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Abstract Input Video Foreground Objects Tracks Abnormal Events

We present a novel framework for learning patterns of 2 Je: @
motion and sizes of objects in static camera surveillance. —— 23%‘;%2;22 TCr)achﬁ%tg ::aelf;;s  ——
The proposed method provides a new higher-level layer to i |
the traditional surveillance pipeline for anomalous event 3

. . . . cene ModelFeedback

detection and scene model feedback. Pixel level probabil- (size and background learning rate parameters)

ity density functions (pdfs) of appearance have been used-igure 1.Proposed scene analysis approach detects abnormal
for background modelling in the past, but modelling pixel events and provides scene model feedback. Traditional object de-
level pdfs of object speed and size from the tracks is novel tection is improved by using the pixel-level parameter feedback.
Each pdf is modelled as a multivariate Gaussian Mixture

Model (GMM) of the motion (destination location & tran- focus on the problem of interpreting the output of the object
sition time) and the size (width & height) parameters of the detection and tracking module in order to gather knowledge
objects at that location. Output of the tracking module is about the scene. This knowledge is used to build a scene
used to perform unsupervised EM-based learning of everymodel which can be used to detect abnormal motion pat-
GMM. We have successfully used the proposed scene modégns and to enhance the surveillance performance by im-
to detect local as well as global anomalies in object tracks. Proving object detection.

We also show the use of this scene model to improve ob- Analysis and modelling of motion patterns for surveil-
ject detection through pixel-level parameter feedback of the lance scenes has been studied by several researchers. Bux-
minimum object size and background learning rate. Most ton [1] provided a detailed review of the models that have
object path modelling approaches first cluster the tracks been used for learning scene activity. Johnsoml. [9]

into major paths in the scene, which can be a source of presented a vector quantization based approach for learning
error. We avoid this by building local pdfs that capture a typical trajectories of pedestrians in the scene, but they re-
variety of tracks which are passing through them. Qualita- quire entry/exit points to be marked manually. Grimsan
tive and quantitative analysis of actual surveillance videos al. [5] used location, velocity and size to classify activities.

proved the effectiveness of the proposed approach. The activities are classified using a B-tree based approach
called Numeric Iterative Hierarchical Cluster method and
1. Introduction the co-occurrence statistics in the quantized feature space.

In [14], Remagnincet al. use velocity and aspect ratio to

Automated video surveillance is crucial for the security classify different tracks into vehicle or person. They uti-
of various sites including airports, train stations, military lize a Bayesian classifier for this task and an HMM model
bases, and many other public facilities. There have been sigto capture common events in the scene. Maktial. [12]
nificant advances in automated visual surveillance systemshave presented a technique in which different regions of the
in the recent years2[|13]. A modern surveillance system scene are labelled as entry/exit zones, junctions, paths and
is expected to not only perform basic object detection and stop zones. This model provides a set of scene attributes but
tracking, but also to interpret object behaviors. This higher lacks the object size-based anomaly detection. Saleéemi
level interpretation can have several applications including al. [15] proposed a single Kernel Density Estimate (KDE)
abnormal behavior detection, analysis of traffic trends, andmodel for the whole scene, which requires to save all train-
improving object detection and tracking. In this paper, we ing data. Their approach does not address anomalies due to



object size and only focuses on the object velocity.

Hu et al. [7] present a recently published technique in
which the tracks are spatially and temporally clustered into
different motion patterns. Each of these motion patterns is
divided into several segments; each segment is modelled
by a Gaussian model of speed and size. Anomaly detec-
tion and path prediction are the two applications of this ap-
proach. Wanget al. [18] have presented another approach
in which the tracks are clustered into vehicle and pedestrian
paths_ Their model provides the source/sink information Figure 2.A set of observations with transition (blUE‘) vectors con-
along with capability of abnormality detection. necting them are shown on a synthetic track.andOy, represent

