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Abstract

This paper presents an end-to-end video face recogni-

tion system, addressing the difficult problem of identifying

a video face track using a large dictionary of still face im-

ages of a few hundred people, while rejecting unknown in-

dividuals. A straightforward application of the popular ℓ1-

minimization for face recognition on a frame-by-frame ba-

sis is prohibitively expensive, so we propose a novel algo-

rithm Mean Sequence SRC (MSSRC) that performs video

face recognition using a joint optimization leveraging all of

the available video data and the knowledge that the face

track frames belong to the same individual. By adding a

strict temporal constraint to the ℓ1-minimization that forces

individual frames in a face track to all reconstruct a sin-

gle identity, we show the optimization reduces to a single

minimization over the mean of the face track. We also in-

troduce a new Movie Trailer Face Dataset collected from

101 movie trailers on YouTube. Finally, we show that our

method matches or outperforms the state-of-the-art on three

existing datasets (YouTube Celebrities, YouTube Faces, and

Buffy) and our unconstrained Movie Trailer Face Dataset.

More importantly, our method excels at rejecting unknown

identities by at least 8% in average precision.

1. Introduction

Face Recognition has received widespread attention for

the past three decades due to its wide-applicability. Only

recently has this interest spread into the domain of video,

where the problem becomes more challenging due to the

person’s motion and changes in both illumination and oc-

clusions. However, it also has the benefit of providing many

samples of the same person, thus providing the opportunity

to convert many weak examples into a strong prediction of

the identity.

As video search sites like YouTube have grown, video

content-based search has become increasingly necessary.

For example, a capable retrieval system should return all

Figure 1. This paper addresses the difficult problem of identifying

a video face track using a large dictionary of still face images of a

few hundred people, while rejecting unknown individuals.

videos containing specific actors upon a user’s request. On

sites like YouTube, where a cast list or script may not be

available, the visual content is the key to accomplishing this

task successfully. The main drawback is the availability of

annotated video face tracks.

With the advent of social networking and photo-sharing,

computer vision tasks on the Internet have become increas-

ingly fascinating and viable. This avenue is one little ex-

ploited by video face recognition. Although large col-

lections of annotated individuals in videos are not freely

available, collecting data of annotated still images is easily

doable, as witnessed by datasets like Labeled Faces in the

Wild (LFW) [12] and Public Figures (PubFig) [16]. Due to

wide availability, we employ large databases of still images

to recognize individuals in videos, as depicted in Figure 1.

Existing video face recognition methods tend to per-

form classification on a frame-by-frame basis and later

combining those predictions using an appropriate met-

ric. A straight-forward application of ℓ1-minimization in

this fashion is very computationally expensive. In con-

trast, we propose a novel method, Mean Sequence Sparse

Representation-based Classification (MSSRC), that per-

forms a joint optimization over all faces in the track at once.

Though this seems expensive, we show that this optimiza-
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Figure 2. Video Face Recognition Pipeline. With a video as input, we perform face detection and track a face throughout the video

clip. Then we extract, PCA, and concatenate three features, Gabor, LBP, and HOG. Finally, we perform face recognition using our novel

algorithm MSSRC with an input face track and dictionary of still images.

tion reduces to a single ℓ1-minimization over the mean face

track, thus reducing a many classification problem to one

with inherent computational and practical benefits.

Our proposed method aims to perform video face

recognition across domains, leveraging thousands of la-

beled, still images gathered from the Internet, specif-

ically the PubFig and LFW datasets, to perform face

recognition on real-world, unconstrained videos. To

do this we collected 101 movie trailers from YouTube

and automatically extracted and tracked faces in the

video to create a dataset for video face recognition

(http://vfr.enriquegortiz.com). Furthermore,

we explore the often little-studied, open-universe scenario

in which it is important to recognize and reject unknown

identities, i.e. we identify famous actors appearing in movie

trailers while rejecting background faces that represent un-

known extras. We show our method outperforms existing

methods in precision and recall, exhibiting the ability to bet-

ter reject unknown or uncertain identities.

