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Abstract

Several attempts have been lately proposed to tackle the
problem of recovering the original image of an underwa-
ter scene using a sequence distorted by water waves. The
main drawback of the state of the art [ 18] is that it heavily
depends on modelling the waves, which in fact is ill-posed
since the actual behavior of the waves along with the imag-
ing process are complicated and include several noise com-
ponents, therefore, their results are not satisfactory. In this
paper, we revisit the problem by proposing a data-driven
two-stage approach, each stage is targeted toward a cer-
tain type of noise. The first stage leverages the temporal
mean of the sequence to overcome the structured turbulence
of the waves through an iterative robust registration algo-
rithm. The result of the first stage is a high quality mean
and a better structured sequence; however, the sequence
still contains unstructured sparse noise. Thus, we employ
a second stage at which we extract the sparse errors from
the sequence through rank minimization. Our method con-
verges faster, and drastically outperforms state of the art on
all testing sequences even only after the first stage.

1. Introduction

Light rays reflected from objects go through several per-
turbations before being captured by the camera. If the rays
pass through different media, they get affected by a complex
series of reflections and refractions which can cause ex-
treme distortion to the image. Imaging through water is an
example of such a scenario, where reconstructing the orig-
inal underwater scene still constitutes a big challenge. A
fluctuating water surface poses significant difficulties to the
process of image recovery mainly because the fluctuations
tend to be high, random, and exhibit a complicated behav-
ior especially near the edges of the container. In this con-
text, traditional sparse or dense point correspondence and
tracking methods [2, 14, 12, 16, 22], which could have been
employed to learn the deformation function of the water,
are in fact rendered unusable for three reasons: First, track-
ing over long periods is difficult in such a turbulent video;
second, a noise-free template of the underwater scene is un-
available; third, even using a frame from the distorted video
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Figure 1. Two-Stage reconstruction of an underwater scene. Stage
1 (Robust Registration) aligns the sequence and overcomes the
structured turbulence, while stage 2 (Sparse Noise Elimination)
extracts the remaining unstructured random noise.

as a template for tracking will not capture the uninvertable
distortion function of the water [18]. On the other hand,
as a result of the high dimensionality and the embedded
randomness of the waves, the techniques which attempt to
model the distribution of intensity in the sequence usually
suffer, starting from pixel-wise mean/median, to patch-wise
clustering [4, 5, 6], and fourier-based averaging [20]. Fortu-
nately, the latest advances in this area such as [19] provided
evidence that a better solution for such a problem can be
obtained using methods with combined generative and dis-
criminative properties. In this work, we follow [19], and
propose a generative-discriminative approach to robustly
reconstruct the underwater sequence, however, without re-
quiring the template as in [19].

Our technique is based on registering the frames to their
temporal mean which is close to the original undistorted
scene. However, the mean of an underwater sequence
is blurry and noisy; therefore, a standard frame to mean
non-rigid registration faces considerable challenges. The



straightforward workaround is to deblur the mean; yet, the
deconvolution operation involved in deblurring is generally
ill-posed; therefore, even the latest deblurring techniques
such as [21, 8] often fail and introduce undesirable edges.
In this article, we show that registration-based reconstruc-
tion of an underwater scene could be greatly improved by
a modified approach that we refer to as robust registration.
The robust registration includes two advances: First, iter-
ative refinement of the mean and the frames through it-
erative registration; second, aided mean-frame correlation
step at which we blur the sharp frame instead of deblurring
the blurry mean by estimating a blur kernel that brings the
frame to the same blur level of the mean.

In a few iterations, the robust registration will converge
to a reconstructed mean and a new sequence which are free
from most of the structured turbulence of the water waves.
However, many frames will still contain unregistered com-
ponents caused by three types of random noise: First, light
reflection on the water surface; second, occlusion of the un-
derwater scene; third, the random behavior of the waves.
Such unstructured random noise is however sparse and has
a direct correlation with the rank of the matrix composed
of the registered frames. Therefore, we employ a second
stage of denoising at which we eliminate the sparse noise
through convex rank optimization [ 1]. The result is a clear
underwater sequence with significantly reduced noise. Fig-
ures | and 2 illustrate our two-stage framework which com-
bines the powers of registration and sparse representation.
The rest of the paper is organized as the following: In the
next section, we discuss the most related works. Conse-
quently, in section three, we present the first stage of our
algorithm which is the robust registration, followed by the
second stage which is the sparse noise elimination in sec-
tion four. The experiments and the results are illustrated in
section five. Finally, section six concludes the paper.

