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Abstract

Scene labeling task is to segment the image into mean-
ingful regions and categorize them into classes of objects
which comprised the image. Commonly used methods typi-
cally find the local features for each segment and label them
using classifiers. Afterwards, labeling is smoothed in order
to make sure that neighboring regions receive similar la-
bels. However, these methods ignore expressive connections
between labels and non-local dependencies among regions.
In this paper, we propose to use a sparse estimation of pre-
cision matrix (also called concentration matrix), which is
the inverse of covariance matrix of data obtained by graph-
ical lasso to find interaction between labels and regions. To
do this, we formulate the problem as an energy minimiza-
tion over a graph, whose structure is captured by applying
sparse constraint on the elements of the precision matrix.
This graph encodes (or represents) only significant interac-
tions and avoids a fully connected graph, which is typically
used to reflect the long distance associations. We use local
and global information to achieve better labeling. We as-
sess our approach on three datasets and obtained promising
results.

1. Introduction
Semantic image segmentation, assigning a label to each

pixel of an image, is a classic and challenging task in com-
puter vision, due to the efforts needed to simultaneously
segment and recognize the image regions. One of the
widely used approaches to address this problem is to exploit
MAP (maximum a posteriori) inference in a multi-class
conditional random field (CRF). This is the extension of the
binary CRF, which has been widely used to find foreground-
background in images. Common CRF models are defined
over pixels, patches or super-pixels of the image. These
models generally comprise of the unary or association po-
tential, which measures how likely a pixel (or a super-pixel)
can be assigned a particular label without taking into ac-
count the properties of other parts of the image, and the
smoothing or interaction potential, which assesses (evalu-
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Figure 1. Given an image, we aim to improve the semantic labels
of the regions, originally miss-labeled by classifiers. (a) shows a
query image, (b) shows the human annotated image (ground truth),
(c) shows labels obtained by classifiers, (d) shows labels via spatial
smoothing and (e) shows our results.

ates) how the labels of the other connected nodes (pixels
or super-pixels) interact to maximize the assignment agree-
ment.

Commonly, the structure of the CRF is specified man-
ually; in images typically a 2D lattice is used to build an
adjacency CRF using the neighboring pixels. However, this
model has two important limitations. First, it is unable to in-
corporate long-range (long-distance) connections between
different regions of the image. Second, it may not be able
to model the contextual relationships among labels and may
not be capable of capturing the complexity in the labels.
One of the approaches to overcome this problem is to use a
fully connected CRF, in which pair-wise potentials are de-
fined between all pairs of the nodes (pixels or super-pixels).
However, the main limitation of this method is the complex-
ity of the inference. The overwhelming number of edges in



the model makes the problem difficult to be solved in an ac-
ceptable time. Furthermore, since the optimization solution
to the multi-label CRF is not exact, the complexity in the
structure leads to reduced accuracy.

In this paper, we propose to learn the label graph (the
correlation graph between labels in the dataset) and find
the structure of the super-pixels within the image using the
sparse precision matrix (also called concentration matrix)
estimated using graphical lasso. We aim to infuse the rela-
tions between labels in the model, without expensive learn-
ing of parameters in training the CRF. By doing this, we find
the compatibility among labels instead of using Potts model
for all pairs of labels, thus the cost for different combination
of labels would be dependent on their correlation and the
way they influence each other. However, we consider only
nodes (regions) in the image, which have interactions with
other regions and which are not limited to spatial smooth-
ness only.Also, our model facilitates using smaller elements
(smaller super-pixels or pixels) of the image. Due to the
fact that, we do not need to encode all interactions between
these elements, we can find finer and more accurate bound-
aries using smaller super-pixels. In our approach, in addi-
tion to utilizing the scene semantics by employing the struc-
ture and dependency among labels and regions, we also ex-
ploit global context by refining local probabilities achieved
by classifiers using a retrieval set, which is obtained based
on k nearest neighbors of image employing GIST features.

In order to demonstrate the performance of our method,
we report experimental results on three benchmark datasets
including MSRC2 [20], Stanford Background [7] and SIFT-
flow [16]. In summary, we make the following contribu-
tions:

• We find the structure of the graphical model between
labels and regions using sparse precision matrix to ex-
ploit helpful long distance interactions without consid-
ering all connections.