The contributions of this paper are summarized as fol-

lows: (1) We develop a fully automatic end-to-end system

for video face recognition, which includes face tracking and

recognition leveraging information from both still images

for the known dictionary and video for recognition. (2) We

propose a novel algorithm, MSSRC, that performs video

face recognition using an optimization leveraging all of the

available video data. (3) We show that our method matches

or outperforms the state-of-the-art on three existing datasets

(YouTube Faces, YouTube Celebrities, and Buffy) and our

unconstrained Movie Trailer Face Dataset.

The rest of this paper is organized as follows: Section 2

discusses the related work on video face recognition. Then

Section 3 describes our entire framework for video face

recognition from tracking to recognition. Next, in Section 4,

we describe our unconstrained Movie Trailer Face Dataset.

Section 5 exhaustively evaluates our method on existing

video datasets and our new dataset. Finally, we end with

a summary of conclusions and future work in Section 6.

2. Related Work

For a complete survey of video-based face recognition

refer to [18]; here we focus on an overview of the most

related methods. Current video face recognition techniques

fall into one of three categories: key-frame based, temporal

model based, and image-set matching based.

Key-frame based methods generally perform a predic-

tion on the identity of each key-frame in a face track fol-

lowed by a probabilistic fusion or majority voting to se-

lect the best match. Due to the large variations in the

data, key-frame selection is crucial in this paradigm [4].

Zhao et al.’s [25] work is most similar to us in that they

use a database with still images collected from the Inter-

net. They learn a model over this dictionary by learning key

faces via clustering. These cluster centers are compared to

test frames using a nearest-neighbor search followed by ma-

jority, probabilistic voting to make a final prediction. We,

on the other hand, use a classification scheme that enhances

robustness by finding an agreement amongst the individual

frames in a single optimization.

http://vfr.enriquegortiz.com


Temporal model based methods learn the temporal, fa-

cial dynamics of the face throughout a video. Several meth-

ods employ Hidden Markov Models (HMM) for this end,

e.g. [14]. Most related to us, Hadid et al. [10] uses a still

image training library by imposing motion information on it

to train an HMM and Zhou et al. [26] probabilistically gen-

eralizes a still-image library to do video-to-video matching.

Generally training these models is prohibitively expensive,

especially when the dataset size is large.

Image-set matching based methods allows the model-

ing of a face track as an image-set. Many methods, like [24],

perform a mutual subspace distance where each face track

is modeled in their own subspace from which a distance is

computed between each. They are effective with clean data,

but these methods are very sensitive to the variations inher-

ent in video face tracks. Other methods take a more statis-

tical approach, like [5], which used Logistic Discriminant-

based Metric Learning (LDML) to learn a relationship be-

tween images in face tracks, where the inter-class distances

are maximized. LDML is very computationally expensive

and focuses more on learning relationships within the data,

whereas we directly relate the test track to the training data.

Character recognition methods have been very popu-

lar due to their application to movies and sitcoms. [8, 19]

perform person identification, where they use all available

information, e.g. clothing appearance and audio, to identify

the cast rather than the facial information alone. Another [3]

used a small user selected sample of characters in the given

movie to do a pixel-wise Euclidean distance to handle oc-

clusion. While others [2], use a manifold for known charac-

ters which successfully clusters input frames. While char-

acter recognition is suitable for a long-running series, the

use of clothing and other contextual clues are not helpful in

the task of identifying actors between movies, TV shows, or

non-related video clips. In these scenarios, our approach of

focusing on the facial recognition aspect from still images

is more adept in unconstrained environments.

Still-Image based literature is vast, but a popular ap-

proach is Wright et al.’s [23] Sparse Representation-based

Classification (SRC), in which they present the principle

that a given test image can be represented by a linear com-

bination of images from a large dictionary of faces. The

key concept is enforcing sparsity, since a test face can be

reconstructed best from a small subset of the large dictio-

nary, i.e. training faces of the same class. A straight-forward

adaptation of this method would be to perform estimation

on each frame and fuse results probabilistically, similarly

to key-frame based methods. However, ℓ1-minimization is

known to be computationally expensive, thus we propose

a constrained optimization with the knowledge that the im-

ages within a face track are of the same person. We show

that imposing this fact reduces the problem to computing a

single ℓ1-minimization over the average face track.

