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Abstract

In this paper we introduce a novel method to detect and

localize abnormal behaviors in crowd videos using Social

Force model. For this purpose, a grid of particles is placed

over the image and it is advected with the space-time av-

erage of optical flow. By treating the moving particles as

individuals, their interaction forces are estimated using so-

cial force model. The interaction force is then mapped into

the image plane to obtain Force Flow for every pixel in ev-

ery frame. Randomly selected spatio-temporal volumes of

Force Flow are used to model the normal behavior of the

crowd. We classify frames as normal and abnormal by using

a bag of words approach. The regions of anomalies in the

abnormal frames are localized using interaction forces. The

experiments are conducted on a publicly available dataset

from University of Minnesota for escape panic scenarios

and a challenging dataset of crowd videos taken from the

web. The experiments show that the proposed method cap-

tures the dynamics of the crowd behavior successfully. In

addition, we have shown that the social force approach out-

performs similar approaches based on pure optical flow.

1. Introduction

One of the most challenging tasks in computer vision is

analysis of human activity in crowded scenes. While under-

standing of actions performed by individuals is a problem

yet to be fully solved, crowd scene analysis faces even more

challenges like emergent behaviors and self-organizing ac-

tivities [11].

Crowd behavior analysis in computer vision is a new

area of interest in the research community which could po-

tentially lend itself to a host of new application domains,

such as automatic detection of riots or chaotic acts in crowds

and localization of the abnormal regions in scenes for high

resolution analysis.

Crowd behavior analysis is thoroughly studied in the

field of transportation and public safety where some well-

established models have been developed for describing the
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Figure 1. (a) The Optical flow (yellow) and the computed inter-

action force (red) vectors of two sampled frames. Note that the

interaction force is computed accordingly for pedestrians who are

approaching each other (red box). (b) An example of detection

of escape panic using the proposed approach. Green denotes the

normal and red denotes the abnormal frame.

individual and group behaviors in crowded scenes [17][18].

At high level, there are three main approaches in model-

ing the crowds in this community. (1) Microscopic ap-

proach which defines pedestrians’ motivation in movement

and treats crowd behaviors as a result of a self-organization

process. Social Force Model by Helbing et al. in [17] is

the best known example of this approach. (2) Macroscopic
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approach which focuses mainly on goal-oriented crowds.

In this approach, a set of group-habits is determined based

on the goals and destinations of the scene. Pedestrians are

then partitioned into different groups to follow the predeter-

mined habits. Therefore, instead of determining the motion

of individuals the group behaviors are modeled [18][13]. (3)

Hybrid methods which inherit from macroscopic models as

well as microscopic ones [28].

Based on socio-psychological studies, Helbing et al. in

[17] originally introduced Social Force model to investi-

gate the pedestrian movement dynamics. The social force

captures the effect of the neighboring pedestrians and the

environment on the movement of individuals in the crowd.

Later, Helbing published his popular [10] work in combin-

ing the collective model of social panic with social force

model to create a generalized model. In this model, both

psychological and physical effects are considered in formu-

lating the behavior of the crowd.

Recently, the computer vision community has focused

on crowd behavior analysis. In [6] a review of the latest re-

search trends and approaches from different research com-

munities is provided. There are two main approaches in

solving the problem of understanding crowd behaviors. In

the conventional approach, which we refer as the “object-

based” methods, a crowd is considered as a collection of

individuals [22][19]. Therefore, to understand the crowd

behavior it is necessary to perform segmentation or de-

tect objects to analyze group behaviors [7]. This approach

faces considerable complexity in detection of objects, track-

ing trajectories, and recognizing activities in dense crowds

where the whole process is affected by occlusions. On

the other hand, “holistic” approaches [15][2] consider the

crowd as a global entity in analysis of medium to high den-

sity scenes. In related works by Avidan et al. in [23] and

Chan and Vasconcelos in [8], instead of tracking individ-

ual objects, scene modeling techniques are used to capture

features for the crowd behavior and car traffic respectively.