• We improve the scores of super-pixels by combining
local classifiers results and probabilities obtained by a
retrieval set based on global information of a scene.

• We incorporate discovered significant interactions be-
tween labels (positive or negative correlations) in pair-
wise cost term of the energy minimization problem.

The rest of the paper organized as follow: section 2 reviews
related work proposed for scene labeling, and in section
3 our proposed method is described in detail. The exper-
iments and evaluations of our method are presented in sec-
tion 4, and finally in section 5 we conclude our paper.

2. Related Work
Recently, semantic segmentation has been the subject of

many research works. Proposed methods are different in

terms of employed features and descriptors, primitive el-
ements (pixels, patches or regions), classifier choices and
incorporation of different techniques for context. A major-
ity of methods employ Conditional Random Fields [14].
These methods use mainly appearance (local features) as
unary potential and smoothness between neighboring ele-
ments as the pairwise term [20]. In order to integrate po-
tentials of the features at different levels (pixels and super-
pixels) higher order CRF have also been explored [19], [7].

In addition to local features, some methods benefit from
object detectors and combine the results from detectors and
context information [14], [26]. In some approaches, the im-
age segments are labeled by transferring the labels from a
dataset of known labels. To do so, for a given image, simi-
lar images are retrieved from a sample data using a nearest
neighbor algorithm, then by using Markov Random Field
model, pixels (or super-pixels) in the image are labeled [16],
[25] and [27]. There are many extensions of this type of
labeling, for instance, in [2] authors propose to learn the
weights of descriptors in an off-line manner to reduce the
impact of incorrectly retrieved super-pixels. Also, authors
in [22] proposed to use a locally adaptive distance metric to
find the relevance of features for small patches in the image
and to transfer the labels from retrieved candidates to small
patches of the image. In [8], instead of using a retrieval set
to transfer the labels, a graph of dense overlapping patch
correspondences is constructed; and the query image is la-
beled by using established patch correspondences.

In some other papers, authors incorporate context infor-
mation in their modeling, using global features of the image
or applying co-occurrence of the labels [29]. Deep learning
techniques have also been used in scene labeling. For each
pixel of the image, multi-scaled features are obtained and a
neural network is trained to aggregate feature maps and to
label the regions with highest scores. Note that, these mod-
els need a large data for training [3], [23]. In [11] authors
proposed to represent an image as a collage of warped, lay-
ered objects which are sampled from reference images. For
a given image, they retrieve a dictionary of object segment
candidates that match the image, then represent the image
by combining these matched segments. For this purpose,
they need a dataset of label exemplars. Moreover, in [10]
the authors use detectors to find the bounding boxes of the
objects and label regions using information from detectors
and surface occlusions, in addition, they use RGB-depth to
understand the scene.

In contrast to these models, we automatically find the
relations of classes, and incorporate the context in refining
scores as well as pairwise costs to achieve better label as-
signments without highly expensive training or merely us-
ing common scene to model the relations among classes.
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Figure 2. The overview of our approach: We begin by extracting the feature matrix, and segmenting the image into super-pixels. Then
classifiers (random forest) are trained. We detect the relations between labels using the sparse estimated partial correlation matrix of the
training data. In the inference part, for a given image the label scores are obtained via the classifiers (random forest and nearest neighbors),
then the energy function of a sparse graphical model on super-pixels is optimized to label each super-pixel.

3. Proposed Approach

Our approach consists of two main steps. The first step
consists of off-the-shelf parts including feature extraction
and classifier training based on local features of the sample
training images. Also, in this phase using the training data,
we capture the structure of semantic label interactions graph
to be later employed in the pair-wise cost computation. In
the second step, which is the inference, for a given query
image, using scores computed by the classifiers for each
possible label, and the pair-wise costs obtained by label cor-
relations and appearance features of the image, the MAP in-
ference in CRF framework is applied and each super-pixel
is assigned a label. An overview of our proposed model is
shown in figure 2.

