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Abstract

We present a new descriptor for activity recognition from
videos acquired by a depth sensor. Previous descriptors
mostly compute shape and motion features independently;
thus, they often fail to capture the complex joint shape-
motion cues at pixel-level. In contrast, we describe the
depth sequence using a histogram capturing the distribution
of the surface normal orientation in the 4D space of time,
depth, and spatial coordinates. To build the histogram, we
create 4D projectors, which quantize the 4D space and rep-
resent the possible directions for the 4D normal. We initial-
ize the projectors using the vertices of a regular polychoron.
Consequently, we refine the projectors using a discrimina-
tive density measure, such that additional projectors are
induced in the directions where the 4D normals are more
dense and discriminative. Through extensive experiments,
we demonstrate that our descriptor better captures the joint
shape-motion cues in the depth sequence, and thus outper-
forms the state-of-the-art on all relevant benchmarks.

1. Introduction

Depth sensors have been available for many decades.
Though, their applications have been limited due to the
high cost and complexity of operation. However, the re-
cent emergence of low-cost depth sensors such as Kinect
[18], triggered significant attention to revisit problems such
as object detection and activity recognition using depth im-
ages as input instead of color.

Compared with conventional color images, depth maps
provide several advantages. For example, depth maps re-
flect pure geometry and shape cues, which can often be
more discriminative than color and texture in many prob-
lems including segmentation, object detection, and activ-
ity recognition. Moreover, depth images are insensitive to
changes in lighting conditions. In this context, it seems nat-
ural to employ depth data in many computer vision prob-
lems. However, it is also intuitive to wonder whether con-

Figure 1. Surface normals overlayed on three examples from MSR
Actions 3D dataset [12]. The surface normals capture the shape
cues at a specific time instance, while the change in the surface
normal over time captures the motion cues. In this paper, we use
4D normals computed in the space of depth, time, and spatial co-
ordinates in order to obtain rich descriptors of activities. Note that
in the figure we illustrate 3D surface normals since it is difficult to
visualize the 4D normals used in the paper.

ventional RGB-based methods would also perform well in
depth sequences?

In activity recognition, which is the topic of this paper,
two significant aspects arise when adopting conventional
color-based methods for depth sequences. First, the cap-
tured depth images are often contaminated with undefined
depth points, which appear in the sequence as spatially and
temporally discontinues black regions [1]. This hinders the
application of local interest points detectors such as Dollar
[5] and STIP [10], which falsely fire on these regions in-
stead of the regions where important events are occurring.
To verify that, we conducted an experiment using MSR-
Daily Activity Dataset [24], and found that 60% of the de-
tected Dollar interest points were fired on locations irrel-
evant to the action of interest. Therefore, the correspond-
ing classification accuracy is very low (52%). To handle
that, recent approaches resorted to selecting the informative
points using the joints from a skeleton detector [18], as in
[24], or using a discriminative sampling scheme as in [23].
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Second, and more importantly, the depth images provide
natural surfaces which can be exploited to capture the ge-
ometrical features of the observed scene in a rich descrip-
tor. For instance, it was recently shown in [20] that for the
purpose of object detection, the shape of the object can be
better described using the normal vectors in depth images,
instead of the gradients in color images.

Our work in this paper proceeds along this direction.
We propose a novel activity descriptor for depth sequences,
which is analogous to the histogram of gradients in color
sequences [4, 9], and extends the histogram of normals in
static images [20]. As the depth sequence represents a depth
function of space and time, we propose to capture the ob-
served changing structure using a histogram of oriented 4D
surface normals (HON4D). In order to construct HON4D,
the 4D space is initially quantized using a regular 4D exten-
sion of a 2D polygon, namely, a 600-cell Polychoron [3].
Consequently, the quantization is refined using a novel dis-
criminative density measure, which we compute along the
quantized directions in the 4D space. Figure 2 summarizes
the steps involved in computing HON4D.

Our proposed histogram operates in the 4D space, thus,
jointly capturing the distribution of the changing shape and
motion cues along with their correlations, instead of an
adhoc concatenation of features as in [24]. Additionally,
our descriptor is a holistic representation for the entire se-
quence; therefore, it is robust against noise and occlusion,
from which local methods often suffer [23]. Moreover, it
does not require a skeleton tracker as in [24] and [19]. Com-
pared to the other holistic methods, we model the distribu-
tion of the normal vectors for each cell in the 4D space,
which is richer and more discriminative than the average
4D occupancy used in [21]. Furthermore, unlike [26], the
temporal order of the events in the sequence is encoded
and not ignored. More importantly, as we will demonstrate,
HON4D is superior in performance to all previous methods.