Qne_common .factor_in most o]‘ the related work is. the Pg?] gggsv:é't%r:sng::@jagz gsfem along the track.is the
estimation of main motion paths in the scene. Techniques
presented irif,'10,117,/18] use multiple features of observed of constraining the object detection module by having fixed
tracks for clustering tracks into the main paths of the scene.parameter values throughout the scene, we present a method
We argue that the explicit estimation of these paths is notto provide different pixel-level parameter values using the
necessary for typical applications of a scene model includ-|earnt scene model. Two parameters: Minimum size of the
ing anomaly detection and improving of object detection. In foreground objects and the background learning rate, have
addition, these approaches only capture the instantaneoubeen used to improve object detection by our approach.
velocity, however in the proposed approach we integrate
larger transition times. This captures thiebal properties
of the track and therefore does not require the estimation of

2. Learning the Scene Model

the main paths in the scene. In this section, we present the details of the structure and
Scene modelling can also be used to feedback the scenéarning of the proposed scene model. The visual tracking
knowledge into object detection module. [6],[ Harville information serves as the input for our framework. We have

proposed an approach with positive and negative feedbackused the object detection and tracking system presented in
to background subtraction for adjusting the learning rate [8]. For a given surveillance video, the tracker produces a
and improving foreground detection. Tiah al [19] de- setofm tracks{T1,...,T;,..., T}, where every track is a
tected the static regions that were wrongly modelled as theset of observations of the same object. For instanceitany
background. In addition to learning rate, there are other pa-track is a set of. observationd; = {O1,...,0;,...,0,},
rameters that affect the background subtraction and couldwhere O; = (¢, z,y,w,h) contains the time stamp of
benefit from the feedback. In this approach we use the samebservation, locatiortz, y), width w, and heighth of the
scene model to provide feedback in order to update mini- object. We also use the size, h) feature, as it provides
mum object size and background learning rate parametersuseful information for finding anomalous behavior and im-
The unique aspect of our approach is the use of the sameroving object detection. For instance, this model assists in
scene model for both anomaly detection and improving ob- detecting a pedestrian on the road or a bicyclist on the side-
ject detection. walk, even when the motion is not very discriminative. Us-
The framework presented in this paper has three noveling the set of observations, we want to generate a set of tran-
contributions. First, we propose a new and intuitive ap- sition vectors that will be used to train the statistical model
proach to model object parameters (motion and size) by us-and provide the details about the motion and size of the ob-
ing a pdf at every pixel location. Stauffer and Grimson’s jects. For every observation, we compute a set of transition
[16] approach has been used for modelling appearance fovectors that capture the transition from the given observa-
several years, but the proposed model of motion and sizetion to future observations along the same track. Relative
at pixel-level is novel. Unlike most of the previous ap- velocity is computed for the next observation, as well as a
proaches, our model does not require extraction of majorset of subsequent observations. In order to keep the prob-
paths in the scene and is learnt directly from the individual lem computationally tractable, we limit the computation to
tracking observations. Second, the motion parameters areéd temporal window withr observations. Fig2shows a syn-
used to capture thecal velocity of an object, as well as the thetic track with marked observations and transition vectors
global velocity through the track. This helps in detecting from a particular observatio®;. This provides a means
the anomalous motion patterns that cannot be captured byio detect abnormal tracks through thebal analysis. In
local analysis only. Third, we utilize this model to provide many cases mere use lotal analysis would not be suffi-
pixel-level parameter feedback to the background subtrac-cient. One such synthetic example is illustrated in Big.
tion module in order to improve object detection. Instead  For any observatior®;, relative velocity is computed



Figure 3.A subset of tracks used in the training of the scene model.
Multiple transition vectors from each observation contribute to-
wards learning the pdf at that location.

against all{O;;1,...,0;4,} to generate a set of tran-

sition vectors{~/*',... 477}, where transition vector
YT = (@j4r,Yjtr T, w5, hy). The destination location

(xj+r,Yj+-) is obtained from the observation vectoy, .,
the duration between the two observatighsandO, , , is

the complete set of parameters required to specify the mix-
ture model. Each component is modelled as a Gaussian dis-
tribution of the form
i _ —1/2(v=p})"S; “Hy=ni)
p(’ﬂel) (271_)(1/2‘2“1/26 ! ! ¢ Y (2)

where d is the dimensionality of the model antf =
{ui, i} are the parameters of the model.

