
Reconstructing Non-stationary Articulated Objects in Monocular Video using
Silhouette Information

Saad M. Khan and Mubarak Shah
University of Central Florida, Orlando, FL, USA.

Abstract

This paper presents an approach to reconstruct non-
stationary, articulated objects from silhouettes obtained
with a monocular video sequence. We introduce the con-
cept of motion blurred scene occupancies, a direct analogy
of motion blurred images but in a 3D object scene occu-
pancy space resulting from the motion/deformation of the
object. Our approach starts with an image based fusion step
that combines color and silhouette information from multi-
ple views. To this end we propose to use a novel construct:
the temporal occupancy point (TOP), which is the estimated
3D scene location of a silhouette pixel and contains infor-
mation about duration of time it is occupied. Instead of ex-
plicitly computing the TOP in 3D space we directly obtain
it’s imaged(projected) locations in each view. This enables
us to handle monocular video and arbitrary camera motion
in scenarios where complete camera calibration informa-
tion may not be available. The result is a set of blurred
scene occupancy images in the corresponding views, where
the values at each pixel correspond to the fraction of to-
tal time duration that the pixel observed an occupied scene
location. We then use a motion de-blurring approach to
de-blur the occupancy images. The de-blurred occupancy
images correspond to a silhouettes of the mean/motion com-
pensated object shape and are used to obtain a visual hull
reconstruction of the object. We show promising results on
challenging monocular datasets of deforming objects where
traditional visual hull intersection approaches fail to recon-
struct the object correctly.

1. Introduction

In this paper we present a novel approach to reconstruct
the 3D shape of an object from silhouettes obtained in a
monocular video sequence with the object undergoing rigid
or non-rigid motion. Traditionally visual hull based ap-
proaches rely on object silhouettes obtained from multiple
time-synchronized cameras or if a single camera is used for
a fly-by (or a turn table setup) the scene is assumed to be

static. These constraints greatly limit the applicability of
visual hull based approaches to controlled laboratory con-
ditions. In real-life applications, a sophisticated multiple-
camera setup may not be available. If a single camera is
used to capture multiple views by going around the object,
it is not reasonable to assume that the object will remain
static over the course of time it takes to obtain views of the
object, especially if it is a person, animal or vehicle on the
move.

Though in the past there has been some work on us-
ing visual hull reconstruction in monocular video sequences
of rigidly moving objects to recover shape and motion
[13][9][2] [8], these methods involve the estimation of 6
DOF rigid motion of the object between successive frames.
To handle non-rigid motion the use of multiple cameras be-
comes indispensable [3]. Unlike these approaches we do
not require the detection of surface feature points in 3D
(frontier points, colored surface points) for the estimation
and eventual compensation of the motion of the scene ob-
ject. Rather we introduce the concept of motion blurred
scene occupancies, a direct analogy of the motion blurred
image but in a 3D object scene occupancy space. Similar to
a motion blurred picture caused by the movement of a scene
object (or the camera) and the camera sensor accumulating
scene information over the exposure time, 3D scene occu-
pancies will be mixed with non-occupancies where there
is motion resulting in a motion blurred occupancy space.
By de-blurring this data with appropriate point spread func-
tions (PSF), we are able to obtain the motion compensated
3D shape of the object. Note that our approach is differ-
ent from the traditional structure from defocus/deblur ap-
proaches [6] [10]. There the objective is to obtain a depth
map/surface of the scene from one or more blurred (out of
focus) appearance images by adjusting camera focal length,
or recovering motion of the object that caused the motion
blurred appearance.