The main contributions of this paper are: First, we pro-
pose a novel descriptor for activity recognition from depth
sequences, in which we encode the distribution of the sur-
face normal orientation in the 4D space of depth, time, and
spatial coordinates. Second, we demonstrate how to quan-
tize the 4D space using the vertices of a polychoron, and
then refine the quantization to become more discriminative.
The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 describes the process
of computing the 4D surface normals. In Section 4, we
describe the quantization of the 4D space, and show how
to build the HON4D. Section 5 describes the 4D quantiza-
tion refinement approach. The experimental results are pre-
sented in Section 6. Finally, Section 7 concludes the paper.

2. Related Work
Early methods for activity recognition from depth se-

quences attempted to adopt techniques originally developed
for color sequences. For instance, in [12], Li et al. proposed
to obtain a bag of 3D points (analogous to a bag of words)
by sampling points from the silhouette of the depth images,
then clustering the points in order to obtain salient postures
(vocabulary). Consequently, a GMM is used to globally
model the postures, and an action graph [11] is used for
inference. On the other hand, parallel to the approaches de-
veloped for temporal modelling of human actions in color
videos such as [15, 2], Lv and Nevatia in [14] employ a hid-
den Markov model (HMM) to represent the transition prob-
ability for pre-defined 3D joint positions. Similarly, in [8],
the 3D joint position is described using another generative
model, which is a conditional random field (CRF).

Adopting local interest point-based methods to operate
in depth sequences is difficult because, as discussed earlier,
detectors such as STIP [10] and Dollar [5] are not reliable in
depth sequences. Additionally, standard methods for auto-
matically acquiring motion trajectories in color images as in
[25, 22] are also not reliable in depth sequences. Therefore,
recent methods for activity recognition in depth sequences
resorted to alternative approaches in order to obtain reliable
interest points and tracks. For instance, in [24], Jiang et al.
extract the skeleton of the human using the skeleton track-
ing algorithm in [18]. Consequently, the joints of the skele-
ton are used as interest points. In that, the shape of the area
surrounding the joint along with the joint location informa-
tion are captured using a local occupancy pattern feature
and a pairwise distance feature, respectively. These features
are extracted for each joint at each frame, then the fourier
transform coefficients are employed to describe the tempo-
ral variation of the features. On the other hand, in [23], ran-
dom subvolumes are selected from the space of all possible
subvolumes in the depth sequences. The subvolume selec-
tion is based on LDA [16], where the most discriminative
subvolumes are retained.

Furthermore, holistic approaches for activity recognition
from depth sequences are recently becoming popular. In
that, instead of using local points, a global feature is ob-
tained for the entire sequence. For example, in [26], the
depth video is summarized in one image (a motion map),
which is the average difference between the depth frames.
Consequently, a single HOG descriptor is extracted from the
motion map. This method collapses the temporal variations,
and thus suffers when the temporal order is of significance.
On the other hand, in [21], the sequence is divided into a
spatiotemporal grid, then a simple feature called the global
occupancy pattern is used, where the number of occupied
pixels is recorded for each grid cell.

Our proposed method in this paper falls in the holis-
tic methods category. Evidently, holistic methods such as
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Figure 2. The various steps for computing HON4D descriptor.

[26, 21] are generally simpler, computationally efficient,
and often outperform local approaches. We demonstrate
that our method captures the complex and articulated struc-
ture and motion within the sequence using a richer and more
discriminative descriptor than [21] and [26]. We addition-
ally bypass the use of a skeleton tracker, which can often be
unreliable. Though, we still outperform the methods which
rely on the skeleton detector such as [24]. Moreover, since
global descriptors generally assume coarse spatiotemporal
alignment, we show that a local version of our descriptor
can be derived and employed for significantly unaligned
datasets.

