrix-based feature releva
analyses fail even if only a small number of features are sig
icantly linearly correlated. Any attempt to eliminate the mo
linearly correlated features is likely to discard many import
features and curtail the power of the remaining feature set. F
our experiments we found that feature sets whose covariance
trices are sufficiently independent to allow their inverses to
obtained only perform as well as random feature sets of the s
size. Therefore, we conclude that the contribution of linearly
pendent features within nonlinear classifiers can be signific
as was shown in Section 4.

6.2. Assumptions of Linear and Quadratic Classifiers

Many of the available classifiers also make implicit assum
tions that the different classes/groups have similar covaria
matrices or are normally distributed. If this assumption is v
lated many of the derived results become invalid. Section

showed that classical linear methods are inferior to nonlin
methods, such as a back-propagation neural network.
VITORIA LOBO
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6.3. Random Feature Sets

For k features we have 2k possible subsets of features a
transitivity cannot be used to build optimal sets of sizeN+ 1
from optimal sets of sizeN (likewise we cannot eliminate th
least important feature to obtain sets of sizeN− 1 from sets
of sizeN). However, we have shown how to find good featu
sets by using a greedy strategy on good random collection
features (see Section 4.2.2).

The best 13-feature set, found using a greedy strategy, s
all but one feature extraction method and outperforms all
methods in isolation (even the combined set of 28 GLCM-ba
features). Generally, random collections of features from dif
ent methods out perform equally sized feature sets of one t

6.4. Back-Propagation Neural Networks

The use of a back-propagation neural network offers a sim
solution to the laborious task of finding a good combination
the available features, thus solving our senso fusion prob
We have shown that feature sets like the one presented
sufficient expressive power to allow good generalization fr
only a few training images. An analytical approach, on the ot
hand, is difficult to conduct since the interactions even betw
modest numbers of dependent features is complex.

Natural scenes and objects often have signature colors
textures, which is why we expect the presented approach t
most useful in this domain. Humanmade structures and ob
often do not exhibit the same degree of color and texture c
stancy between instances and our approach hence appea
well suited to them.

ACKNOWLEDGMENTS

We thank Guy Smith and Ian Burns from the University of Queensland
their texture analysis package MEASTEX.

REFERENCES

1. T. D. Alter and D. W. Jacobs, Error propagation in full 3D—from 2D obje
recognition, inProceedings of Computer Vision and Pattern Recognit
1994, pp. 892–899.

2. S. T. Bow,Pattern Recognition and Image Preprocessing, Dekker, New
York, 1992.

3. S. Belongie, C. Carson, H. Greenspan, and J. Malik, Color- and tex
based image segmentation using EM and its application to content-b
image retrieval, inIEEE Workshop on Content Based Access of Image
Video Databases, Bombay, India, 1998. [In conjunction with ICCV’98]

4. J. F. Canny,Finding Edges and Lines in Images, Masters thesis, MIT Press
Cambridge, MA, 1983.

5. R. W. Conners and C. A. Harlow, A theoretical comparison of text
algorithms,IEEE Trans. Pattern Anal. Mach. Intelligence2, 1980, 204–
222.

6. B. B. Chaudhuri, N. Sarkar, and P. Kundu, Improved fractal geometry b
texture segmentation technique,IEE Proc.140, 1993, 233–241.
ear7. G. Cybenko, Approximation by superposition of sigmoidal function, in
Mathematics of Control, Signals, and Systems, Chap. 2, pp. 303–314, 1989.



S

p
o

l

,

a

h

o

f

e

r

G.
ng
ing

on
orne
S,

ure
e

ition

m,
ker,

sis,

tern
.

, in
ases,
/

ges
ideo
FEATURES AND CLAS

8. S. Fahlman, Faster-learning variations on back-propagation: An em
cal study, inProceedings of 1998 Connectionist Models Summer Sch,
Morgan Kaufmann, San Mateo, CA.

9. R. A. Fisher, The use of multiple measurements in taxonomic proble
Ann. Eugen.7 Part 2, pp. 179–188, 1936.

10. M. A. Fischler, Robotic vision: Sketching natural scenes, inProceedings of
1996 APRA IU Workshop.

11. I. Fogel and D. Sagi, Gabor filters as texture discriminator,J. Bio. Cybernet.
61, 1989, 103–113.

12. W. T. Freeman and E. H. Adelson, The design and use of steerable fi
IEEE Trans. Pattern Anal. Mach. Intelligence13, 1991, pp. 891–906.

13. D. Gabor, Theory of communication,Proc. Inst. Electr. Eng.93(26), 1946,
429–441.

14. R. Gonzalez,Digital Image Processing, Addison–Wesley, Reading, MA
1986.

15. D. J. Hand,Construction and Assessment of Classification Rules, Wiley,
New York, 1997.

16. R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural features for im
classification,IEEE Trans. Systems Man Cybernet.3(6), 1973, 610–621.