The computation of the GMM parameters is performed
through an improved Expectation Maximization (EM)
based algorithm, which was proposed by Figueiredo and
Jain E]. This particular approach provides a solutions to
three major limitations of the basic EM algorithm. First,
the number of components does not have to be fixed. This
algorithm estimates the number of components by remov-
ing the components that are not supported by the data. Sec-
ond, this approach does not require careful initialization and
starts with a large number of components which are spread

7. (wy, h;) represents detected size of the object in source oyghout the data. Third, this algorithm also avoids con-

observationO;. 7 is the length of the temporal window
along the track; in the experiments we have used 20.

We model the motion patterns in the scene using the

vergence towards a singular estimate near the boundary of
the parameter space. The details of the algorithm are avail-
able in F], but important points are included here for the

motion and size features, as described above. We use Rake of completion. The E-step is given by

5-dimensional random variablg for every pixel location
I, wherey = (a/,y', dt,w;, h;) represents one particular
outcome ofI';. Every transition vector generated from

i aOp(16i(1)
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the observations presents a five dimensional random vari-Wherew; captures the conditional expectation of the miss-

able. The probability density function (pdf) over this fea-

ing data. o} (t) and 6} (¢) are the parameter values at the

ture space is modelled as a multivariate Gaussian Mixtureiterationt of the EM algorithm. The M-step is given by

Model (GMM). This pdf is created for every pixel location
in the scene and it models the probability of that location

being the source of a transition. The pdf estimated atev-
ery location captures the probability of observing an object " * = L...

of a given size which is moving to a specific location in a
given duration. The pdf at an intersection of multiple paths
can capture the possible transitions in different directions
speeds and sizes of objects.

Learning of the model is performed after a sufficient

amount of tracking data has been accumulated. The appro-
priate duration depends on the amount of traffic in the scene
and the required accuracy of the model. For any given loca-
tion in the scene, all the observations of the tracks through

that location contribute to the pdf at that location. The pdf
for the random variablE; is created by utilizing the training
instancesy’s with [ being the source location. The training
method described below is repeated for all pixel locations.

A multivariate GMM is used to model the pdf of the ran-
dom variablel';. The probability of an observation be-
longing to the GMM is given by

P(Ty =710 =Y ajp(16}), @)

=1
wheren is the number of components detected in the mix-
ture, 6} is the set of parameters defining thé& component
with weighta?, andd, = {6},...,0",a},..., o} defines

maz{0, (30 _ wi(m)) — 4

Al(t+1) = : . (4
D) = {0, (0, wi(m) — 4

7n7

Oi(t+1) = argmax Q(61, 61(1)), )

for m : &i(t + 1) > 0, whered is the dimensionality of

each mixture component, S is the number of training sam-

ples~ used in E-step, and th@-function estimates the log-
likelihood given the current model estimate.

After learning of the complete scene has been performed,
the GMM parameters for every pixel location are stored as
the scene model. For a given observation, if we only up-
date the pdf of the pixel at the centroid of the bounding
box, then the created models could be spatially sparse. To
achieve better spatial smoothing of the motion models in the
neighboring pixels, we update all the pixels in the bound-
ing box. Note that unlike most of the previous approaches,
learning of the proposed scene model does not rely on merg-
ing track to estimate the main paths in the scene. This re-
duces possible sources of error due to incorrect path esti-
mation or ambiguity of track membership between two or
more paths. Another strength of the proposed structure of
the scene model is the ability to perform online learning of
motion patterns and adaptation to the changing object be-
haviors in the scene.