These are top-down approaches which directly tackle the

problem of dense occluded crowds in contrast to the object-

based methods. In addition, there are some works that mix

the bottom-up view of object-based methods with top-down

methods such as Ali and Shah’s [3] for tracking humans in

very dense crowds.

Meanwhile, crowd behavior analysis has been an ac-

tive research topic in simulation and graphic fields where

the main goal is to create realistic crowd motions. The

real crowd motion exhibits complex behaviors like line

forming [18], laminar and turbulent flow [14][29], arch-

ing and clogging at exits, jams around obstacles [17], and

panic [10]. Exact simulation of a crowd using behav-

ior modeling leads to design of proper public environ-

ments that minimize the possibility of the hazardous events.

Furthermore, in the graphics community, accurate mod-
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Figure 2. The summary of the proposed approach for abnormal

behavior detection in the crowd videos.

eling of the crowd movements is used to create realis-

tic special effects of crowds without the need for human

actors[25][9][20][27].

1.1. Overview of the Method

In this paper, we introduce a computer vision method

to detect and localize abnormal crowd behavior using the

Social Force model [17]. Social force model describes the

behavior of the crowd as the result of interaction of individ-

uals. Therefore, the abnormal crowd behavior is essentially

an eccentric state of the crowd interactions. Since social

force model in [17] emulates the crowd dynamics with a

high degree of accuracy, we conclude that abnormal social

forces in the crowd portray abnormal behaviors. We esti-

mate the social force parameters to create a model of likely

behaviors in the crowd.

Figure 2 summarizes the main steps of the algorithm. In

our method, we avoid tracking of objects to avert typical

problems in tracking of high density crowds such as exten-

sive clutter and dynamic occlusions. Instead, we incorpo-

rate a holistic approach to analyze videos of crowds using

the particle advection method similar to [2]. In this ap-

proach, we place a grid of particles over the image and move

them with the underlying flow field. We compute the social

force between moving particles to extract interaction forces.

In a crowd scene, the change of interaction forces in time

determines the on going behavior of the crowd. We cap-

ture this by mapping the interaction forces to image frames.

The resulting vector field is denoted as force flow, which

is used to model the normal behaviors in a bag of words

approach [12].

Andrade et al. [15] proposed a method for event detec-

tion in the crowd scene using HMM. However, the princi-

pal contribution of our work is to capture dynamics of the

interaction forces in the crowd in addition to optical flow.

Antonini et al. [16] reported a model for describing pedes-

trian behaviors to enhance tracking and detection. On the

contrary, our primary goal is to introduce a holistic method

independent of object tracking to detect abnormal crowd be-

haviors. Ali and Shah in [2] proposed a method for segmen-

tation of high density crowds by introducing a method based

on Coherent Structures from fluid dynamics and particle ad-



vection. Their method is capable of detecting instabilities

in the crowd by identifying changes in the segmentation.

Even though our work uses the same framework for particle

advection, we use a completely different course by estimat-

ing the interaction forces of people in the crowd and detect

anomalies directly without segmentation.

The organization of this paper is as follows. In the next

section we introduce Social Force model for modeling the

crowd movement. In Section 3 we introduce our method

to estimate the social forces in the crowd. Section 4 de-

scribes the proposed method to detect abnormal behaviors

in the crowd. Finally, in Section 5 we demonstrate abilities

of the approach to detect and localize abnormal behaviors

on a publicly available dataset.

2. Social Force Model

In the following, we describe social force model for

pedestrian motion dynamics by considering personal mo-

tivations and environmental constraints. In this model, each

of N pedestrians i with mass of mi changes his/her velocity

vi as

mi

dvi

dt
= Fa = Fp + Fint, (1)

as a result of actual force Fa, and due to individualistic

goals or environmental constraints. This force consists of

two main parts: (1) personal desire force Fp, and (2) inter-

action force Fint.