2. Related Work

Earlier work in reconstructing an underwater scene with-
out a template focused on finding the center of the distribu-
tion of patches in the video through clustering [4, 5], and
manifold embedding [6], or employing the bispectrum to
average the frames in the fourier domain [20]. The state
of the art in this area, however, is the model-based tracking
[ 18], where the characteristics of the water waves were em-
ployed to estimate the water basis using PCA. In such work,
the optimal number and size of the basis remain vague;
therefore, we argue that the estimated basis can be under-
fitted or over-fitted depending on the selected basis. Other
than requiring an orthographic camera and a given water
height, the basis are additionally obtained by simulation us-
ing a single parameter differential equation for the waves,
with the assumption that the surface fluctuations are small
compared to the water’s height. Such a simple model with
low parameter space is quite limited, and does not fully rep-

resent the actual scenario which can be much more com-
plicated and dependant over several other factors such as
the container size, external forces, and camera calibration;
hence, the results from [ 18] are not quite satisfactory. Later
in [19], Tian and Narasimhan proposed that the large non-
rigid distortion caused by effects such as the water waves
cannot be overcome through traditional B-spline registra-
tion, but rather through a pull-back operation that utilizes
several images with known deformations. While the dis-
torted video is typically the only available piece of informa-
tion in such a problem, [19] assumes additional given train-
ing images with predefined deformation, or a template from
which we can generate samples; therefore, their work is
considered out of the scope of comparison with our method.

Sparse representation-based video denoising has re-
cently flourished with several successful works reported,
from which we only discuss the most related articles. Ro-
bust PCA was proposed in [3], where a low rank matrix
was recovered from a small set of corrupted observations
through convex programming. Similar concepts were later
employed in [7] for video denoising, where serious mixed
noise was extracted by grouping similar patches in both spa-
tial and temporal domains and solving a low-rank matrix
completion problem. Additionally, in [13], linear rank op-
timization was employed to align faces with rigid transfor-
mations, and concurrently detect occlusions. Such works
provided enough evidence that low rank optimization can
be successfully applied to extract the errors from a sequence
as long as the errors are sparse. Therefore, in this paper we
show that sparsity-based denosing can also be applied to
recover the underwater scene if water turbulence was first
“sparcified” through registration.

In the context of blur kernel estimation which is used
in our robust registration stage, the latest advances focused
on deblurring a single image [21, 8], or a motion blurred
video [10, 1]. However, our problem layout is different in
that the underwater sequence is not blurry, but its mean is
extremely blurry and noisy such that it cannot be deblurred.
Thus, we are interested in rather blurring the frames in order
to aid the registration. For those reasons, we propose to
estimate a spatially varying blur kernel which encodes the
difference in blur between the mean and the frames by using
the motion estimated at each iteration of our algorithm. Our
robust registration is not very sensitive to the frame blurring
operation; therefore, in principal, other good blur estimation
algorithms could be employed.

We propose a generic, simple, and robust method which
in contrast to the pervious methods, does not require a
known template such as [19], the camera’s height [18], or
a special illumination [9]. Our method is similar to the state
the art [18] in that it works on a short sequence (61 frames)
rather than 800 in [6] and 120 in [20], but more importantly,
superior to [ 18] in performance and processing time.
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T'(x), our goal in this paper is to recover a new wave-free
sequence Vi = {Iy1...05p}.

We refine both the mean and the sequence in an iterative
registration operation, where at each iteration the frames are
shifted closer toward to the correct mean (stage 1 in figure
2). We start by computing the temporal mean M; conse-
quently, each frame is shifted to the mean through registra-
tion, thus generating a new sequence V5. Since the mean
is noisy, V5 is not well registered; however, its mean M, is
now better and shifted closer to the true image underwater.
Therefore, we re-register V5 to My generating the sequence
V3 and its mean Ms. We keep on performing this process
for a few iterations until we settle on a robust mean and a
better registered sequence. The computed mean at each it-
eration is blurry; thus, to improve this operation we use the
motion estimated from the previous iteration to compute a
blur kernel that brings the frames to the same blur level of
the mean. The details about that will be discussed in the
following subsection. Once the frames are blurred, they are
used to compute the motion; however, the computed motion
is then applied to warp the original unblurred frames.