Our approach takes a different route to recover structure
from multiple views obtained from a monocular video se-
quence of a non-stationary object. Instead of using motion
blurred appearance image/s we fuse silhouette information
from multiple views to create motion blurred scene occu-
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Figure 1. In case of a stationary object we can obtain the bounding edge for a pixel on the foreground silhouette by extending a ray through
the pixel and selecting the section of the ray that projects to within the bounds of silhouettes in all views. This process is shown in (a)
where the bounding edge corresponding to pixel p in view I2 is highlighted with a bold red segment of the red ray. When the object is
undergoing motion the ray through a silhouette pixel is not guaranteed to project to within the bounds of silhouettes of other views. In
this case for pixel p we have a temporal bounding edge which is the section of the ray through p that projects to the highest number of
silhouettes as shown in (b). The temporal occupancy point corresponding to p is also shown. This is the point on the temporal bounding
edge that when projected in the visible images has minimum color variance and is good estimate of the 3D scene point that is imaged at p.

pancy information, where greater blur (lesser occupancy
value) is interpreted as greater mixing of occupancy with
non-occupancy in the total time duration. We then use a mo-
tion deblurring approach to obtain the mean/motion com-
pensated 3D shape of the scene object over the duration of
time.

The rest of the paper is organized as follows. In section 2
we discuss related work. In section 3 we describe details of
our approach. In section 4 we report results from our exper-
iments on a variety of challenging scenarios. We conclude
this paper in section 5.

2. Related Work

Visual hull methods [1] can yield surprisingly accurate
shape models. Over the years a number of variants have
evolved including surface representation [14], voxel rep-
resentation [16], or image-based representation [11], ele-
gantly summarized and evaluated in a recent survey of the
literature [12]. A limiting constraint on these approaches
is the requirement of multiple time synchronized cameras,
or if only a monocular video sequence is available then the
scene object must remain static (in effect simulating multi-
ple views obtained at the same time). If both the object has
motion and we have a monocular video sequence then this
assumption is violated and the silhouettes obtained from the
different views no longer carve out the object’s visual hull.

In the relatively recent past approaches that combine vi-
sual hull and stereo reconstruction [4] have been proposed
to handle rigid motion of the object in monocular video. In
Wong et al. [13] the motion was assumed to be circular.
Frontier points were extracted from the silhouette bound-
ary and used to estimate the axis of rotation. In [9] a local

parabolic structure was defined on the surface of a smooth
curved object and epipolar geometry was used to localize
frontier points. In [2] the 6 DOF motion is estimated by
combining both color and silhouette information (CSPs). A
parallel work by Cheung et al. [3] can handle non-rigid mo-
tion of the object but requires the use of multiple cameras.

Our approach takes a different route to recover struc-
ture from a monocular video sequence of a non-stationary
object. We hypothesis that due to motion space occupan-
cies are mixed or blurred with non-occupancies over time.
Given a occupancy grid with occupancies accumulated over
time we propose to use a motion deblurring approach to ob-
tain the mean 3D shape of the scene object.

3. Approach

Silhouette information has been used in the past to esti-
mate occupancy grids for the purpose of detection and re-
construction. Due to the inherent nature of visual hull based
approaches if the silhouettes correspond to a non-stationary
object obtained at different time steps (monocular video),
grid locations that are not occupied consistently will be
carved out. As a result the reconstructed object will only
have an internal body core (consistently occupied scene lo-
cations) survive the visual hull intersection. Our first task
is therefore to identify occupancy grid locations that are oc-
cupied by the scene object and for the durations that they
are occupied. In essence scene locations giving rise to the
silhouettes in each view need to be estimated.

3.1. Obtaining Scene Occupancies

Let { It, St} be the set of color and corresponding fore-
ground silhouette information generated by a stationary ob-



ject O in T views obtained at times t = 1..., T in a monoc-
ular video sequence (e.g. the camera flying around the ob-
ject). Let pj

i be a pixel in the foreground silhouette image
Si. With the camera center of view i, pj

i defines a ray rj
i

in 3D space. If the scene object is stationary, then a por-
tion of rj

i is guaranteed to project inside the bounds of the
silhouettes in all the views, and in past literature it has been
referred to as the bounding edge [2], see figure 1(a). Assum-
ing the object to be Lambertian and the views to be color
balanced, the 3D scene point P j

i corresponding to pj
i can

be estimated by searching along the bounding edge for the
point with minimum color variance when projected to the
visible color images.