People in crowds generally seek certain goals and desti-

nations in the environment. Thus, it is reasonable to con-

sider each pedestrian to have a desired direction and veloc-

ity v
p
i . However, the crowd limits individual movement and

the actual motion of pedestrian vi would differ from the de-

sired velocity. Furthermore, individuals tend to approach

their desired velocity v
p
i based on the personal desire force

Fp =
1

τ
(vp

i − vi), (2)

where τ is the relaxation parameter.

The interaction force Fint consists of the repulsive and

attraction force Fped based on psychological tendency to

keep a social distance between pedestrians and an environ-

ment force Fw to avoid hitting walls, buildings, and other

obstacles. Therefore, the interaction force is defined as

Fint = Fped + Fw. (3)

It is logical to model pedestrians such that they keep

small distances with people they are related or attracted to

and keep far distances from discomforting individuals or en-

vironments. In social force model, these forces are defined

based on potential fields functions. Further elaboration of

this issue is not in the interest of this paper and readers

are referred to [17] and [10] for detailed discussion of these

functions. In this paper, we focus our attention to estimate

the interaction force Fint between pedestrians as a single

quantity.

Generalized social force model considers the effect of

panic where herding behaviors appear in event like escaping

from a hazardous incident. In this model, personal desire

velocity v
p
i is replaced with

v
q
i = (1 − pi)v

p
i + pi〈v

c
i 〉, (4)

where pi is the panic weight parameter and 〈vc
i 〉 is the aver-

age velocity of the neighboring pedestrians. The pedestrian

i exhibits individualistic behaviors as pi → 0 and herd-

ing behaviors as pi → 1. Overall, generalized social force

model can be summarized as

mi

dvi

dt
= Fa =

1

τ
(vq

i − vi) + Fint. (5)

Generalized social force model is the cornerstone for

many studies in simulation of crowd behavior [14] [29][26]

in addition to the studies in computer graphics [21][5][25]

for creating realistic animations of the crowd. Furthermore,

estimation of parameters of the model provides valuable in-

formation about the governing dynamics of the crowd [4].

3. Estimation of Interaction Forces in Crowds

In this section, we describe the process of estimation of

interaction forces Fint from a video of a crowd using so-

cial force model. The ideal case for computing the social

force is to track all objects in the crowd and estimate the

parameters as in [4]. However, tracking of individuals in a

high density crowd is still a challenging problem in com-

puter vision [3]. In a nutshell, low resolution images of the

objects in the dense crowd, dynamic and static occlusions,

and similarity of the objects have made the tracking of in-

dividuals in the crowd a daunting task. Therefore, in the

crowded scenes, object-based methods fall short in accurate

estimation of social force parameters.

It has been observed that when people are densely

packed, individual movement is restricted and members of

the crowd can be considered granular particles [3]. Thus, in

the process of estimating the interaction forces, we treat the

crowd as a collection of interacting particles. Similar to [2],

we put a grid of particles over the image frame and move

them with the flow field computed from the optical flow. To

analyze the scene, we treat moving particles as the main cue

instead of tracking individual objects. As the outcome, the

proposed method does not depend on tracking of objects;

therefore, it is effective for the high density crowd scenes as

well as low density scenes. Furthermore, the particle advec-

tion captures the continuity of the crowd flow which neither

optical flow nor any instantaneous measure could capture

[24] [2].



Figure 3. An example of particle advection using the average opti-

cal flow field and the corresponding interaction forces. (Left) The

trajectories of a small set of particles are depicted for demonstra-

tion. (Right) The set of computed interaction forces of particles.

In the next section we describe a modification of social

force model to operate on moving particles instead of pedes-

trians and we discuss the advection of particles using the

optical flow. In Section 3.2, we introduce the modification

of the generalized social force model for particle advection.

3.1. Particle Advection

To advect particles, we compute the average optical flow

field Oave, which is the average of the optical flow over a

fixed window of time and as well as space. The spatial aver-

age is done by a weighted average using a gaussian kernel.