In training, first we segment images using efficient graph
based segmentation [4]. Next, for each super-pixel, local
features, including SIFT, color histogram, mean and stan-
dard deviation of color, area and texture, are extracted.
Given these local features, classifiers (random forest) are
trained to label super-pixels using their local features. Also,
in training phase we build the sparse precision matrix based
on the sample data to highlight the important relations (pos-
itive or negative correlations) between labels. In testing, for
a query image we find the unary terms, for its segments,
using scores from local classifiers refined with the probabil-
ities obtained from a retrieval set based on global features.
Then, we use a fast implementation of graphical lasso to
find the structure of the dependency graph between super-
pixels and assign weights to edges based on correlation val-
ues. Finally, we use α expansion to optimize the energy

function and assign a label to each super-pixel.

3.1. Graphical Lasso and Sparse Precision Matrix

In order to find the structure of the graph of our model,
we employ the precision matrix (the inverse of covariance
matrix) to capture the dependency between variables. The
partial correlation between two variables X and Y , given
other variable Z, measures the association between X and
Y , after regressing X and Y on Z. If the partial correla-
tion between two variables given all other variables is zero,
there will be no edge between them in the corresponding
partial correlation graph. The matrix of partial correlations
between variables can be defined using the inverse of co-
variance matrix Ω. Therefore, zeros in the inverse covari-
ance indicate that there is no edge in the graph. Even though
empirical covariance of the data is a decent approximation
of the true covariance, this is not valid for the precision ma-
trix. Furthermore, when the dimension of the data increases,
the covariance matrix may not be invertible. We assume the
data follows Gaussian distribution and use graphical lasso.

Let X = (X(1), ..., X(p)) be a p-dimensional random
vector. Assume, we have a set of n random samples
X1, ..., Xn, we are interested in identifying conditional in-
dependence between the pair of variables (features) X(i)

and X(j), given other variables. In doing so, X can be
represented by a graph G = (V,E), where vertices cor-
respond to p variables and the edges represent the correla-
tions between variables. In the Gaussian (Normal) distribu-
tion, the correlation and dependency graph are equivalent.
Even though the data may not have a normal distribution,
since conditional independence graphs are hard to estimate,



employing partial correlation is a reasonable alternative to
find the structure of the interactions between the variables.
Let the matrix C = {ρi,j} ∈ Rp×p be a partial correlation
matrix, where ρi,j captures the partial correlations between
variables X(i) and X(j) , and

ρi,j = −Ωi,j/
√

Ωi,i,Ωj,j , (1)

where Ω = Σ−1 is the inverse of the covariance matrix
of the data with covariance Σ. Using sample covariance
matrix to estimate the matrix C is not proper for high di-
mensional data, due to the limited number of samples, the
covariance matrix may not be invertible. Also, more impor-
tantly, the inverse of empirical covariance matrix may not
be sparse and consequently not resulting in a sparse graph.
In order to find the structure of the graph and obtain a cer-
tain number of influential edges, it is desirable to have zeros
in the precision matrix, since zeros determine the indepen-
dent (uncorrelated) variables. Therefore, imposing sparsity
constraint on the elements of precision matrix enforces that
insignificant and noisy relations are discarded and meaning-
ful dependencies are persevered. To achieve sparsity, [30]
proposed to use a lasso (Least Absolute Shrinkage and Se-
lection Operator) model [24] to estimate each variables us-
ing others as predictor and by applying L1 regularization on
coefficients to enforce sparsity. Therefore, the edges in the
graph are removed for the variables for which correspond-
ing coefficients are zero. In [5], an algorithm, named graph-
ical lasso (glasso), was proposed to maximize the Gaus-
sian log-likelihood of the data with L1 penalty on preci-
sion matrix elements to impose sparsity. This approach uses
block coordinate gradient to solve the optimization prob-
lem, which is fast and suitable for our application. Let S be
the empirical covariance matrix of the data, then Ω can be
obtained by,

arg max
Ω

logdet Ω− tr(SΩ)− λ ‖Ω‖1 , (2)

where tr is the trace of the matrix and ‖‖1 is the L1norm
(sum of the absolute values) of the matrix. In brief, one can
model the dependency between variables using their partial
correlation graph. The partial correlation graph has an edge
between j and k when ρj,k 6= 0. Furthermore, as mentioned
above, partial correlation has a direct relation with inverse
of covariance of the data (equation 1). Therefore, by es-
timating a sparse precision matrix (inverse of covariance),
one could obtain the structure of the dependency graph be-
tween variables, where zeros in the precision matrix mean
there is no edge between corresponding variables. In fol-
lowing sections we explain each part of the approach in de-
tail.