Now, if object O is non-stationary and P j
i is not consis-

tently occupied over the time period t = 1 : T then rj
i is

no longer guaranteed to have a bounding edge. There may
be no point on rj

i that projects to within object silhouettes
in every view, in fact there may be views where rj

i projects
completely outside the bounds of the silhouettes as shown
in figure 1(b). Since the views are obtained sequentially in
time, the number of views in which rj

i projects to within
silhouette boundaries would in turn put an upper bound
on the amount of time (w.r.t. to total duration of video)
P j

i is guaranteed to be occupied by O. Let us define as
temporal occupancy τ i

j , the fraction of total time instances

T (views) where rj
i projects to within silhouette boundaries

and temporal bounding edge ξj
i as the section of rj

i that this
corresponds to as shown in figure 1(b). We can formally
state aforementioned ideas in the following proposition:

Proposition For a silhouette point pi that is the image
of scene point Pi, τi provides an upper bound on the dura-
tion of time it is guaranteed to be occupied and determines
the temporal bounding edge ξi on which Pi must lie.

In the availability of scene calibration information, ξj
i

and τ j
i can be obtained by successively projecting rj

i in
the image planes and retaining the section that projects to
within the maximum number of silhouette images. To refine
our localization of the 3D scene point P j

i (corresponding
to the silhouette pixel pj

i ) along ξj
i , we develop another

construct called the temporal occupancy point obtained
by enforcing the appearance/color constancy constraint as
described in the next section.

3.1.1 Temporal Occupancy Points

If the views of the object are captured at a rate faster than it’s
motion, then without loss of generality a non-stationary ob-
ject O can be considered piece-wise stationary: O = { O1:s1 ,
Os1+1:s2 ,..., Osk:T }, where each si marks a time where
there is motion in the object. This assumption is easily sat-
isfied in high capture rate videos where for small batches

view 1  

pixel p

view 10

Motion of the object’s left arm in the time duration 
between view 1 and view 10. The temporal bounding
edge ξ and the projection of the TOP are also shown.

Projection in view 3 of the Temporal Occupancy
 Point (TOP) of pixel p in view 1. The bold red line
segment is the temporal bounding edge ξ. 

view 3  

Projection in views 3 and 10 of the 3D ray
through pixel p in view 1 and it’s camera center.

Figure 2. Three frames from a monocular sequence of a non-
rigidly deforming object (motion in the left arm after view 3). For
the pixel marked with a red circle in view 1 the projection of it’s
temporal bounding edges and TOPs are shown in views 3 and 10.

of frames non-stationary objects tend to be rigid. With the
previous assumptions of Lambertian surfaces and color bal-
anced views, having piece-wise stationarity would justify a
photo-consistency check along the temporal bounding edge
for scene point localization. We can then proceed with a lin-
ear search along the temporal bounding edge ξj

i for a point
that touched the surface of the object. Such a point will have
the property that it’s projection in the visible images has
minimum color variance (color constancy constraint). We
refer to this point as the Temporal Occupancy Point (TOP)
as shown in figure 1(b), and use it as the estimated localiza-
tion of the 3D scene point P j

i that gave rise to the silhouette
pixel pj

i .

In figure 2 we demonstrate this process on some real data
used in our experiments. The figure shows three views from
a monocular camera sequence (flyby) as the object moves
it’s left arm. Pixel p marked with a red circle corresponding
to the left hand in view 1 is selected for demonstration. The
3D ray back projected through this pixel is imaged in views
3 and 10, shown by the red lines. Notice that due to the mo-
tion of the object (left arm moving down) in the time dura-
tion between views 1 and 10, the ray does not pass through
the corresponding left hand pixel in view 10 (marked with
a blue circle). In fact the projection of the ray is completely
outside the bounds of the object silhouette in view 10. The
temporal bounding edges and the TOPs corresponding to
pixel p are computed and their projections in view 3 and 10
are also shown.