17. M. S. Lew, K. Lempinen, and N. Huijsmans, Webcrawling using sketc
in Proceedings of Visual97, 1997.

18. D. W. Jacobs,Recognizing 3-D Objects Using 2-D Images, Ph.D. thesis,
MIT, Cambridge, MA, 1992.

19. R. Jain, R. Kasturi, and B. Schunck,Machine Vision, pp. 278–284,
McGraw–Hill, New York, 1995.

20. Y. Bengio, Y. LeCun, and D. Henderson, Globally trained handwritten W
recognizer using spatial representation, convolutional neural networks
hidden Markov models, inNeural Networks, 1994.

21. J. M. Keller and S. Chen, Texture description and segmentation through
tal geometry,Comput. Vision Graphics Image Process.45, 1989, 150–166.

22. B. S. Manjunath and W. Y. Ma, Texture features for browsing and retri
of image data,IEEE Trans. Pattern Anal. Mech. Intelligence18(8), 1996,
837–859.

23. B. F. J. Manly,Multivariate Statistical Methods, Chapman & Hall,
London/New York, 1994.

24. S. Marks and O. J. Dunn, Discriminant functions when covariance mat
are unequal,J. Am. Stat. Assoc.69, 1974.
25. G. Smith and I. Burns,MeasTex, available at http://www.cssip.elec.uq
edu.au/˜guy/meastex/meastex.html.
IFICATION METHODS 149

iri-
ol

ms,

ters,

ge

es,

rd
and

rac-

val

ices

26. J. R. Miller, J. R. Freemantle, M. J. Belanger, C. D. Elvidge, and M.
Boyer, Potential for determination of leaf chlorophyll content usi
AVIRIS, in Proceedings of the Second Airborne Visible/Infrared Imag
Spectrometer (AVIRIS) Workshop, Pasadena, 1990, pp. 72–77.

27. Y. Awaya, J. R. Miller, and J. R. Freemantle, Background effects
reflectance and derivatives in an open-canopy forest using airb
imaging spectrometer data, inProceedings of the XVII Congress of ISPR
Washington, D.C., 1992, pp. 836–843.

28. A. P. Pentland, Fractal-based description of natural scenes,IEEE Trans.
Pattern Anal. Mach. Intelligence6, 1984, 661–672.

29. M. A. Turk and A. P. Pentland, Face recognition using eigenfaces, inPro-
ceedings of Computer Vision and Pattern Recognition, 1991, pp. 586–591.

30. S. Peleg, J. Naor, R. Hartley, and D. Avnir, Multiple resolution text
analysis and classification,IEEE Trans. Pattern Anal. Mach. Intelligenc
6, 1984, 518–523.

31. P. Perona, Deformable kernels for early vision,IEEE Trans. Pattern Anal.
Mach. Intelligence.17, 1995, pp. 488–499.

32. B. Vijayakumar, D. J. Kriegman, and J. Ponce, Invariant-based recogn
of complex curved 3D objects from image contours, inInternational
Conference on Computer Vision 1995, pp. 508–514.

33. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Do
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yan
Query by image and video content: The QBIC system,IEEE Comput.
28(9), 1995, pp. 23–32.

34. A. C. Rencher,Methods of Multivariate Analysis, Wiley, New York, 1996.

35. R. H. Riffenburgh and C. W. Clunies-Ross, Linear discriminant analy
Pacific Sci.14, 1960, 251–256.

36. D. F. Specht, Generation of polynomial discriminant functions for pat
recognition,IEEE Trans. Electron. Comput.EC-16(3), 1967, pp. 308–319

37. M. Szummer and R. W. Picard, Indoor–outdoor image classificatoin
IEEE Workshop on Content Based Access of Image and Video Datab
Bombay, India, 1998. [In conjunction with ICCV’98; available at http:/
www-white.media.mit.edu/people/szummer/profile.html]

38. A. Vailaya, A. Jain, and H. J. Zhang, On image classification: City ima
vs. landscapes, inWorkshop on Content Based Access of Image and V
Libraries, June, 1998.
.
39. J. S. Weszka, C. R. Dyer, and A. Rosenfeld, A comparative study of texture

measures for terrain classification,IEEE Trans. Systems Man Cybernet.6,
1976, 269–285.


	1. INTRODUCTION
	2. THE FEATURES
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	3. CLASSIFICATION
	FIG. 6.

	4. RESULTS
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.

	5. ALTERNATIVE METHODS FOR CLASSIFICATIONAND FEATURE RELEVANCE ESTIMATION
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