3.2. Local Classifiers

In this section, we explain the first step of the model.
In training, we start with segmenting each sample image

into super-pixels using efficient graph-based segmentation
method [4], followed by computing a feature vector( includ-
ing, SIFT, color mean) for each super-pixel in the image.
Since the ground truth for each image is pixel based, each
super-pixel is assigned a label which correspond to the ma-
jority of its pixels. We use the same features as used in [25].
In order to rescale the classifier scores and give chance to
other classes to compete during optimization phase, we use
a sigmoid function. By doing so, if the classifier mislabels
a super-pixel, theres is more chance that the label would
be changed during the inference phase. We adapt the pa-
rameters of the sigmoid function using the validation data.
We use random forest classifiers [15] to classify each super-
pixel in a test image. Due to the fact that super-pixels may
break the structure of the data, since training data inevitably
is noisy, the bagging using subset of training examples and
subsets of features is used to reduce the effects of the noisy
data. Unlike some of the other methods, which train object
detectors in addition to the region classifiers, we only use
region features and small scale classifiers to obtain the ini-
tial label scores for each super-pixel. In our experiments,
random forest achieved better results in terms of average
accuracy among all the classes, even though we randomly
discard some of the samples during the training, due to large
number of super-pixels.

3.3. Global Retrieval

Since the local classifiers treat each super-pixel individ-
ually, the context information may be missed, therefore we
propose to refine the scores obtained from the classifiers by
leveraging the global feature extracted from the data. By
doing this, we enforce that global information of the scene
and geometrical features play a role in labeling the data.
We use GIST features to retrieve a subset of the nearest
neighbors of the query image from the training data. We
use the method proposed in [17] to speedup the retrieval
process and make it scalable for large databases. Next, we
compute the probability of assigning each label, l, at a spe-
cific location by counting the number of super-pixels with
the label l in the retrieval set, and normalize it with respect
to the total number of labels. Thus, we have a probability
as pg(label = li|location = (x, y)). Finally, for each la-
bel we modify the obtained scores from the classifiers with
these probabilities (corresponding to the super-pixels) using
the following late fusion formulation:

wnew(i, j) = w(i, j)γ × pg(i, j)1−γ , (3)

where γ is the combination coefficient and wnew(i, j) is the
new probability of ith label for the super-pixel j.

3.4. Scene Graph Structure

In order to capture the structure of the label graph, we
start by building a matrix comprising of the sample data.
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Figure 3. The first row is obtained by using the output (scores) of
each classifier and treating it as a random sample. The second row
is obtained using the features of the super-pixels to find the cor-
relation between them. The first column corresponds to empirical
inverse of covariance matrix of the data; as shown the entries are
very noisy and finding true interactions among the super-pixels is
difficult. However, the estimated sparse precision matrix provide
fewer and more meaningful interactions.

Each image in the training set is represented by a vector of
size equal to the number of classes; we want to discover the
influences of labels, therefore our random variables (fea-
tures) are labels in the dataset. For example, in the SIFT-
flow data set we have 33 labels, therefore each vector has
dimension of 33. The value of a particular variable (spe-
cific label) in this representation is the probability of seeing
that label in the image. These probabilities are obtained by
counting the pixels belonging to the class and normalizing
them by the image size. Then, using equation 2 the preci-
sion (concentration) matrix is estimated. The degree of the
sparsity is handled by parameter λ. Partial correlations of
labels are used to find the interaction between labels, which
will be used for pairwise-cost (interaction potential) in the
CRF formulation instead of using Potts model. Therefore,
if two connected nodes do not have the same label, assign-
ing different pair of labels contribute differently in finding
the conditional probability of the assignment.