Since we are using monocular video sequences, it may
not be the case that we have complete camera calibration
at each time instant, particularly if the camera motion is
arbitrary. Our strategy is therefore to use a purely image-
based approach. For each silhouette pixel, instead of deter-
mining it’s corresponding TOP explicitly in 3D space, we
directly obtain the projections (images) of the TOP in each
view. If the object was stationary and the scene point visible
in every view, then a simple stereo based search algorithm
could be used. Given the fundamental matrices between
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Figure 3. In the absence of complete camera calibration, 3D scene
points on a ray passing through a pixel can be directly imaged
in other views by warping the pixel with homographies induced
between views by a pencil of parallel planes intersecting the ray.

views, the ray through a pixel in one view can be directly
imaged in other views using the epipolar constraint [17].
The images of the TOP can then be obtained by searching
along the epipolar lines (in the object silhouette regions)
for a correspondence across views that has minimum color
variance. Since neither the object is stationary nor the scene
point guaranteed to be visible from every view, a stereo
based approach as described above is not viable. As can
be seen in figure 2, pixel p in view 1 has an epipolar line
in view 10 (image of the projected ray through p) that is
outside the bounds of the object silhouette making it im-
possible to search along the epipolar line for a correct cor-
respondence. We, therefore, propose to use homographies
induced between views by a pencil of planes for a point to
point transformation.

Consider figure 3. The image of the 3D scene point
Pφ (corresponding to the image point pref in the reference
view) can be directly obtained in other views by warping
pref with the homography induced by a plane φ that passes
through Pφ as shown in figure 3. To obtain this homogra-
phy, we can use a ground plane reference system. Given
the homography induced by a ground scene plane and the
vanishing point of the normal direction, homographies of
planes parallel to the ground plane in the normal direction
can be obtained using the following relationship [7]:

Hiφj = (Hiπj + [0|γvref ])(I3x3 − 1
1 + γ

[0|γvref ]). (1)

The parameter γ determines how far up from the reference
(ground in our case) plane, the new plane is. The projection
of the temporal bounding edge ξj

i in the image planes can be
obtained by warping pj

i with homographies of successively
higher planes (by incrementing the value of γ) and selecting
the range of γ for which pj

i warps to within the largest num-
ber of silhouette images. The image of pj

i ’s TOP in all the
other views is then obtained by finding the value of γ in the
previously determined range, for which pj

i and its homo-
graphically warped locations have minimum color variance
in the visible images. The upper bound on occupancy du-

ration τ j
i is evaluated as the ratio of the number of views

where ξj
i projects to within silhouette boundaries and the

total number of views. This value is stored at the imaged
locations of pj

i ’s TOP in all other views.

3.1.2 Building Blurred Occupancy Images

As described above, for a silhouette pixel we can obtain
the image location of its TOP in every other view. We uni-
formly sample the boundary of the object silhouette in each
view and project their TOPs in all the views. The accu-
mulation of these projected TOPs delivers a corresponding
set of images that we call the blurred occupancy images:
Bt; t = 1, ..., T . The pixel values in each image are the
occupancy durations τ of the TOPs. Examples are shown
in figure 4 and the analogy with motion blurred images is
apparent. Due to the motion of the object, regions in space
are not consistently occupied resulting in some occupancies
blurred out with non-occupancies which is reflected in the
blurred occupancy images. The algorithmic procedure is
described in the following steps:

Generate blurred occupancy images Bt; t = 1, ..., T .

• for each silhouette image

– Uniformly sample silhouette boundary

– for each sampled silhouette pixel p

1. Obtain temporal bounding edge ξ and
occupancy duration τ

∗ As described in 3.1.1 transform
p to other views using multiple
plane homographies.

∗ Select range of γ (planes) for
which p warps to within the sil-
houette boundaries of the largest
number of views.

2. Find projected location of TOP in all
other views

∗ Search along ξ (values of plane γ)

∗ Project point to visible views

∗ Return if minimum variance in
appearance amongst the views.