3. Abnormal Behavior Detection

The training phase generates a scene m@&lesing the
observed motion patterns. This model is a set of GMM pa- |
rameters® = {6;}, where! is the location of all the pix- A .
els with sufficient training observations. We use this scene (@ Training Tracks (4 Paths) (6] Unusual Path (Local Analysis) (0 Unusual Path (Global Analysis)
model to detect abnormal motion patterns which conflict Figure 4.Global anomaly: when the tracks are not allowed to
with the trends observed in the training data. We proposeCh"’_‘”g? paths, glob_al analysis detects t_he violations. Every obser-
an online approach for detecting anomalies in the latest ob_vf'jltlon is labelled either nqrmal (blqe dla_mond) or _abnormal (red
servationO, from the test track’. This observation is ana- circle). Gray background is the region without motion model. (a)

. . . Training set of random unidirectional tracks (along four paths). (b)
lyzed as .Soon. as it becomes available after a set of PrevIous o cal analysis fails to identify anomaly, while (c) global analysis
observations in the tra_ch =1{01,..., O, Ot},' For the highlights the observation that take an unusual path.
task of anomaly detectiolgcal andglobalanalysis of these
observations is performed. local analysis, we conductthe anomalies. Randomly generated tracks (Fitfa)) were
comparison of the current observation with the previous used for training completely follow one of the four paths.
observatiorO;_; only (first order). This captures many typ- Our goal is to detect the tracks whose behavior is normal lo-
ical anomalies based on instantaneous velocity and size oftally but not globally. This is important, for instance at the
the detected objects but, it has a limited capability for de- airport where pedestrians from one path are not allowed to
tecting more complicated anomalies. Tglebal analysis, switch to another intersecting path. Another example could
however captures mommplicatedcases by analyzing the be of cars that are not allowed to turn on an intersection.
current observatio®; with respect to a series of previons ~ Fig. 4(b) and (c) show the outcome of the local and the
observationg” = {O;_,,...,0,_1} (higher order). The global analysis respectively. Local analysis the first order
transition between any source observatign; € 7’ and transition between observations is not sufficient to detect
the current observatiaf; is defined by the transition vector  such anomalies. Instead we use higher order transitions to
vi_; = (x4, ys, 1, we—;, he—;), Which contains contains des-  capture the global structure of the track. This type of analy-
tination location, transition time, and the object size at the sis can also be useful for detecting cyclic motion or repeated
source location. The pdP(I';;_;)) of transition vectors  U-turns which can be abnormal.
at the source locatiot(t — i) from O,_; is used to deter- . . .
mine how normal the current transitiof_; is. A very low 4. Improving Object Detection

probability value fromP(T'y,_;) = v;_;) is interpreted as An important application of the proposed scene mod-

representative of an atypical transition. Our goal is to de- g|ling approach is to improve object detection utilizing the

termine if the current observatiad, is abnormal or notby  patterns in the observed tracks. The knowledge of object

anaIyZing the tl’ail of Obsel’vations in the traCk. Therefore, parameters (Size and speed) at every pixe' |Ocation is used

we use the minimum transition probability for this purpose. There are certain components in traditional
B = min{ P(T'y—s) = YD} (6) background subtraction algorithmisg] [3] that could bene-

! fit from this scene knowledge. These parameters are tra-
ditionally considered consistent throughout the scene, but
this limits the performance of object detection. The scene

Br <A, @) model provides the feedback information (see Fij.for
where threshold\ is applied to the least probable transi- every pixel to update the parameter values according to the
tion. This provides a means of detecting atypical transitions scene information. The use of the proposed scene model
that originated from any one of these higher order transi- is presented in the following for two parameters, minimum
tions. Hence, both local and global anomalies can be de-object size and background learning rate.
tected through this framework. Our approach performs on- . ) )
line analysis of the motion patterns to detect anomalies as#-1. Minimum Object Size
soon as they occur. The minimum size ) of the detected objects is the first