The core motion estimation is a standard B-spline non-
rigid registration and is similar to [15]. A frame [ is reg-
istered to the mean M by estimating a motion vector I" for
each point x = [z, ] in I using a grid of control points of
size s; X Sy
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wherei = |z/s;|—1,5 = ly/syl —Lu=x/s,—|x/ss],
andv = y/s, — |y/sy|. ¥, ; is the motion vector of the ij-
th control point on the grid, and B is a standard B-spline ba-
sis function which defines the weights of the control points
contributing in the motion of x

The B-spline weights are pre-computed for every image
location given the image size and the spacing between the
control points. ® in equation 1 is estimated similar to [15]
by minimizing the difference in the normalized mutual in-
formation between the mean M and the frame I that is
warped by ®, in addition to a smoothness constraint. At
each iteration of our algorithm, the first frame of the se-
quence is registered using three refinement levels; starting
from a coarse 16 x 16 grid, then 24 x 24, and ending with
32 x 32, where the motion is hierarchically transferred be-
tween the levels. The rest of the frames are registered using
one level of 32 x 32 grid as their motion parameters are
initialized using the corresponding previous frames; for in-
stance, ® is initialized as ;. We found such grid sizes
adequate for our sequences (frame size of ~ 256 x 256),
but they could also be set adaptively [15].

At their current condition, the mean and the frames are
at different levels of sharpness since averaging the frames
introduces severe blur to the computed mean. In the fol-
lowing, we discuss how we aid the mean-frame correlation
through blur kernel estimation.

3.1. Frame Blurring

The frame to mean registration process is impeded by
the severely blurred mean. However, we found in our ex-
periments that since deblurring the mean does not work,
blurring the frame can be employed instead. The intuition
behind this is that once the blurry regions in the mean are
also blurred in the frame, the registration process is accord-
ingly guided to focus on the sharper regions of the mean
rather than the corrupted blurry regions; thus, improving
the overall performance. The required blurring depends on
several factors such as the amplitude of the waves and the



depth of the water. Such factors are hard to model precisely;
however, their effect on the sequence is obvious which is
the induced motion. Since the distribution of the positions
which a certain tracked point x attains along the underwater
sequence can be approximated with a Gaussian [6], the blur
which is induced by the motion can also be approximated
with a similar Gaussian. Therefore, without loss of gener-
ality, we assume that the blur kernel will be a 2D Gaussian
centered at x with a covariance matrix equals to the covari-
ance matrix of the tracked positions of x along the sequence
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where (z7,ys)7 is the location of x at frame f. Since we
have already estimated a dense motion field through regis-
tration, we do not need to further track the points, we can
rather directly replace (x—z ) and (y —yy) with I';(x) and
I’y (x) at frame f, which are the x and y components of the
estimated motion. Therefore, at each registration iteration
k, we use the motion from the previous iteration I'*~!(x)
to compute the covariance of the blur kernel
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where we introduce an additional damping factor k2 which
will make sure that the blur reduces along the iterations. In
the first iteration, we find '’ (x) by an extra registration iter-
ation without frame blurring. Once the kernel is computed,
it is used to blur the frames using a fixed-size filter which is
large enough to account for the maximum possible motion
(we use a 20 x 20 filter). Figure 3 shows our blur estima-
tion for two example sequences from [1&]. It can be clearly
seen from the figure that the determinant is high over the
blurry regions of the mean; thus, the corresponding regions
in the frame were blurred accordingly. Generally, the blur
in the mean of an underwater sequence is less in the middle
regions than the borders, such phenomenon is well captured
by our spatially varying filter as illustrated in the figure.

4. Sparse Noise Elimination

Applying the robust registration removes most of the dis-
tortion caused by the high fluctuations of the waves and
generates a better mean image. However, the frames still
include several unstructured and random noise caused by
reflections and occlusions which the non-rigid registration
cannot handle. Interestingly, after applying the first stage,
the frames become generally aligned such that their differ-
ence can be considered as a sparse error. Therefore, through

- |

Figure 3. The estimated spatially varying filter at the first itera-
tion of the robust registration for the brick sequence (top), and the
small font sequence (down). Left to right: The mean, the per-pixel
determinant for the motion covariance matrix, and a sample frame
blurred using the computed spatially varying filter. Areas with
high determinant correspond to areas with high amount of blur in
the mean; therefore, the frames were blurred accordingly.