3. Store value τ at projected locations of
TOP in each Bt.

– End for.

• End for.

3.2. Motion Deblurring

The motion blur in the blurred occupancy images can be
modelled as the convolution of a blur kernel with the latent
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Figure 4. (a) Eight of the 20 views from a monocular dataset. No-
tice the left arm of the model is moving (compare first and last
images). (b) Two of the 20 blurred occupancy images. Due to the
motion of the arm some sections of the scene (where the moving
arm passes through) are not consistently occupied resulting in the
blurred silhouette/occupancy images.

occupancy image plus noise:

B = L ⊗ K + n, (2)

where B is the blurred occupancy image, L is the latent
or unblurred occupancy image, K is the blur kernel also
known as the point spread function (PSF) and n is addi-
tive noise. Conventional blind deconvolution approaches
focus on the estimate of K to deconvolve B using image
intensities or gradients. In traditional images, there is the
additional complexity that may be induced by the back-
ground that may not undergo the same motion as the ob-
ject. The PSF has a uniform definition only on the mov-
ing object. This however is not a factor in our case since
the information in blurred occupancy images corresponds
only to the motion of the object. Here we do not propose
a new method to compute the blur PSF since that is not the
focus of this work and there have been several successful
blind deconvolution algorithms developed in the recent past
[19][18][20]. We use an approach similar to the recent work
by Jia [21]. They first segment the foreground object as a
blurred transparency layer and use the transparency infor-
mation in a MAP framework to obtain the blur kernel. By
avoiding taking all pixel colors and complex image struc-
tures into computation their approach has the advantage of
simplicity and robustness but requires the estimation of the
object transparency or alpha matte. The object occupancy

information in our blurred occupancy maps once normal-
ized in the [0-1] range and can be directly interpreted as
the transparency information or an alpha matte of the fore-
ground object.

The blur filter estimation maximizes the likelihood that
the resulting image, when convolved with the resulting PSF,
is an instance of the blurred image, assuming Poisson noise
statistics. The process de-blurs the image and refines the
PSF simultaneously, using an iterative process similar to the
accelerated, damped Lucy-Richardson algorithm. We start
with an initial guess of the PSF as simple translational mo-
tion. This is fed into the blind deconvolution approach that
iteratively restores the blurred image and refines the PSF
to deliver the de-blurred occupancy maps Lt; t = 1, ..., T,
which are used in the final reconstruction.

It should be noted that our deblurring approach assumes
uniform motion blur but that may not be the case in nat-
ural scenes. For instance due to the difference in motion
between the arms and the legs or a walking person the blur
patterns in occupancies may be different and hence different
blur kernels will need to be estimate for each section. This
is a very challenging problem and though there is some very
recent work on estimating blur kernels in the case of non-
uniform blurring [22], this problem is beyond the scope of
this work and will be addressed in future studies. In our
method for PSF estimation the user specifies different crop
regions of the blurred occupancy images each with uniform
motion, which are then restored separately.

3.3. Final Reconstruction

Once motion deblurred occupancy images have been
generated, the final step is to perform a probabilistic vi-
sual hull intersection. Conventional approaches can be used
[15] and for our purposes the recent image-based approach
of Khan et al. [7] is suitable as it handles arbitrary camera
motion without requiring full calibration. We here provide
a brief description of this approach, interested readers are
directed to [7] for details.

The 3D structure of objects is modelled as being com-
posed of an infinite number of cross-sectional slices, with
the frequency of slice sampling being a variable determin-
ing the granularity of the reconstruction. Using planar ho-
mographies induced between views by a reference plane in
the scene (ground) occupancy maps Lis’ (foreground sil-
houette information) from all the available views are fused
into a reference view (arbitrarily chosen) performing visual
hull intersection in the image plane. This process deliv-
ers a 2D grid of object occupancy likelihoods representing
a cross-sectional slice of the object. Consider a reference
plane π in the scene inducing homographies Hiπj , from
view i to view j. Warping Lis to a occupancy map in a ref-
erence view Lref , we have the warped occupancy maps:
Îi = [HiπjLi]. Visual hull intersection on π is achieved by
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Figure 5. After deblurring these are used to perform a slice based
reconstruction of the object (b) Three of the 100 slices are overlaid
onto a reference view (deblurred occupancy map). (c) The slices
are shown separately.