3. The 4D Surface Normal
Given a sequence of depth images {I1, I2 . . . IN} con-

taining a person performing an activity, our goal is to com-
pute a global descriptor which is able to discriminate the
class of action being performed. The depth sequence can
be considered as a function R3 → R1 : z = f(x, y, t),
which constitutes a surface in the 4D space represented
as the set of points (x, y, t, z) satisfying S(x, y, t, z) =
f(x, y, t) − z = 0. The normal to the surface S is com-
puted as

n = ∇S = (
∂z

∂x
,
∂z

∂y
,
∂z

∂t
,−1)T . (1)

Only the orientation of the normal is relevant to the shape
of the 4D surface S; therefore, we normalize the computed
normal to a unit length normal n̂. Note that the compo-
nents of the surface normal are the gradients in space and
time, along with a scalar (−1). Therefore, the normal ori-
entation might falsely appear as equivalent to the gradient
orientation, and thus one might expect a histogram of 4D
normal orientation (HON4D) to coincide with a histogram
of 3D gradient orientation (HOG3D). In fact, there is an
inherent difference, which allows the HON4D to capture
richer information. The normal orientation has one extra di-
mension; therefore, the corresponding distribution over the
bins is significantly different. Note that in a unit normal,

the fourth dimension encodes the magnitude of the gradient
−1/||(fx, fy, ft, 1)T ||2. This allows the HON4D to select
different bins based on the gradient magnitude (i.e. two nor-
mals with different corresponding gradient magnitudes may
fall into different bins). In contrast, in the histogram of gra-
dient orientation, the magnitude is either ignored or only
used as a weight for the bins.

To better illustrate that, consider for example the shapes
in figure 3, which shows two space-time surfaces, where
surface 1 has a higher inclination than surface 2. The gradi-
ent orientation is similar for both surfaces because the com-
ponent of the gradient along the shape dimension is negligi-
ble. In contrast, the orientation of the normal is significantly
different. Therefore, a histogram of normal orientation can
differentiate between these surfaces, while a histogram of
gradient orientation cannot. We argue, and verify by ex-
periments, that the depth sequences provide natural surface
functions, from which we can compute rich geometric prop-
erties such as the distribution of the normal orientation in
4D, without having to resort to less informative representa-
tions such as the gradient orientation. In the coming section
we demonstrate how we compute the histogram of oriented
normals in the 4D space.

4. Histogram of 4D Normals
Given the surface normals computed as in equation 1 us-

ing finite gray-value difference over all voxels in the depth
sequence, we compute the corresponding distribution of 4D
surface normal orientation. This requires quantizing the
corresponding space into specific bins. In HOG, the gra-
dient is two-dimensional; therefore, it is trivial to quantize
a circle in order to obtain the bins of the histogram. Most
recent implementations such as in [6] use predefined ori-
entation vectors, and project the gradient to these vectors
in order to obtain the corresponding response per direction.
Consequently, either the maximum response is selected as
the corresponding bin (hard-decision), or all the responses
are accumulated (soft-decision). Similarly, HOG3D [9] em-
ploys an analogous process. In contrast, in the depth se-
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Figure 3. Example showing the difference between the gradient
orientation histogram and the normal orientation histogram. For
better visualization, in this example, we assume we have only one
spatial dimension; therefore, we have 2D gradients and 3D nor-
mals instead of the actual 3D gradients and 4D normals of a depth
sequence. The orientation of the gradient is determined by an an-
gle Θ, while the orientation of the normal is determined by two
angles, Θ and Φ. Top: Two surfaces produced as a result of a
shape (line) moving in time, where surface 1 has a higher inclina-
tion than surface 2. Middle: The histogram of gradient orientation
for surface 1 (left), and surface 2 (right). Bottom: The histogram
of normal orientation for surface 1 (left), and surface 2 (right).
The gradient direction for the two surfaces is similar (because the
derivative along the shape dimension is negligible). Therefore, it
cannot differentiate between the two surfaces. On the other hand,
the direction of the normal for surface 1 is significantly different
than surface 2, and the corresponding histogram of normal orien-
tation evidently captures this difference.

quences, the obtained normal vectors live in a 4D space. In
order to quantize the 4D space, we consider 4D regular ge-
ometric objects called polychorons [3, 7]. These objects are
4D extensions of a 2D polygon. A regular polychoron di-
vides the 4D space uniformly with its vertices; therefore, it
is a proper quantization of the 4D space. In particular, from
the set of regular polychorons, we consider the 600-cell for
two reasons: First, it has 120 vertices, which is a proper di-
mensionality size (compared for example to 600 vertices in

the 120-cell). Second, empirically, the performance using
the 600-cell is superior to the others.