We use this framework to detect various types of anoma- parameter which benefits from our scene model. Size

lous behaviors. Figl5 presents various types of detected defined as the area of the blob detected after background
anomalies in a real video. These include pedestrians on thesubtraction. If this value is set too high, then detection of
road and grass, skateboarder and bicyclist on the sidewalkyalid small objects in the far view camera fails. On the other
pedestrians sitting down, etc. In addition, we can also catchhand, if this value is too low, then some noisy segments and
anomalies like violations of one-way traffic, which is im- broken parts of larger object blobs are reported as separate
portant on the road and in some airport hallways. Fg. objects. Instead of a fixed global value for the parameter
presents a synthetic scene to illustrate the case of globalve present a method for automatically obtaining the appro-

fori = 1,...,7 and the observatio®, is declared abnor-
mal if following condition is true



priate value of the parameter at different pixels. two different scenes. Pixels locations with missing models
In order to improve the accuracy of object detection, we or unexpected object size produce low probability values,
use the proposed scene model to estimate the probability ofvhich generate a highvalue for that pixel. This approach
observing an object of a given size at the current location. Inassures that very small noisy observations are not approved
the learnt scene model, the pdf at every pixel location cap-as valid objects. High probability values result in small
tures the joint probability of motion and size. For size-based value which assures that even small sized valid objects are
analysis, we extract the marginal pdf for the size parametersnot missed. This provides a means for the object detection
m o noT module to have different values for different pixels based
P(w,h) =YY" " P(z,y.t,w,h), (8)  onthe learnt scene model.

r=ly=Li=l _ 4.2. Background Learning Rate
wheren rows & m columns is the size of the image and the The back dl . t0)(i dt date th
maximum transition duration modelled in the pdfris As | teb ai grourclj ezrnll_ng r?j 9)(t|5 udse tto ulp a eh €
mentioned inL1], this marginal pdf forxy, = (w, k) can iearnt background modet In order to acapt to slow changes
in the scenell6). For instance, if a table is moved in the
be represented as S
N room, the new setting is learnt as a part of the background.
Plxun) = Z ip(wn 02D, 9) Howeve_r this feature can cause a prqblem when the gqal is
] to consistently track an object that briefly becomes station-
ary. For instance, if a car stops briefly on a traffic light,
it can be quickly learnt as a part of the backgroungd i§
too large. On the other handfis too small then the valid

wheref}'® represents the parameters fti bivariate Gaus-
sian with mean,/'® and covarianc& "™

p(xan |0 = C exp{*%(xwh — TS (e — )}, changes in the scene would not be incorporated in a suitable
(10) time. This dilemma suggests that we locally tweak the value
where C— 1 of p depending on the behavior of objects in the scene.
27r|ELE;Vh\1/27 The proposed scene model captures different speeds at

a particular location. We identify the regions in the scene

and3; is 5 x 5 covariance matrix from original joint pdf where obj_ects becpme stationary, including the exit zones.
Thé marginal pdf is created at every pixel location .and The Iearnlng rate S Io_wered only for the pixels belpr_19|ng

. : . . to these regions. Similar to the approach for the minimum

'F captures_ the dgnsﬂy of observed objecfc sizes at that IOCa'object size, we extract the marginal pdf that captures the

tion. _For illustration purpose, we use this pdf tq generate motion information. The marginal pdf

the size map shown in Figj. The mean value of width and

height from the Gaussian component with highest weight is P(z,y,t) = Z Z P(z,y,t,w,h), (12)

used in the computation of the most probable size at a given w  h

pixel location. This value of size is used as the intensity s extracted at every pixel. The GMM component parame-
of the corresponding pixel location in the size map. NOte tgrs gre updated in a manner similar to the minimum size.
that the size ve}lues onthe roaq region are much higher thanr,q object detection could fail because of the higralue,
those on the S|dewglks. The size values can be observed t¢harefore we identify the regions where objects stop and re-
be gradually reducing as the objects move away from the yce,. This is done by analyzing the smallest object speed
camera. _ _ (%) captured at every pixel. The difference between pixel
The parameters of the marginal pdf at every pixel are |5cation and the GMM component mean is used to compute

passed to the object detection module as feedbackL Fig. this speed. The interpolated value ptan be computed
shows the feedback flow of the pixel level parameters rep- sing following expression

resenting the size pdf at each pixel. The background sub- A R
traction algorithm generates a set of foreground blobs of P = PminPo(0) + pmaz (1 — Py(9)), (13)
different sizes. For each of the foreground blob at location where P, is a zero mean normal distribution used to sig-