fusing the warped occupancy maps:

θref =
n∏

i=1

L̂i, (3)

where θref is the projectively transformed grid of object
occupancy likelihoods or an object slice. Notice how using
this homographic framework visual hull is being performed
in the image plane without requiring to go in 3D space.

Subsequent slices or θs of the object are obtained by ex-
tending the process to planes parallel to the reference plane
in the normal direction. Homographies of these new planes
can be obtained using the relationship in equation 3. Occu-
pancy grids/slices are stacked on top of each other creating
a three dimensional data structure: Θ = [θ1; θ2; . . . θn] that
encapsulates the object shape. Θ is not an entity in the 3D
world or a collection of voxels. It is, simply put, a logi-
cal arrangement of planar slices, representing discrete sam-
plings of the continuous occupancy space. Object structure
is then segmented out from Θ i.e., simultaneously from all
the slices by evolving a smooth surface S : [0, 1] → R

3

using level sets that divides Θ between the object and the
background similar to the approach in [5].

4. Results and Experiments

We have tested our approach on several challenging
monocular datasets. Figure 4 shows our ‘The Thing’
dataset. It consists of 20 views of a humanoid model cap-
tured with a camera moving around the object while the ob-
ject deforms non-rigidly. (The left arm of the model is mov-
ing). In figure 4(b) two of the twenty blurred occupancy
images (one in each view) produced using our approach are
shown. Notice the occupancies in the region surrounding
the left arm are blurred due to the motion of the arm. This
region is selected and shown with more detail in the im-
ages in the second row of 4(b) together with the deblurred
results. The motion deblurred occupancy images are then

(a) (b)

Our approach Tradiation VH

Figure 6. (a) Different views of the final reconstruction of the
dataset shown in figure 4. Notice how the left arm of the model
that undergoing non-rigid motion is accurately reconstructed. (b)
Shows the reconstruction if traditional visual hull intersection is
used on the same data. The arm is carved out due to the motion.

used to reconstruct the object using the image-based ap-
proach as described in section 3.3. A hundred slices were
used to reconstruct the object. In figure 5(a) the reference
view (from the deblurred occupancy images) used in recon-
struction is shown with three of the hundred slices overlaid.
The slices are also shown separately in log scale in 5(b)
(redder is higher likelihood).

Figure 6(a) shows our reconstruction results. Notice that
the left arm of the model that is undergoing motion is ac-
curately reconstructed. There is some loss of detail in the
reconstruction primarily due to limited number of views
(twenty) and since we did not use 3D calibration (monocu-
lar un-calibrated camera sequence), performing visual hull
intersection on cross-sectional slices using planar homogra-
phies. Yet to qualitatively assess the accuracy of our results
we show in figure 6 (b) the reconstruction if the object is
assumed to be rigid during the sequence and our occupancy
deblurring approach is not used. It can be clearly seen that
the left arm of the model is carved out by the visual hull
intersection due to it’s motion.

4.1. Quantitative Analysis

To quantitatively analyze our algorithm we conducted
an experiment in which we obtained several monocular se-
quences of an object. In each flyby of the camera the object
was kept stationary but after each cycle the posture of the
object changed a little. We call this the ‘Superman’ dataset
and is shown in figure 7(a). It consists of seven flybys of the
camera around the object as the object deforms (both arms
moving) after each sequence but is rigid within each. We
call these the rigid sequences and each consists of 14 views
of the object at a resolution of 480x720 with the object oc-
cupying a region of approximately 150x150 pixels. Figure
7(a) shows three of the seven rigid sequences. Notice the
changing postures of the object between sequences. This
data was used to obtain seven rigid reconstructions of the
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Figure 7. (a) Each row shows four views (of fourteen) from one
of the seven monocular sequences in the dataset. The object is
rigid within each sequence but changes posture between sequences
by moving the arms (notice both arms moving progressively in-
wards). A monocular sequence of a non-rigidly deforming object
is assembled by selecting two views in order from each rigid se-
quence. (b) The blurred occupancy image (one of fourteen) pro-
duced using our approach. The cropped, detail sections on the
arms are shown on the right together with the deblurred results.

object, three of which are shown in figure 8(a).