To start the particle advection process, we put a grid of N

particles over the image and move the particles with the cor-

responding flow field they overlay. The effective velocity of

particles is computed using a bilinear interpolation of the

neighboring flow field vectors.

Using the described particle advection process, particles

move with the average velocity of their neighborhood. This

resembles the collective velocity of a group of people in the

crowd. Figure 3 illustrates a example of particle advection.

3.2. Computing the Social Force

As a tangible analogy, the particles moving by optical

flow resemble the motion of the leaves over a flow of water.

This notion helps in understanding the modification of so-

cial force model for the particle grid. In the case of leaves,

wherever there is an obstacle, joining, or branching of the

fluid, the leaves have different velocities than the average

flow. By analogy, we conclude that particles are also ca-

pable of revealing divergent flows in the regions that their

desired movement is different from the average flow.

We modify Equation 5 for particle advection by defining

the actual velocity of the particle vi as

vi = Oave(xi, yi), (6)

where Oave(xi, yi) is the effective spatio-temporal aver-

age of optical flow for the particle i and in the coordinate

(xi, yi). We write the desired velocity of the particle v
q
i as

v
q
i = (1 − pi)O(xi, yi) + piOave(xi, yi), (7)

where O(xi, yi) is the optical flow of particle i in the co-

ordinate (xi, yi). The effective average flow field and ef-

fective optical flow of particles are computed using linear

interpolation.

Using the above modification, particles move with the

collective velocity of the flow of the crowd. Furthermore,

each particle has a desired velocity which depends on the

current optical flow. Hence, any difference between the de-

sired velocity of the particle and its actual velocity relates to

interaction of the particle with the neighboring particles or

the environment. Figure 3 demonstrates an example of the

computed interaction force for a sub-sample set of particles.

Without loss of generality, for a given scene or certain

type of crowd with consistently similar sizes of objects, we

assume that mi = 1. Hence, we can simply estimate inter-

action force, Fint, from equation 5 for every particle as

Fint =
1

τ
(vq

i − vi) −
dvi

dt
. (8)

4. Event Detection

The computed interaction forces determine the synergy

between advecting particles. However, discrete value of

forces is not a clear evidence of abnormal behaviors. For in-

stance, in a normal scene of a stock market, the interaction

force of stock brokers would be quite higher than the inter-

action forces of walking pedestrians in a street scene. In

other words, the instantaneous forces in a scene do not dis-

criminate the abnormalities but the pattern of forces over a

period of time does. In the following, we propose a method

to model the normal patterns of forces over time.

In this method, we map the magnitude of the interaction

force vectors to the image plane such that for every pixel in

the frame there is a corresponding force vector. As a result,

for a stream of image frames I(t) of m pixels, we construct

a feature matrix of force flow Sf (t) of the same resolution.

Figure 5 illustrates force flow for a sample of frames of a

video stream.

The process of identifying the likely patterns in the Sf (t)
is a special case of scene modeling which is considerably

studied in computer vision. The bag of words [12] method

is one of the typical candidates for such an analysis. In

this paper, we consider using bag of words method to esti-

mate the likelihood force flow Sf (t) and we use only nor-

mal videos for training LDA.

To use LDA, we partition the force flow into blocks of T

frames which we refer as Clips. Next, from each clip Dj ,

K visual words Zj are extracted. We randomly pick visual

words of size n× n× T from locations in force flow where

corresponding optical flow is not zero. Finally, a code book

of size C is formed using K-means clustering. Figure 4

illustrates the process of computing force flow and the ex-

traction of visual words.
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Figure 4. The overall demonstration of the algorithm. Using the average optical flow field, a grid of particles is updated and the interaction

forces between particles are computed. The forces are mapped back to the image space to construct the force flow. Visual words are

randomly picked as 3D volumes of features from the force flow to use in LDA model.