In [3], it is shown that in the 4D space, the vertices of a
600-cell centered at the origin are given as:

• 8 vertices obtained by permutations of (0, 0, 0,±1).

• 16 vertices obtained by permutations of
(±1/2,±1/2,±1/2,±1/2).

• 96 vertices obtained by even permutations of
1/2(±ϕ,±1,±1/ϕ, 0), where 1/ϕ is the edge length
of the 600-cell, and is set to a constant called the
golden ratio 2/(1 +

√
5) [3].

We quantize the 4D space using these vertices, and refer
to each vertex vector as a “projector”. Therefore, given the
set of 120 projectors P = {pi}, and the set of unit normals
N = {n̂j} computed over all the spatiotemporal locations
of the depth sequence, we compute the component of each
normal in each direction by an inner product with the corre-
sponding projector

c(n̂j ,pi) = max(0, n̂T
j pi). (2)

Therefore, the distribution of the 4D normal orientation
for a depth sequence is estimated by accumulating the con-
tributions from the computed normals, followed by a nor-
malization using the sum across all projectors, such that the
final distribution sums to one:

Pr(pi|N ) =

∑
j∈N c(n̂j ,pi)∑

pv∈P
∑

j∈N c(n̂j ,pv)
. (3)

Hence, we obtain a 120 dimensional HON4D descrip-
tor for the video. In order to further introduce cues from
the spatiotemporal context, we divide the sequence into
w×h×t spatiotemporal cells, and obtain a separate HON4D
for each. The final descriptor is a concatenation of the
HON4Ds obtained from all the cells.

5. Non-Uniform Quantization
Histogram-based descriptors (for example SIFT [13],

SIFT 3D [17], HOG [4], HOG3D [9], and our proposed
HON4D), mostly employ uniform space quantization in or-
der to build their histograms. It is, however, not difficult to
find examples where such quantization is not optimal. For
instance, consider the case where two different classes of
activities are quite close in the feature space such that their
samples mostly fall in similar bins. This results in a signif-
icant confusion between the two classes, which could evi-
dently be avoided through a finer quantization at the regions
of confusion. As the dimension of the space to be quantized
becomes larger (4D in our case), different possible quan-
tizations could potentially be employed, and therefore this
observation becomes more prominent.
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Finding the optimal projectors (bins of the histogram) is
unarguably a highly non-convex optimization process, since
in principle, it should involve learning both the classifier
and the projectors jointly. It is also likely that the result-
ing classifier will suffer from overfitting. Therefore, finding
the optimal projectors is still an open-ended problem, which
we leave for future work, and instead, we resort to relaxing
the problem into refining the projectors to better capture the
distribution of the normals in a discriminative manner. In
particular, given a dataset with training HON4D descriptors
X = {xk}, note that each descriptor xk is obtained for a
video k by projecting the corresponding set of surface nor-
malsNk = {n̂j} on the projectors P = {pi} as in equation
2. Therefore, we can compute the density of the projectors
by estimating how many unit normals fall into each of them

D(pi) =
∑
k∈X

∑
j∈Nj

c(n̂k,j ,pi), (4)

where n̂k,j is the unit normal number j from depth se-
quence k. It is obvious that the density in equation 4 is
not discriminative, meaning that a bin with higher density
does not necessarily contribute more in deciding to which
class the sample xk belongs. Now, consider a SVM classi-
fier which scores a sample xk using:

score(xj) =
∑
s

αsw
T
s xk, (5)

where w is a support vector and α is the weight correspond-
ing to the support vector, which are learned by minimizing
a loss function such as the hinge loss. The final class de-
cision is made by thresholding the score (typically using 0
threshold if a bias is also learned). Note that the set of sup-
port vectorsW = {wi} correspond to videos selected from
the training data and weighted in order to best discriminate
between classes. Therefore, these specific samples directly
contribute in the decision value. Based on that, a discrimi-
native version of equation 4 can be formulated as

Ddisc(pi) =
∑
j∈W

∑
k∈Nj

αjc(n̂k,j ,pi). (6)