A monocular sequence of a non-rigidly deforming ob-
ject was assembled by selecting two views from each rigid
sequence in order, thereby creating a set of fourteen views
of the object as it changes posture (deforms non-rigidily).
Reconstruction on this assembled non-rigid, monocular se-
quence was performed using our occupancy de-blurring ap-
proach and the visualization of the results are shown in fig-
ure 8(b). Notice using our approach the arms of the object
are accurately reconstructed which are carved out when tra-
ditional visual hull intersection is used as shown in figure
8(c). For a quantitative analysis we compared our recon-
struction results with each of the seven reconstructions from
the rigid sequences. All the reconstructions were aligned in
3D (w.r.t the ground plane coordinate system) and the sim-
ilarity was evaluated using a measure of the ratio of over-
lapping and non-overlapping voxels in the 3D shapes. The
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Figure 8. (a) Three of the seven visual hull reconstructions from
the seven rigid sequences shown in figure 7(a). (b) Visualization of
the reconstruction using our occupancy deblurring approach on the
assembled non-rigid monocular sequence. Notice that the mov-
ing arms are accurately reconstructed using our approach but are
carved out if we use conventional visual hull intersection that as-
sumes the object is rigid as can be seen in the visualization in(c).

similarity measure is described as:

Si =

(∑
∀v∈R3

(
(v ∈ Otest) ⊕ (v ∈ Oi

rig)
)

∑
∀v∈R3

(
(v ∈ Otest) ∧ (v ∈ Oi

rig)
)
)2

, (4)

where v is a voxel in the voxel space R
3, Otest is the 3D re-

construction that needs to be compared with, Oi
rig the visual

hull reconstruction from ith rigid sequence. Si is the simi-
larity score i.e. the square of the fraction of non-overlapping
to overlapping voxels that are a part of the reconstructions,
closer Si is to zero greater the similarity.

In figure 9 we show a plots of the similarity measure.
For the red plot (traditional visual hull reconstruction) the
similarity is consistently quite low (measure high). This is
expected since the moving parts of the object (arms) are
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Figure 9. Plot of the similarity measure between reconstructions
from the assembled monocular sequence and the rigid sequences
in the ’Superman’ dataset.

carved out by the visual hull intersection as can be seen in
the visualization of this reconstruction in figure 8(c). For
the blue plot (our approach) notice a clear dip in the simi-
larity measure value at rigid shape 4 demonstrating quanti-
tatively that the result of using our approach is most similar
to this shape. This also corroborates what can be visually
observed by comparing our reconstruction results shown in
figure 8(b) with the reconstruction of the fourth rigid se-
quence shown in the second row of figure 8(a).

5. Conclusions

We have proposed an image-based approach to recon-
struct non-stationary, articulated objects from silhouettes
obtained with a monocular video sequence. Our approach
starts with an silhouette fusion step that combines color and
silhouette images to produce the blurred occupancy images,
where the values at each pixel correspond to the fraction of
the total time duration that the pixel observed an occupied
scene location. We then use a motion de-blurring approach
to de-blur the occupancy images. The de-blurred occupancy
images correspond to a silhouettes of the mean/motion-
compensated object shape and are used to obtain a visual
hull reconstruction of the object. We have shown com-
pelling results on challenging monocular datasets of non-
stationary, articulated motion where traditional visual hull
intersection approaches fail to reconstruct the object cor-
rectly.
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