3. Video Face Recognition Pipeline

In this section, we describe our end-to-end video face

recognition system. First, we detail our algorithm for face

tracking based on face detections from video. Next, we

chronicle the features we use to describe the faces and han-

dle variations in pose, lighting, and occlusion. Finally, we

derive our optimization for video face recognition that clas-

sifies a video face track based on a dictionary of still images.

3.1. Face Tracking

Our method performs the difficult task of face track-

ing based on face detections extracted using the high-

performance SHORE face detection system [15] and gen-

erates a face track based on two metrics. To associate a new

detection to an existing track, our first metric determines

the ratio of the maximum sized bounding box encompass-

ing both face detections to the size of the larger bounding

box of the two detections. The formulation is as follows:

dspatial =
w ∗ h

max(h1 ∗ w1, h2 ∗ w2)
, (1)

where (x1, y1, w1, h1) and (x2, y2, w2, h2) are the (x, y) lo-

cation and the width and height of the previous and current

frames respectively. The overall width w and height h are

computed as w = max(x1 + w1, x2 + w2) −min(x1, x2)
and h = max(y1 +h1, y2 +h2)−min(y1, y2). Intuitively,

this metric encodes the dimensional similarity of the current

and previous bounding boxes, intrinsically considering the

spatial information.

The second tracking metric takes into account the ap-

pearance information via a local color histogram of the face.

We compute the distance as a ratio of the histogram inter-

section of the RGB histograms with 30 bins per channel of

the last face of a track and the current detection to the total

summation of the histogram bins:

dappearance =

n
∑

i=1

min(ai, bi)/

n
∑

i=1

ai + bi, (2)

where a and b are the histograms of the current and previ-

ous face. We compare each new face detection to existing

tracks; if the location and appearance metric is similar, the

face is added to the track, otherwise a new track is created.

Finally, we use a global histogram for the entire frame, en-

coding scene information, to detect scene boundaries and

impose a lifespan of 20 frames of no detection to end tracks.

3.2. Feature Extraction

Because real-world datasets contain pose variations even

after alignment, we use three fast and popular local fea-

tures: Local Binary Patterns (LBP) [1], Histogram of Ori-

ented Gradients (HOG) [7], and Gabor wavelets [17]. More

features aid recognition, but at a higher computational cost.



Algorithm 1 Mean Sequence SRC (MSSRC)

1. Input: Training gallery A, test face track Y =
[y

1
,y

2
, . . . ,yM ], and sparsity weight parameter λ.

2. Normalize the columns of A to have unit ℓ2-norm.

3. Compute mean of the track ȳ =
∑M

m=1
ym/M and

normalize to unit ℓ2-norm..

5. Solve the ℓ1-minimation problem

x̃ℓ1 = argmin
x

‖ȳ −Ax‖2
2
+ λ‖x‖1

6. Compute residual errors for each class j ∈ [1, C]

rj(ȳ) = ‖ȳ −Ajxj‖2

7. Output: identity I and confidence P (I|ȳ)

I(ȳ) = argmin
j

rj(ȳ)

P (I ∈ [1, C]|ȳ) =
C ·maxj ‖xj‖1/‖x̃‖1 − 1

C − 1

Before feature extraction, all images are first eye-aligned

using eye locations from SHORE and normalized by sub-

tracting the mean, removing the first order brightness

gradient, and performing histogram equalization. Gabor

wavelets were extracted with one scale λ = 4 at four ori-

entations θ = {0◦, 45◦, 90◦, 135◦} with a tight face crop at

a resolution of 25x30 pixels. A null Gabor filter includes

the raw pixel image (25x30) in the descriptor. The stan-

dard LBPU2

8,2 and HOG descriptors are extracted from 72x80

loosely cropped images with a histogram size of 59 and 32

over 9x10 and 8x8 pixel patches, respectively. All descrip-

tors were scaled to unit norm, dimensionality reduced with

PCA to 1536 dimensions each, and zero-meaned.