In addition, in order to capture the structure of the graph
for the image elements (here super-pixels) in the inference
step, we use the graphical lasso to obtain the relationships
between the super-pixels. By doing this, if two super-pixels
are related but assigned irrelevant labels, the cost of the as-
signment is increased. To do so, each super-pixel is treated
as a random variable, and by using the classifiers which are
trained for class labels, we generate samples for these vari-
ables. Thus, the length of each vector is equal to the number
of super-pixels and we will have L vectors, where L is num-
ber of the classes. Then, we again use graphical lasso and
estimate a sparse precision matrix (inverse of covariance),
and subsequently obtain the partial correlation graph, where
the zero indicates no edge between super-pixels. Note that
since the number of super-pixels can be large, the covari-

ance matrix may be singular and not invertible, due to the
fact that the number of available samples (e.g. scores from
classifiers) is limited. Therefore, in such cases using the
sparse estimation can be beneficial. Not only do we find the
structure and the connections between regions, we also use
these values to incorporate relevancy of super-pixels in pair-
wise potentials. As it is shown in figure 3, the inverse of the
sample covariance matrix is very noisy due to the fact that
the covariance matrix can be singular (or close to singular).
By using the graphical lasso we can capture the structure of
the graph, (as shown in the figure) and also preserve the cor-
relation between spatial neighbors of super-pixels. The al-
ternative for finding the relations between super-pixels is to
use their features and try to find dependency between super-
pixels, by sparse representation of each super-pixels using
other super-pixels as predictors. The example is shown in
the bottom row of the figure 3. We use features of super-
pixels after reducing the dimension by PCA. In our exper-
iments, we use the scores from classifiers as sample data
since they are more efficient.

3.5. Energy Function Optimization

As we obtain graph structure for the query image, we
build a CRF over the super-pixels given the features of the
image, and formulate an energy function E as follows:

E(y, x) =
∑
si

U(yi, x)+τ
∑

i,j∈rel set(i,j)

V (yi, yj , x), (4)

where the goal is to assign a label yi ∈ L = 1, 2, ..., l to
each super-pixel i, while leveraging correlations between
labels to refine the individual labeling. Also, we aim to in-
corporate local smoothness between relevant super-pixels
as well. rel set(i, j) represents the set of the edges, which
correspond to non-zero entires in the precision matrix. And,
τ is a weight to control the balance of smoothness. The
unary term, U , here is defined as the cost of assigning a la-
bel c to a super-pixel si, which we obtain by using scores
provided by the classifier wi for a particular super-pixel:

U(yi = c|xsi) = 1− 1

1 + e−wi,c
. (5)

The pairwise term considers both appearance similarity
between super-pixel i and j as well as correlation between
labels, as follows:

V (yi = l, yj = k|xsi , xsj ) = δ(l, k)× F (si, sj), (6)
δ(l, k) = − log(σ(ρl,k)), (7)

where ρl,k is the correlation between labels which is found
in the training step, σ is a sigmoid function, and F is the
measure of similarity between super-pixels based on color
and position features. This term adds cost to the energy
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Figure 4. Some samples from SIFTflow data set: We show the image, the labels based on classifier scores, results after smoothing using
spatial neighborhood and Potts model, and results using our method employing super-pixel correlation graphs.

in cases where related or similar super-pixels are given ir-
relevant labels. However, it also applies different costs to
different combinations of labels. It should be noted that
here that the edges are not limited to spatial neighbors of
the super-pixels only, we also include significant (relevant)
long interactions. However, despite fully connected con-
figurations, we do not consider all interactions, thus only
significant relations are taken into account. In this structure
irrelevant and noisy interactions are avoided. Moreover, we
incorporate the partial correlations between super-pixels in
the function F given below. This provides the notion of
dependency between super-pixels apart from only the ap-
pearance similarity.

F (si, sj) = (w1 e
−‖Ii−Ij‖+w2 e

−‖pi−pj‖)R(si, sj), (8)

where Ii is the feature for super-pixel i, namely color mean ,
pi is the center position of the super-pixel i, andRmeasures
the relevancy of two super-pixels. This can be computed as
exp(σ(ρsi,sj )), where σ is a sigmoid function.

4. Experiments and Results

We evaluate our method on three benchmark datasets.
The first dataset is Stanford-background, which has 8
classes and 715 images, and following [21] data is randomly
split into 80% for training and the rest for testing with 5-fold
cross validation. As shown in table 1 we compare our re-
sults with state-of-the-art methods, and we achieve better
results.