Figure 5. Examples of the computed force field for one example

video sequence. The image on the top left is the first frame, and

the rest are sample frames of the sequence with alpha channel of

forces overlayed. The color map Jet is used so red values represent

higher forces where as blue values represent low force flow.

Therefore, for a set of normal force flows of a given

scene or a group of similar scenes, we construct the cor-

pus D = {D1,D2,D3, ...,DM} and we use Latent Dirich-

let Allocation (LDA) [12] to discover the distribution of L

topics for the normal crowd behavior. Using the modified

Expectation Maximization (EM) algorithm in [12], we ap-

proximate the bag of words model to maximize the likeli-

hood of corpus as

ℓ(α, β) =
M∑

j=1

log p(Dj |α, β), (9)

where α and β are the learned model parameters. By us-

ing the model, we estimate the likelihood log p(Dj |α, β)
for every clip from the video sequence. Based on a fixed

threshold on the estimated likelihood, we label frames as

normal or as abnormal.

4.1. Localization of Abnormalities

Using LDA model with force flows, we distinguish ab-

normal frames from the normal frames. Although it is really

helpful to localize regions in the frame that correspond to

the abnormalities, the bag of words method does not implic-

itly provide a method to localize the unlikely visual words.

As we discussed earlier, the force flow reveals the interac-

tion forces in the scene, which correspond to the activities

in the scene. In an abnormal scene, we expect the anomalies

to occur in active regions or the regions with higher social

interactions. Therefore, we localize abnormalities in the ab-

normal frame by locating the regions of high force flow.

5. Experiments and Discussion

5.1. The UMN Dataset

The approach is tested on the publicly available dataset

of normal and abnormal crowd videos from University of

Minnesota [1]. The dataset comprises the videos of 11 dif-

ferent scenarios of an escape event in 3 different indoor and

outdoor scenes. Figure 6 shows sample frames of these

scenes. Each video consists of an initial part of normal be-

havior and ends with sequences of the abnormal behavior.

In the particle advection phase, the resolution of the par-

ticle grid is kept at 25% of the number of pixels in the

flow field for computational simplicity. For computation

of the interaction forces, the panic parameter is kept fixed

as pi = 0. Therefore, the interaction forces are computed

by assuming that the crowd is not in panic in normal mo-

tion. As a result, any high magnitude interaction force re-

lates to activities different from the collective movement of

the crowd. The force flow is computed by linear mapping

of the force field into an image of the same resolution as the

video frame. For construction of visual words, we used 3D
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Figure 6. Sample frames in three different scenes of the UMN

dataset: Normal (left) and abnormal (right).

volumes of 5 × 5 × 10. K = 30 visual words are extracted

from block of T = 10 frames of force flow with one frame

overlap. The final codebook contains C = 10 clips. The

LDA is used to learn L = 30 latent topics.

To evaluate the approach, 5 different video sequences of

the first scene are selected and LDA model is created for

visual words from the frames with normal behavior. The

trained model is used to estimate the likelihood of being

normal for blocks of T frames. Therefore, the method chops

any input video into clips of T frames and labels all frames

in each clip as normal or abnormal. Figure 7 shows some

of the qualitative results for detection of abnormal scenes.

In each row, the figure depicts the first frame of the se-

quence on the left and a detected abnormal frame on the

right. The black triangles on the horizontal bars identify

the timing of the shown abnormal frames. The false posi-

tive detections in Figure 7 are result of incorrect estimation

of social forces. Overall, these results show that estimated

social force model is capable of detecting the governing dy-

namics of the abnormal behavior, even in the scenes that it

is not trained. All videos in the dataset exhibit behavior of

escape panic and the proposed approach successfully mod-

els the dynamics of the abnormal behavior regardless of the

scene characteristics.