Note that the density now is computed using only the
weighted set of support vectors, which makes it more ro-
bust and discriminative. In other words, not only the pro-
jector with higher discriminative density Ddisc has higher
accumulation of normal vectors, but also it has a higher
contribution in the final classification score. Therefore, it
is intuitive to place more emphasis on that direction. To
that end, we sort the projectors according to their discrimi-
native density, and induce m random perturbations of each
of the highest l projectors according to their density, where
m is computed for a projector pi as:

m(pi) =

{
λ D(pi)∑

pv∈P D(pv)
if i ≤ l

0 if i > l,

and λ is a parameters reflecting the total number of pro-
jectors to be induced. The random perturbations for pro-
jector pi constitute a new set of projectors {pi,q|q =
1 . . . bm(pi)c}, which we compute as

pi,q =
pi + βrq
||pi + βrq||2

, (7)

where r ∈ R4 is a unit random vector, and (0 < β � 1) is
the perturbation amplitude.

We augment the density-learned projectors to the origi-
nal 120 projectors, and obtain the final set of projectors. Us-
ing that, we compute the final HON4D descriptors and train
a new SVM. It is rather important to note the following:
First, the initial SVM from which we learn the discrimina-
tive density is different from the final SVM we use for the
classification. The final SVM is trained on newly induced
projectors which have never been seen in the initial SVM.
Second, only the training set is involved in learning the den-
sity. Therefore, the process of refining the projectors, as we
verify in the experiments, is far from overfitting. We use a
polynomial kernel in all experiments, though the proposed
method of refining the projectors using the discriminative
density is general enough to apply to any kernel.

6. Experiments
We extensively experimented on the proposed ideas us-

ing three standard 3D activity datasets including MSR Ac-
tions 3D [12], MSR Gesture 3D [23], and MSR Daily Ac-
tivity 3D [24]. We additionally collected a new type of 3D
dataset, which we refer to as “3D Action Pairs” dataset.
The actions in the new dataset are selected in pairs such
that the two actions of each pair are similar in motion (have
similar trajectories) and shape (have similar objects); how-
ever, the motion-shape relation is different. This empha-
sizes the importance of capturing the shape and the motion
cues jointly in the activity sequence as in HON4D, in con-
trast to capturing these features independently as in most
previous methods. We discuss this in more detail in subsec-
tion 6.3. Both the code and the datasets are available on our
website http://www.cs.ucf.edu/˜oreifej/.

In all experiments, we initialize the projectors using the
120 vertices of the 600-cell polychoron, and compute the
initial HON4D descriptors. Consequently, we learn the dis-
criminative density, refine the projectors, and compute the
final descriptors set. We finally end up with a number of
projectors typically ∼ 300, which becomes the dimension-
ality of the HON4D descriptor obtained per cell. All the pa-
rameters are learned using cross-validation. The frame size
in all datasets is 320 × 240, and each video sequence is di-
vided into spatiotemporal cells, which are typically 4×3×3
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Figure 4. Example frames from different actions obtained from
MSR Action 3D dataset [12], MSR Hand Gesture dataset [23],
and MSR Daily Activity 3D [24].

in width, height, and number of frames, respectively. We
compare with several recent methods including: (1) Yang et
al. [26], where motion maps are obtained by accumulating
the differences in the depth frames, and then HOG is used
to describe the motion maps. (2) Klaser et al. [9], which
employs a histogram of gradients in space-time (HOG3D).
(3) Jiang et al. [24], where the local occupancy pattern fea-
tures (LOP) are used over the skeleton joints. (4) Jiang et al.
[23], where the depth sequence is randomly sampled then
the most discriminative samples are selected and described
using LOP descriptor. (5) Interest point detection within a
bag of words framework, where the interest points are de-
tected using Dollar detector [5] and STIP [10], then the de-
scriptors are computed (spatiotemporal derivatives [5] and
HOG/HOF [10]). Consequently, the descriptors are quan-
tized and represented using a histogram of video words’
frequency.

6.1. MSR Action 3D Dataset

MSR Action 3D dataset [24] is an action dataset of depth
sequences captured by a depth camera. It contains twenty
actions: “high arm wave”, “horizontal arm wave”, “ham-
mer”, “hand catch”, “forward punch”, “high throw”, “draw
x”, “draw tick”, “draw circle”, “hand clap”, “two hand
wave”, “sideboxing”, “bend”, “forward kick”, “side kick”,
“jogging”, “tennis swing”, “tennis serve”, “golf swing”,
“pick up & throw”. Each action was performed by ten sub-
jects for three times. Example depth sequences from this
dataset are shown in figure 4.