Table 1. Accuracy on StandfordBG dataset

Method Avg Accuracy
Farabet natural [3] 81.4
Gould [9] 77.1
Shauai [21] 80.1
Local Classifier 72.8
Local Classifier + Global 78.9
Local + Global + Spatial smoothing 82.2
Ours Final (sparse structure) 84.6
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Figure 5. On the top row, we show two graphs: LEFT: obtained by the sparse partial correlation matrix , and the RIGHT: obtained using
an empirical inverse of covariance matrix. As it is clear, more relevant relations are maintained and irrelevant edges are removed. Below
the graphs, we show some sample images which have been properly labeled using the positive or negative correlation between labels.
(a) sample image, (b) ground truth, (c) classifier result, (d) spatial neighborhood smoothing with Potts model, (e) results obtained by our
approach.

The second dataset that we assess our approach with is
SIFTflow dataset [16], which consists of 2,488 training im-
ages and 200 testing images from 33 classes collected from
LabelMe [18]. The quantitative results of our approach are
reported in table 2 and qualitative results are shown in figure
4. As it is shown, our method is able to achieve promising
results without using computationally expensive features or
object detectors. Note that the main aim of our method is to
improve the local labeling via capturing the proper interac-
tions among labels and super-pixels in addition to leverage

from context information. Thus, improving the initial label-
ing leads to better final results.

We also applied our method on third dataset, MSRCV2
[20], which has 591 images of 23 classes. We use the
provided split, 276 images in training and 255 images.
Here again our method improves the classifiers results and
achieves comparable results to the other methods which use
different features. For instance, authors in [12] extract fea-
tures for each pixel, and build a fully connected graph on
pixel levels, where the unary classifier gives 84% accuracy.
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Figure 6. This example demonstrate that adding long distance edges can prevent over-smoothing and also refine the labels.

Table 2. Accuracy on SIFTflow dataset

Method Avg Accuracy
Farabet [3] 78.5
Tighe [26] 78.6
Collage Parsing [28] 77.1
Shauai [21] 80.1
Gerorge without Fisher Vectors[6] 77.5
Gerorge Full [6] 81.7
Local Classifiers 71.2
Local Classifiers + Global 75.3
Local +Global + Spatial smoothing 77.7
Ours Final (sparse structure) 80.6

They improve the results by 2%, while our improvement
is about 8% which is significant. If the classifiers are im-
proved, our results can be improved even more.

Table 3. Accuracy on MSRC2 dataset

Method Avg Accuracy
Harmony Potentials [1] 83
Fully Connected CRF [12] 86
Segment CRF with Co-Occurrence [13] 80
Local Classifier 76.6
Local Classifier + Global 77.1
Local +Global + Spatial smoothing 81.7
Ours Final (sparse structure) 84.1

In table 4 the average accuracy results per class are re-
ported. As it is shown, our method does not compromise
the per class accuracy for smoothing.

Table 4. Avg Accuracy Per Class

Method StanfordBG SIFTflow MSRC2
Local Classifier 53.8 37.6 71.3
Our Result 77.3 45.8 76.8

4.1. Discussion

Our method improves results obtained from the classi-
fiers in two folds. First, by imposing some constraints on
label graph, more meaningful pairwise costs are applied for
scene labeling. For example, in the label graph as shown in
figure 5, building and mountain have negative partial corre-
lation, on the other hand, building and windows have high
positive correlation. Therefore, as shown in the top row of
examples in figure 5, the mountain segments are refined.
Also, since windows-building have less pairwise-cost, the
windows super-pixels are not smoothed out as it was the
case in column (d).

In addition, expanding the connectivities beyond imme-
diate vicinities boosts the strength of the model. Selective
edges based on partial correlation between segments pre-
vent the model from over-smoothing and enforce the corre-
lated segments to be assigned relevant labels. For instance,
in the image shown in figure 6 super-pixel 18 and 15 are
not immediately adjacent; however, in the sparse correla-
tion matrix they are positively correlated. Thus, there is an
edge between them and consequently, since their similarity
and correlation is high, they are labeled correctly.

5. Conclusion
In this paper, we proposed to incorporate context infor-

mation in both label space and observation space (super-
pixels) to boost local classifier results in order to better se-
mantically label segments in an image. We used graphi-
cal lasso to estimate the sparse precision matrix of data to
find relevant long distance interactions in addition to spatial
smoothness. We have shown that, this model can refine la-
bel assignment using the correlation between labels as well
as segments. Also, our model does not smooth out fore-
ground labels as can be seen in spatial labeling. We reported
improved experimental results on the SIFTflow, Standford
background and MSRC2 benchmark datasets.
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