(i,j) with size(@, h),_wg compute the probabiliti (w, h) nify reducing speed, an@,.in, pmaz] are the two extreme
using the marginal &t, j). A very low value means thatthe  yajues of the learning rates to be used. The aim for this
current blob is most likely a false observation. Suppress-formulation is to automatically choose a valueyofor ev-
ing valid objects at unexpected locations can be avoided byery pixel depending on the type of object behavior observed
defining thes parameter at the current location as during the training phase.

$ = $SminP(w, h) + Smaz(1 — P(w, h)), (11)
where Bin, Smaz] SPeCify the range fos value. This
range does not greatly affect the sensitivity of the detection The performance of the proposed framework was tested
module. In our experiments we used [50, 150] range for on real sequences captured from three different surveillance

wh
ZLzl is Schur's decomposition af; with respect ta-¥'?,

5. Experimental Results



(c) Bicycle on sidewalk
(abnormal size and speed)

(d) Sitting on sidewalk (e) Skateboarder (f) Pedestrian on road

(abnormal speed) (abnormal size and speed)
Figure 5.Scene 1. Detected abnormal observations are labelled red and normal observations are blue. (a) All normal observations of a
typical pedestrian (b) The pedestrian follows an unusual path. (c) The observations of a bicyclist are also classified as abnormal, because
of the abnormal speed and size of the object. (d) A person stops in the middle of the sidewalk and sits down. Note that the observations
were correctly labelled normal before the person sat down. (e) A skateboarder, whose observed size is the same as that of the pedestriar
but the speed helps in distinguishing them. Some of the observations are detected normal because of only a slight difference in speed. (f)
Unusual size and speed prove to be useful in case of a pedestrian walking on the road. All of the above mentioned tracks are part of the
testing video, which is different from the training video.

cameras. A typical scene observed from the first camera 0; =
is shown in Figb. Realtime object detection and tracking ,
was performed using the UCF KNIGHT systeB].[ Ini- . Training | Testing
tial training is performed off-line and testing for anoma-

lous behavior detection was performed using the tracking 7 Tracks | 1342 | 217
results from a 30 minute test video. Fi(b) shows the : - Abnormal

details of the training and testing sets used for this experi- * Tracks 0 31

ment. Matlab implementation runs at approximately 26 fos "I’ -~ (b) Ground truth
for this module on a 3GHz Pentium D PC machine. Fig. |-~
5 presents the output of abnormal behavior detection inthe ° (a)?és(e);\c.a%ﬁe '
test sequence. The proposed approach declares an obse[gi— ) :
vation abnormal as soon as it is received from the tracker. o 6-Anomaly detection performance on the scene Showr.] "

. . Fig. 5. (a) ROC curve for the 30 mins test video. (b) Table with
F'g 5 shows a set of deteCted_ abnorm.al behavidrsad- ground truth number of tracks used in training and testing.
dition to a normal track. The first one is an unusual path, o
where a pedestrian is tracked through a region where notand (f) shows a case where a pedestrian is detected on the
enough training tracks were observed. Next, a bicycle is onfoad. This particular anomaly is captured by difference in
the sidewalk, which was not present in the training video. SPeed and size of the observed object and the scene model.
The unusual speed and size of the bounding box provides! N results show only a small number of observations are
evidence of such anomalies. Another similar anomaly (e) misclassified. The majority decision for the complete track
shows a skateboarder going faster than pedestrians. Mosf€eps the results accurate. Fiiga) presents the ROC curve
of the observations are labelled as abnormal even when thélepicting the accuracy of anomaly detection.
observed size is very similar to that of a pedestrian. (d) Figi8(a) presents the object size map extracted from the