In this dataset, the background is pre-processed to clear
the discontinuities created from undefined depth regions.
Nevertheless, this dataset is still challenging as many ac-
tivities appear very similar. Using HON4D we obtain the
state-of-the-art accuracy of 88.89% with the same experi-
ment setup as in [24] (first five actors for training, and the
rest for testing). Before refining the projectors, the obtained

Table 1. The performance of our method on MSR Action 3D
dataset, compared to previous approaches.

Method Accuracy %

HON4D + Ddisc 88.89
HON4D 85.85

Jiang et al. [24] 88.20
Jiang et al. [23] 86.50
Yang et al. [26] 85.52

Dollar [5] + BOW 72.40
STIP [10] + BOW 69.57
Vieira et al. [21] 78.20
Klaser et al. [9] 81.43

accuracy is 85.85%, which proves the advantage of our dis-
criminative density method. We compare with several re-
cent methods and summarize the results in table 1. It is im-
portant to note that in our method we do not use a skeleton
tracker, and yet we outperform the skeleton-based method
[24]. Additionally, note that the accuracy of [26] in table 1
is different than the number reported in their paper, the rea-
son is that their experiment setup is different; therefore, we
obtained their code and ran it within our experiment setup.

We further conduct a cross validation experiment to ver-
ify that the process of refining the projectors does not de-
pend on specific training data. We consider all the possi-
ble combinations of choosing half of the actors for train-
ing, which are 252 folds for choosing 5 actors out of 10
in this dataset. At each fold, we train using all the videos
from a certain combination of 5 actors, and test on the
rest. We conduct this experiment first using the uniformly
distributed projectors, and obtain an average accuracy of
79.38±4.40% (mean± std). Consequently, we conduct the
experiment again, however, with refining the projectors at
each fold, and obtain an average accuracy of 82.15±4.18%.
This provides a clear evidence that the refined projectors do
not depend on specific training data, and the corresponding
trained models are not overfit.

6.2. MSR Hand Gesture Dataset

The Gesture3D dataset [23] is a hand gesture dataset of
depth sequences captured by a depth camera. It contains
a set of dynamic gestures defined by American Sign Lan-
guage (ASL). There are 12 gestures in the dataset: “bath-
room”, “blue”, “finish”, “green”, “hungry”, “milk”, “past”,
“pig”, “store”, “where”, “j”, “z”. In total, the dataset con-
tains 333 depth sequences, and is considered challenging
mainly because of self-occlusion issues. Example frames
from different gestures are shown in figure 4. We follow
the experiment setup in [23] and obtain the accuracies de-
scribed in table 2, where our descriptor outperforms all pre-
vious approaches.
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Table 2. The performance of our method on MSR Hand Gesture
3D dataset, compared to previous approaches.

Method Accuracy %

HON4D + Ddisc 92.45
HON4D 87.29

Jiang et al. [23] 88.50
Yang et al. [26] 89.20
Klaser et al. [9] 85.23

6.3. 3D Action Pairs Dataset

This is a new type of activity dataset, which we collected
in order to emphasize two points: First, though skeleton tra-
jectories seem reliable when the person is in upright posi-
tion, many actions share similar motion cues; therefore, re-
lying on motion solely is insufficient. This was also pointed
out in [24]. Second, the motion and the shape cues are cor-
related in the depth sequences, and it is rather insufficient
to capture them independently. Therefore, in this dataset,
we select pairs of activities, such that within each pair the
motion and the shape cues are similar, but their correlations
vary. For example, “Pick up” and “Put down” actions have
similar motion and shape; however, the co-occurrence of
the object shape and the hand motion is in different spa-
tiotemporal order (refer to figure 6). This dataset is useful
to evaluate how well the descriptors capture the prominent
cues jointly in the sequence. We collected six pairs of ac-
tions: “Pick up a box/Put down a box”, “Lift a box/Place
a box”, “Push a chair/Pull a chair”, “Wear a hat/Take off
a hat”, “Put on a backpack/Take off a backpack”, “Stick a
poster/Remove a poster”. Each action is performed three
times using ten different actors, where the first five actors
are used for testing, and the rest for training. We compare
our performance in this dataset with three methods. First,
we compute skeleton-based pair-wise features and LOP fea-
tures as described in [24] and train a SVM on that. Second,
we enhance the previous features by applying a temporal
pyramid as described in [24]. Finally, we also compare with
the motion map method from [26]. We summarize the re-
sults in table 3, and demonstrate the confusion tables in fig-
ure 5. It is clear that our method significantly outperforms
the other approaches, which suffer from within-pairs con-
fusion. In [24] (Skeleton + LOP), though both motion and
shape features are obtained, they are simply concatenated;
therefore, their relations are not encoded. Adding the tem-
poral pyramid captures the temporal order and improves the
accuracy, though still inferior to our method. Additionally,
in [26], the whole sequence is collapsed into one image,
which eliminates the temporal order of shape/motion cues,
and thus this method suffers in this dataset. Our HON4D
operates in the 4D space of shape and motion; therefore,
it captures both features jointly, and outperforms the other
methods significantly.