rank minimization, we can decompose the matrix which
has its columns as the registered frames from the previous
stage F' = {vec{I;1}...vec{I;1}} into two components;
the noise-free matrix A, and the sparse error matrix £

argr}‘ligrank(A) st. F=A+4+E,||E|lo <8, O

where [ is a constant that represents the maximum number
of corrupted pixels expected across all images. Using the
Lagrangian form, equation 5 can be written as

aI‘gI}IlliélTank’(A) +A|Ello st. F=A+E, (6)

where A is a parameter that trades off the rank of the so-
lution versus the sparsity of the error, and we always set it
to 1/4/(w x h) following the theoretical considerations in
[3]. Consequently, we apply convex relaxation to the prob-
lem by replacing rank(A) with the nuclear norm or sum of
the singular values ||A||. = X;(0;), and replacing ||E||o
with its convex surrogate ¢4 norm || E||;

argmin [|All + Al|E[[y st. F=A+E. (7)

Equation 7 is convex and can be solved with convex opti-
mization methods such as the Augmented Lagrange Multi-
plier (ALM) algorithm [ 1 1] which we found robust and fast
in our scenarios. The final output matrix A comprises in its
columns the final reconstructed frames {I71...15, }.

4.1. From Stage One to Stage Two

At the first sight, our combination of stages might seem
adhoc, while in fact the two stages are tightly connected
and complement each other in recovering the underwater
scene. As discussed earlier in this article, the water turbu-
lence induces two noise components in the underwater se-
quence; a local miss-alignment, and a random noise. The
random noise can only be unveiled by rank minimization if



it is reasonably sparse [3]. However, in the raw video, the
local-miss alignment is dominant, and conceals the random
noise. For that reason, the sparse noise elimination can only
be utilized after first aligning the sequence through the ro-
bust registration. On the other hand, the robust registration
itself fails to overcome the sparse errors, and that is where
the second stage comes in handy. Figure 4 shows the re-
sult of applying the stages separately and then combined.
It is clear that each stage plays an essential role in robustly
reconstructing the underwater scene.

One issue arises under this formulation: When can we
consider the sequence well-aligned such that the current er-
rors are reasonably sparse? In other words, when can we
move from stage 1 to stage 2?7 Our experiments indicate
that the answer to such a question is still open-ended, be-
cause computing an exact parameter quantifying the cur-
rent sparsity of error intrinsically requires the error to be
first identified, which can only be available after stage 2.
Interestingly, we found in our experiments that some quan-
tities correlated to sparsity can be used as robust indicators
of sparsity. Namely, we use the ¢; difference between the
frames and the mean of the current sequence V' to make a
stopping decision for stage 1

S IME) — L)l
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After normalizing the images to [0 — 1], a fixed spar-
sity threshold of .025 on ¢; worked quite well in all se-
quences. (Refer to our website for additional details about
this). Technically, there is absolutely no penalty for reduc-
ing the threshold other than a possible waste of processing
time. Such a threshold is directly related to the parameter
A in equation 7 since both are limits for the number of ex-
pected corrupted pixels. The investigation of such a relation
goes beyond the scope of this paper; thus, we leave it for fu-
ture work. The complete “Seeing through water” procedure
is summarized in algorithm 1.

5. Experiments

We extensively experimented on the proposed ideas us-
ing several standard underwater sequences from [18]. Each
frame is 256 x 256 with 61 frames per sequence. The robust
registration stage converges in 3 — 6 iterations, while the
sparse noise elimination stage quickly converges in 40 — 43
ALM iterations. Overall, our algorithm takes about half of
the time required by [18]. Figure 5 shows our output com-
pared to the state of the art [18]. Our algorithm is able to
reconstruct all the underwater scenes and generate superior
high quality means. It can be noticed from the figure that the
mean of the sequence does not considerably improve after
the sparse noise elimination, this essentially indicates that
the majority of the remaining errors after the registration
step belong to a zero mean additive noise. The effect of the
sparse noise elimination, however, can be clearly observed

Algorithm 1: Seeing through water

input : Distorted image set

Ve Rwhxn =11 I}
output: Undistorted image set

Vf € Rwxhxn — {Ifl, . Ifn}

M + TemporalMean(V);

Stage 1: Robust Registration begin

while ¢, (V') > Sparsity_Threshold do

B + ComputeBlurKernel(T');

Vi, < Convolve the frames V with B;

I" < Compute the warping from each frame in
V} to the mean M ;

V.w < Warp the unblurred set V using I';