In addition, we demonstrate the power of the proposed

social force model in capturing the abnormal behaviors in

contrast to use of optical flow. In this experiment, instead

of force flow, we use spatio-temporal patches of optical flow

as visual words. Thus, we create a codebook from optical

flow information to learn a LDA model. We use the same

parameters for LDA training in the experiment with optical

flow. Therefore, the blocks of 10 frames of the magnitude

of the optical flow are used as clips to learn the distribution

of latent topics and to compute the likelihood of frames. We

use the same dataset for this experiment with the same set

of parameters for learning LDA model. The ROC curves

in Figure 9 illustrate that the the proposed method outper-

forms the method based on pure optical flow in detecting

Ground Truth

Detection Result

Ground Truth

Detection Result

Ground Truth

Detection Result

Ground Truth

Detection Result
Frame # 186

Frame # 216

Frame # 473

216Frame # 

Figure 7. The qualitative results of the abnormal behavior detec-

tion for four sample videos of UMN dataset. Each row represents

the results for a video in the dataset. The ground truth bar and

the detection bar represent the labels of each frame for that video.

Green color represents the normal frames and red corresponds to

abnormal frames. The left column shows the first frame of the

video and the right column is the first frame of the detected abnor-

mal block (black triangles).

abnormalities, and Table 1 provides the quantitative results

of the comparison.

In Figure 8, we demonstrate the qualitative results of lo-

calization of abnormal behaviors in the crowd, where the

escaping individuals are highlighted as abnormal areas of

frames. The results show that the interaction forces are ca-



Method Area under ROC

Social Force 0.96

Pure Optical Flow 0.84

Table 1. The comparison of the use of the proposed social force

method and pure optical flow for detection of the abnormal behav-

iors in the UMN dataset.

Figure 8. The localization of the abnormal behaviors in the frames

using the interaction force. Original frames (left), Localized ab-

normal behaviors(right). Red pixels correspond to the the highly

probable abnormal regions.
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Figure 9. The ROCs for detection of abnormal frames in the UMN

dataset. Proposed method (Red) outperforms use of pure optical

flow (Blue).

pable of locating the abnormalities in the regions that are

occupied by the crowd. As the figure shows, the proposed

method provides regions of abnormality and does not label

individuals.

5.2. The Web Dataset

To evaluate our method in practical applications, we con-

duct an experiment on a challenging set of videos which

has been collected from the sites like Getty Images and

ThoughtEquity.com which contain documentary and high

Figure 10. Sample frames of 6 sequences of our web dataset. (Left

Column) Normal samples. (Right column) Abnormal samples.
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Figure 11. The ROCs of abnormal behavior detection in the web

dataset.

quality videos of crowds in different urban scenes. The

dataset comprises 12 sequences of normal crowd scenes

such as pedestrian walking, marathon running, and 8 scenes

of escape panics, protesters clashing, and crowd fighting as

abnormal scenes. All the frames are resized to the fixed

width of 480 pixels. Figure 10 shows sample frames of the

normal and abnormal sequences.

In this experiment, the resolution of the particle grid is

kept at 10% of the number of original pixels. For construc-

tion of visual words, we extracted K = 30 similar 5×5×10
volumes from a block of T = 10 frames of force flow. The

codebook for this experiment contains C = 30 clips and

the LDA is used to learn L = 50 latent topics. To learn the

LDA model, we used the normal sequences in a 2-fold fash-

ion. We randomly excluded 2 sequences from the normal

set and trained on the rest. In the testing phase we added

the excluded sequences to the test set. We did this exper-

iment 10 times and constructed the ROC by averaging the

results of these experiments.

The ROC in Figure 11 demonstrates that the proposed

method outperforms optical flow method to distinguish ab-

normal sequences.



6. Conclusion

Using social force model, we introduce a method to de-

tect abnormal behaviors in crowd scenes. We address the

ability of the method to capture the dynamic of crowd be-

havior based on the interaction forces of individuals without

the need to track objects individually or perform segmenta-

tion. The results of our method, indicates that the method

is effective in detection and localization of abnormal behav-

iors in the crowd.
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