shows a case where a pedestrian sits down on the sidewalk

°
o
N

. Normal

True Positive Rate
o o
£ &
N
N

lvideos available at: http://cs.ucf.edu/ arslan/surveillance/



(a) Ground Truth "~ (b)s=50 (c)s=150 (d) Using the size probability

Figure 7.Scene 2. Improvement in object detection by the proposed size model. Each row presents an instance in the same video. Column
(a) shows the manually extracted patches of the objects currently present in the scene. Column (b) is the output when a uniform global
value ofs = 50 is used. Noisy foreground blobs are also detected as valid objects (red ellipses). (c) presents outputihers used

throughout the scene. Individuals are not detected (red ellipses) when the object size is small. (d) presents results of the proposed size
model. In both scenarios the valid objects are detected and the noisy observations are avoided.

learnt scene model scene 1 shown in/Eig.he high inten-
sity values along the road are generated by the vehicles. Ad
the objects move away from the camera the observed sizes
reduce, which reflects here as reducing intensities along thef
sidewalk. Similarly, Figi8(b) shows the size map for scene
2 shown in Fig/7.

The experiments of improving object detection are per-
formed on video from two other surveillance cameras. Re-
S_ults of the I:np;ovzrt‘?enli in the obje;:t(;j(_ete;tlg_n usmgl the and scene 2 (Fid/). Intensity at every pixel location is the most
Siz€ parameter feedback are presented in ifigiwo rea probable size of the object observed at that location. The highest

scenariqs are shown here that support th_e clgim that the pro|'ntensity is observed for the vehicles along the road. Note the
posed size map outperforms the case with fixedlue. In gradually reducing sizes due to perspective effect.

the case of (b), the lowest value of= 50 is chosen and

in both scenarios, false positive objects are detected. In thecovers an intersection with traffic lights where cars may
first scene, a small broken part of the pedestrian’s shadowstop up to approximately 40 seconds. The scenario shown
is detected as a valid object and in the second case, a noisin this figure contains a black car arriving, stopping for a
observation on the lamp post is declared as a valid object. Inred light, and then driving away. Figi(a) shows the out-
the case of (c), a comparatively higher valuesof 150is  put using a typical value of learning rate € 0.01). The
chosen and it clearly misses the pedestrians that are farthetarget of continuously tracking the stationary car could be
away from the camera. Finally, (d) presents the improved achieved by increasing but this can induce spurious detec-
object detection using the proposed size map which pro-tions where the background changes rather quickly. Using
vides a different value at each pixel location. All the ac- the proposed parameter feedback approach, we can isolate
tual objects are detected without any noisy detections. Thethis increase op to only the regions where it is required
automatically learnt size map proves to be very useful in ac- (i-e. where traffic stops). In the experiments, we have used

curately capturing the perspective distortions in the scene. [Pmin; Pmaz] = [0.005,0.1] as the extreme values of the
learning rate. Fig9(b) shows the detection output by using

the proposed feedback approach for learning rate. The new
dgetection through this approach have been highlighted.

(a) Scene 1 (b) Scene 2

Figure 8.The object size maps are computed for scene 1 (B)ig.

Fig. |9 presents results of automatic feedback for pixel-
wise update of the background learning rate. This camer



egular learning rate
ey L] e
B |yl

(b) Prosed Ieanng rate using feedback
Figure 9.Scene 3. Improvement in object detection using the proposed feedback approach for updating learning rate. Video sequence
progresses from left to right. (a) Using the uniform background learning pate0(01) for the whole scene. (b) Detection results using

the proposed approach for updating background learning rate. Red ellipses highlight the car that was not detected by the regular approach

but was later detected by our approach.

6. Conclusion [6] M. Harville. A Framework for High-Level Feedback to

We have presented a novel framework for unsupervised Adaptive, Per-Pixel, Mixture-of-Gaussian Background Mod-
learning of a scene model that captures object motion and els. ECCV, 2_002'2 )
size at every pixel location. The proposed framework pro- [7] W. Hu, X. Xiao, Z. Fu, D. Xie, and S. Maybank. A system
vides a means of performing higher level analysis to aug- for learning statistical motion P attemEPA.Ml’ 20062? '
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