V Vs

M + TemporalMean(V);

end
ViV,
end
tage 2: Sparse Noise Elimination begin
F « vec{V,} = {vec(Iy1), ...,vec(Irn)}s
A E < argming g ||All« + A||E|]1 st. F =
A+ E;
{If1,....;1¢n} < Reshape A tow X h x n;

wn

end

Mean

Sample Frames

Stage

Only
cking Water

construction

acking Water
icqon || Reconstruction

\, Re

Stage
i

acking Water Warer
Reconstruction | Resdiadruciion

Only
R b action

Stage
1
then |

Tracking Water | Tracking Water 'h'acking Water

| Reconstruction J Reconstruction || Reconstruction
Figure 4. Mean image and sample frames after applying the robust
registration without the sparse noise elimination (top), the sparse
noise elimination without first applying the registration (middle),
and both stages applied (bottom). The first stage itself is capable of
obtaining a robust mean; however, the frames still contain several
sparse errors (highlighted in red). Applying the second stage to
the raw video fails for the reason discussed in the text. Combining
the stages clearly achieves the best results.

on the frames as illustrated in figure 6. Additionally, the
role of each stage is better observed in the video stabilizing
results provided on our website.

Figure 7 shows an example for the evolution of the mean
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Figure 5. Image restoration results on standard sequences from [18]. The first column shows a sample frame from the input video, which
is severely distorted. The second column shows the temporal mean of the sequence. The third column is the result from [18]. Finally our
results are shown in the last two columns, after the first and second stages respectively. Results from our method clearly outperform [ 18]

on all sequences even after the first stage. (Please zoom in to see the details).

Table 1. Performance of our method compared to [18].

| | SSD | NMI | LNMI | SSDG |
Sequence | Tianetal./Ours | Tianetal. /Ours | Tianetal. /Ours | Tian et al. / Ours
Brick 0.019/0.009 1.083/1.101 1.116/1.138 0.007 / 0.004
Middle Font 0.027/0.011 1.072/1.178 1.147/1.223 0.012/0.005
Small Font 0.021/0.008 1.046/1.118 1.100/1.168 0.018/0.006
Tiny Font 0.017/0.011 1.088/1.134 1.091/1.133 0.006 / 0.004
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Figure 6. A sample frame from each sequence after applying each stage of our algorlthm The ﬁrst stage overcomes most water turbulence;
however, sparse errors are only eliminated after the second stage. The final two rows show the reconstructed images and the sparse errors
respectively after rank minimization. (Please zoom in to see the details, and refer to our website for the complete videos).

for the middle font sequence from [!8] during stage 1 of registration such as [15]. Therefore, here it is a strong
the algorithm under three cases: direct registration without indication of how well the two images are aligned.
blurring or deblurring, with mean deblurring using [2 1], and
finally with frame blurring. It is clear from the figure that
our robust registration algorithm is capable of finding a high
quality mean in a few iterations in all cases. However, frame
blurring evidently achieves the best results with all under-
water words correctly reconstructed. e SSD in Gradient (SSDG):
We use the reconstructed mean M and the template T’
provided from [18] to quantitatively compare with the re-

e Local Normalized Mutual Information (LNMI): This
is similar to NMI except that it is computed for every
patch of a 10 x 10 grid, and then normalized. LNMI
captures the spatial relations among the image parts.

SSDG(M,T) = SSD(M,,T,) + SSD(M,,T,),

sults from [ 8] using four standard performance metrics: (1D
e Sum of squared difference (SSD): where M, T, M, T, are the horizontal and vertical gradi-
9 ents for M and T'. Gradient-based features were proved to
SSD(M,T) = 2 (M(x) — T(x)) ) 9 be crucial in text recognition [17]. Since many of our test-
wx h ing sequences contain underwater text, we use this measure

e Normalized Mutual Information (NMI): to compare text recognition accuracy.
(H(M) + H(T)) Table 1 summarizes the obtained results for eaah. of the
NMI(M,T) =~ —— 2" (10) sequences with an available template after normalizing the
H(M,T) images to [0 — 1]. It is clear that our method drastically
where H(M), H(T) are the entropies of M and T, outperforms [18] in all sequences in terms of all measures.
and H(M,T) is the joint entropy of M and T. H It is important to note that our proposed method should not
is calculated from the histograms of the gray values be compared to [19] since it assumes a different formulation

of the images. This measure is heavily used in image where the template of the sequence is used.
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6. Conclusion

We presented a novel, simple, and easily implementable
method to reconstruct a sequence distorted by water waves.
An iterative registration algorithm is first employed to re-
cover a well aligned sequence and an enhanced mean. Con-
sequently, sparse errors are extracted through rank mini-
mization. We showed by experiments that the proposed
method robustly recovers several sequences and highly out-
performs state of the art. Our method is a general dewarp-
ing technique; therefore, in the future, we will investigate
its application to further types of noise and turbulence.
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