3.3. Mean Sequence Sparse Representationbased
Classification (MSSRC)

Given a test image y and training set A, we know that the

images of the same class to which y should match is a small

subset of A and their relationship is modeled by y = Ax,

where x is the coefficient vector relating them. Therefore,

the coefficient vector x should only have non-zero entries

for those few images from the same class and zeros for the

rest. Imposing this sparsity constraint upon the coefficient

vector x results in the following formulation:

x̂ℓ1 = argmin
x

‖y −Ax‖2
2
+ λ‖x‖1, (3)

where the ℓ1-norm enforces a sparse solution by minimizing

the absolute sum of the coefficients.

The leading principle of our method is that all of the

images y from the face track Y = [y
1
,y

2
, . . . ,yM ] be-

long to the same person. Because all images in a face track

belong to the same person, one would expect a high de-

gree of correlation amongst the sparse coefficient vectors

xj∀j ∈ [1 . . .M ], where M is the length of the track.

Therefore, we can look for an agreement on a single coeffi-

cient vector x determining the linear combination of train-

ing images A that make up the unidentified person. In fact,

with sufficient similarity between the faces in a track, one

might expect nearly the same coefficient vector to be recov-

ered for each frame. This provides the intuition for our ap-

proach: we enforce a single coefficient vector for all frames.

Mathematically, this means the sum squared residual error

over the fames should be minimized. We enforce this con-

straint on the ℓ1 solution of Eqn. 3 as follows:

x̃ℓ1 = argmin
x

M
∑

m=1

‖ym −Ax‖2
2
+ λ‖x‖1 (4)

where we minimize the ℓ2 error over the entire image se-

quence, while assuming the coefficient vector x is sparse

and the same over all of the images.

Focusing on the first part of the equation, more specifi-

cally the ℓ2 portion, we can rearrange it as follows:

M
∑

m=1

‖ym −Ax‖2
2
=

M
∑

m=1

‖ym − ȳ + ȳ −Ax‖2
2

=

M
∑

m=1

(‖y − ȳ‖2
2
+ 2(ym − ȳ)T (ȳ −Ax) + . . .

‖ȳ −Ax‖2
2
), (5)

where ȳ =
∑M

m=1
ym/M . However,

M
∑

m=1

2(ym − ȳ)T (ȳ −Ax)

= 2
(

∑M

m=1
ym −M ȳ

)

(ȳ −Ax)

= 0(ȳ −Ax) = 0.

Thus, Eq. 5 becomes:

M
∑

m=1

‖ym −Ax‖2
2

(6)

=

M
∑

m=1

‖ym − ȳ‖2
2
+M‖ȳ −Ax‖2

2
,



where the first part of the sum is a constant. Therefore, we

obtain the final simplification of our original minimization:

x̃ℓ1 = argmin
x

M
∑

m=1

‖ym −Ax‖2
2
+ λ‖x‖2

1

= argmin
x

M‖ȳ −Ax‖2
2
+ λ‖x‖1

= argmin
x

‖ȳ −Ax‖2
2
+ λ‖x‖1 (7)

where M , by division, is absorbed by the constant weight

λ. By this sequence, our optimization reduces to the ℓ1-

minimization of x for the mean face track ȳ.

This conclusion, that enforcing a single, consistent co-

efficient vector x across all images in a face track Y is

equivalent to a single ℓ1-minimization over the average of

all the frames in the face track, is key to keeping our ap-

proach robust yet fast. Instead of performing M individ-

ual ℓ1-minimizations over each frame and classifying via

some voting scheme, our approach performs a single ℓ1-

minimization on the mean of the face track, which is not

only a significant speed up, but theoretically sound. Further-

more, we empirically validate in subsequent sections that

our approach outperforms other forms of temporal fusion

and voting amongst individual frames.

Finally, we classify the average test track ȳ by determin-

ing the class of training samples that best reconstructs the

face from the recovered coefficients:

I(ȳ) = min
j

rj(ȳ) = min ‖ȳ −Ajxj‖2, (8)

where the label I(ȳ) of the test face track is the minimal

residual or reconstruction error rj(ȳ) and xj is the recov-

ered coefficients from the global solution x̃ℓ1 that belong to

class j. Confidence in the determined identity is obtained

using the Sparsity Concentration Index (SCI), which is a

measure of how distributed the residuals are across classes:

SCI =
C ·maxj ‖xj‖1/‖x̃‖1 − 1

C − 1
∈ [0, 1], (9)

ranging from 0 (the test face is represented equally by all

classes) to 1 (the test face is fully represented by one class).