Table 3. The performance of our method on 3D action pairs
dataset, compared to previous approaches.

Method Accuracy %

HON4D + Ddisc 96.67
HON4D 93.33

[24] (Skeleton + LOP) 63.33
[24] (Skeleton + LOP + Pyramid) 82.22

Yang et al. [26] 66.11
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Figure 5. The confusion tables for 3D Action Pairs dataset. Top:
Pair-wise skeleton features and LOP features from [24] with-
out temporal pyramid (left), and with pyramid (right). Bottom:
HON4D features as is (left), and after refining the projectors using
the discriminative density (right).

Push / Pull Pickup / Put Down Wear /Take off Stick / Remove 

Figure 6. Example frames for four pairs from 3D Action Pairs
dataset. Each column shows two images from a pair of actions.
Note that, for example in the first column, both “Pick up a box”
and “Put down a box” have similar motion and shape; however,
they occur in different spatiotemporal order.

7



6.4. Local HON4D

The HON4D descriptor discussed earlier is a holistic fea-
ture, similar in that to [26] and [21]. This intrinsically as-
sumes coarse spatial and temporal correspondence between
the spatiotemporal cells across the sequences. This is a
valid assumption for many practical scenarios, such as in
the datasets discussed above, and generally in videos cap-
tured for Kinect applications and games. This assumption
is also required (but often not explicitly mentioned) in some
non-holistic methods as in [23].

On the other hand, in the scenarios where the actors
significantly change their spatial locations, and the tempo-
ral extent of the activities significantly vary, we use a lo-
cal HON4D descriptor, which is computed exactly as the
global HON4D, except over spatiotemporal patches cen-
tered at skeleton joints obtained using [18]. We use a patch
size of 12 × 12 × 6, and divide it into a 3 × 3 × 1 grid,
where the numbers are selected using cross validation. To
capture the temporal variation in the features, we follow a
process similar to [24], however, replacing their LOP fea-
ture with the local HON4D. In particular, we compute the
local HON4D for each joint, and for each frame, then the
fourier transform is applied, and a SVM is trained on the
fourier transform coefficients. For evaluation , we use the
Daily Activity 3D Dataset [24], which contains 16 actions
of common daily behaviors such as talking on the phone or
reading a book . . . etc. We achieve an average accuracy of
80.00%, compared to 67.50% when the original LOP fea-
ture is used, which proves that HON4D is also superior for
significantly non-aligned sequences. It is important to note
that [24] proposes additional steps to improve the accuracy,
which generally apply to any descriptor. In our implementa-
tion, we do not include these steps, as our aim is to directly
compare our descriptor with theirs.

7. Conclusion

We presented a novel, simple, and easily implementable
descriptor for activity recognition from depth sequences.
Our descriptor captures motion and geometry cues jointly
using a histogram of normal orientation in the 4D space of
depth, time, and spatial coordinates. We initially quantize
the 4D space using the vertices of a 600-cell polychoron,
and use that to compute the distribution of the 4D nor-
mal orientation for each depth sequence. Consequently,
we estimate the discriminative density at each vertex of the
polychoron, and induce further vertices accordingly, thus
placing more emphasis on the discriminative bins of the
histogram. We showed by experiments that the proposed
method outperforms all previous approaches on all relevant
benchmark datasets.
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