4. Movie Trailer Face Dataset

Existing datasets do not capture the large-scale identifi-

cation scope we wish to evaluate. The YouTube Celebrities

Dataset [14] has unconstrained videos from YouTube, how-

ever they are very low quality and only contain 3 unique

videos per person, which they segment. The YouTube Faces

Dataset [22] and Buffy Dataset [5] also exhibit more chal-

lenging scenarios than traditional video face recognition

datasets, however YouTube Faces is geared towards face
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Figure 3. The distribution of face tracks across the identities in

PubFig+10.

verification, same vs. not same, and Buffy only contains 8

actors; thus, both are ill-suited for the large-scale face iden-

tification of our proposed video retrieval framework.

We built our Movie Trailer Face Dataset using 101 movie

trailers from YouTube from the 2010 release year that con-

tained celebrities present in the supplemented PublicFig+10

dataset. These videos were then processed to generate

face tracks using the method described above. The result-

ing dataset contains 4,485 face tracks, 65% consisting of

unknown identities (not present in PubFig+10) and 35%

known. The class distribution is shown in Fig. 3 with the

number of face tracks per celebrity in the movie trailers

ranging from 5 to 60 labeled samples. The fact that half

of the public figures do not appear in any of the movie trail-

ers presents an interesting test scenario in which the algo-

rithm must be able to distinguish the subject of interest from

within a large pool of potential identities.

5. Experiments

In this section, we first compare our tracking method

to a standard method used in the literature. Then, we

evaluate our video face recognition method on three exist-

ing datasets, YouTube Faces, YouTube Celebrities, Buffy.

We also evaluate several algorithms, including MSSRC

(ours), on our new Movie Trailer Face Dataset, showing the

strengths and weaknesses of each and thus proving experi-

mentally the validity of our algorithm.

5.1. Tracking Results

To analyze the quality of our automatically generated

face tracks, we ground-truthed five movie trailers from the

dataset: ‘The Killer Inside’, ‘My Name is Khan’, ‘Biutiful’,

‘Eat, Pray, Love’, and ‘The Dry Land’. Based on tracking

literature [13], we use two CLEAR MOT metrics, Multi-

ple Object Tracking Accuracy and Precision (MOTP and

MOTA), for evaluation that better consider issues faced by

trackers than standard accuracy, precision, or recall. The

MOTA tells us how well the tracker did overall in regards

to all of the ground-truth labels, while the MOTP appraises

how well the tracker performed on the detections that exist

in the ground-truth.



Method

Video KLT [8] Ours

‘The Killer Inside’
MOTP 68.93 69.35

MOTA 42.88 42.16

‘My Name is Khan’
MOTP 65.63 65.77

MOTA 44.26 48.24

‘Biutiful’
MOTP 61.58 61.34

MOTA 39.28 43.96

‘Eat Pray Love’
MOTP 56.98 56.77

MOTA 34.33 35.60

‘The Dry Land’
MOTP 64.11 62.70

MOTA 27.90 30.15

Average
MOTP 63.46 63.19

MOTA 37.73 40.02

Table 1. Tracking Results. Our method outperforms the KLT-

based [8] method in terms of MOTA by 2%.

Method Accuracy ± SE AUC EER

MBGS [22] 75.3 ± 2.5 82.0 26.0

MSSRC (Ours) 75.3 ± 2.2 82.9 25.3

Table 2. YouTube Faces Dataset. Results for top performing video

face verification algorithm MBGS and our competitive method

MSSRC. Note: MBGS results are different from those published,

but they are the output of default settings in their system.

Although our goal is not to solve the tracking problem,

in Table 1 we show our results compared to a standard

face tracking method. The first column shows a KLT-based

method [8], where the face detections are associated based

on a ratio of overlapping tracked features, and the second

shows our method. Both methods are similarly precise,

however our metrics have a larger coverage of total detec-

tions/tracks by 2% in MOTA with a 3.5x speedup. Results

are available online.

5.2. YouTube Faces Dataset

Although face identification is the focus of our paper, we

evaluated our method on the YouTube Faces Dataset [22]

for face verification (same/not same), to show that our

method can also work in this context. To the best of our

knowledge, there is only one paper [9], that has done face

verification using SRC, however it was not in the context of

video face recognition, but that of still images from LFW.

The YouTube Faces Dataset consists of 5,000 video pairs,

half same and half not. The videos are divided into 10 splits

each with 500 pairs. The results are averaged over the ten

splits, where for each split one is used for testing and the

remaining nine for training. The final results are presented

in terms of accuracy, area under the curve, and equal error

rate. As seen in Table 4, we obtain competitive results with

Method Accuracy (%)

HMM [14] 71.24

MDA [20] 67.20

SANP [11] 65.03

COV+PLS [21] 70.10

UISA [6] 74.60

MSSRC (Ours) 80.75

Table 3. YouTube Celebrities Dataset. We outperform the best

reported result by 6%.

Method Accuracy (%)

LDML [5] 85.88

MSSRC (Ours) 86.27

Table 4. Buffy Dataset. We obtain a slight gain in accuracy over

the reported method.

the top performing method MBGS [22], within 1% in terms

of accuracy, and MSSRC even surpasses it in terms of area

under the curve (AUC) by just below 1% with a lower equal

error rate by 0.7%. We perform all experiments with the

same LBP data provided by [22] and a τ value of 0.0005.

5.3. YouTube Celebrities Dataset

The YouTube Celebrities Dataset [14] consists of 47

celebrities (actors and politicians) in 1910 video clips

downloaded from YouTube and manually segmented to the

portions where the celebrity of interest appears. There are

approximately 41 clips per person segmented from 3 unique

videos per actor. The dataset is challenging due to pose, il-

lumination, and expression variations, as well as high com-

pression and low quality. Using our tracker, we successfully

tracked 92% of the videos as compared to the 80% tracked

in their paper [14]. The standard experimental setup selects

3 training clips, 1 from each unique video, and 6 test clips,

2 from each unique video, per person. In Table 3, we sum-

marize reported results on YouTube Celebrities, where we

outperform the state-of-the-art by at least 6%.

5.4. Buffy Dataset

The Buffy Dataset consists of 639 manually annotated

face tracks extracted from episodes 9, 21, and 45 from dif-

ferent seasons of the TV series “Buffy the Vampire Slayer”.

They generated tracks using the KLT-based method [8]

(available on the author’s website). For features, we com-

pute SIFT descriptors at 9 fiducial points as described in [5]

and use their experimental setup with 312 tracks for train-

ing and 327 testing. They present a Logistic Discriminant-

based Metric Learning (LMDL) method that learns a sub-

space. In their supervised experiments, they tried several

classifiers with each obtaining similar results. However, us-

ing our classifier, there is a slight improvement.



Method AP (%) Recall (%)

NN 9.53 0.00

SVM 50.06 9.69

LDML [5] 19.48 0.00

L2 36.16 0.00

SRC (First Frame) 42.15 13.39

SRC (Voting) 54.88 23.47

MSSRC (Ours) 58.70 30.23

Table 5. Movie Trailer Face Dataset. MSSRC outperforms all of

the non-SRC methods by at least 8% in AP and 20% recall at 90%

precision.
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Figure 4. Precision vs. Recall for the Movie Trailer Face Dataset.

MSSRC rejects unknowns or distractors better than all others.

5.5. Movie Trailer Face Dataset

In this section, we present results on our unconstrained

Movie Trailer Face Dataset that allows us to test larger scale

face identification, as well as each algorithms ability to re-

ject unknown identities. In our test scenario, we chose the

Public Figures (PF) [16] dataset as our training gallery, sup-

plemented by images collected of 10 actors and actresses

from web searches for additional coverage of face tracks

extracted from movie trailers. We also cap the maximum

number of training images per person in the dataset to 200

for better performance due to the fact that predictions are

otherwise skewed towards the people with the most exam-

ples. The distribution of face tracks across all of the identi-

ties in the PubFig+10 dataset are shown in Fig. 3. In total,

PubFig+10 consists of 34,522 images and our Movie Trailer

Face Dataset has 4,485 face tracks, which we use to conduct

experiments on several algorithms.

5.5.1 Algorithmic Comparison

The tested methods include NN, LDML, SVM, L2, SRC,

and our method MSSRC. For the experiments with NN,

LDML, SVM, L2, and SRC, we test each individual frame

of the face track and predict its final identity via probabilis-

tic voting and its confidence is an average over the predicted

distances or decision values. The confidence values are used

to reject predictions to evaluate the precision and recall of

the system. Note all MSSRC experiments are performed

with a λ value of 0.01. We present results in terms of preci-

sion and recall as defined in [8].

Table 5 presents the results for the described methods on

the Movie Trailer Face Dataset in terms of two measures,

average precision and recall at 90% precision. NN performs

very poorly in terms of both metrics, which explains why

NN based methods have focused on finding “good” key-

frames to test on. LMDL struggles with the larger num-

ber of training classes vs. the Buffy experiment with only

19.48% average precision. The L2 method performs sur-

prisingly well for a simple method. We also tried Mean L2

with similar performance. The SVM and SRC based meth-

ods perform very closely at high recall, but not in terms of

AP and recall at 90% precision with MSSRC outperforming

SVM by 8% and 20% respectively. In Fig. 4, the SRC based

methods reject unknown identities better than the others.

The straightforward application of SRC on a frame-

by-frame basis and our efficient method MSSRC perform

within 4% of each other, thus experimentally validating that

MSSRC is computationally equivalent to performing stan-

dard SRC on each individual frame. Instead of computing

SRC on each frame, which takes approximately 45 minutes

per track, we reduce a face track to a single feature vector

for ℓ1-minimization (1.5 min/track). Surprisingly, MSSRC

obtains better recall at 90% precision by 7% and 4% in aver-

age precision. Instead of fusing results after classification,

as done on the frame by frame methods, MSSRC benefits in

better rejection of uncertain predictions. In terms of timing,

the preprocessing steps of tracking runs identically for SRC

and MSSRC at 20fps and feature extraction runs at 30fps.

For identification, MSSRC classifies at 20 milliseconds per

frame, whereas SRC on a single frame takes 100 millisec-

onds. All other methods classify in less than 1ms, however

with a steep drop in precision and recall.

5.5.2 Effect of Varying Track Length

The question remains, do we really need all of the images?

To answer this question we select the first m frames for

each track and test the two best performing methods from

the previous experiments: MSSRC and SVM. Fig. 5 shows

that at just after 20 frames performance plateaus, which is

close to the average track length of 22 frames. Most impor-

tantly, the results show that using multiple frames is ben-

eficial since moving from using 1 frame to 20 frames re-

sults in a 5.57% and 16.03% increase in average precision

and recall at 90% precision respectively for MSSRC. Fur-
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Figure 5. Effect of Varying Track Length. We see that performance

levels out at about 20 frames (close to the average track length).

MSSRC outperforms SVM by 8% in average in terms of AP.

thermore, Fig. 5 shows that the SVM’s performance also

increases with more frames, although MSSRC outperforms

the SVM method in its ability to reject unknown identities.

6. Conclusions and Future Work

In this paper we have presented a fully automatic end-

to-end system for video face recognition, which includes

face tracking and identification leveraging information from

both still images for the known dictionary and video for

recognition. We propose a novel algorithm Mean Sequence

SRC, MSSRC, that performs a joint optimization using all

of the available image data to perform video face recogni-

tion. We finally showed that our method outperforms the

state-of-the-art on real-world, unconstrained videos in our

new Movie Trailer Face Dataset. Furthermore, we showed

our method especially excels at rejecting unknown identi-

ties outperforming the next best method in terms of average

precision by 8%. Video face recognition presents a very

compelling area of research with difficulties unseen in still-

image recognition. In the future, we would explore the ef-

fect of selecting key-frames, or less noisy frames. Further-

more, there is a whole area of domain transfer for transfer-

ring knowledge from the still-image domain to the videos.
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