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Abstract

Attributes are semantically meaningful characteristics
whose applicability widely crosses category boundaries.
They are particularly important in describing and recog-
nizing concepts where no explicit training example is given,
e.g., zero-shot learning. Additionally, since attributes are
human describable, they can be used for efficient human-
computer interaction. In this paper, we propose to employ
semantic segmentation to improve facial attribute predic-
tion. The core idea lies in the fact that many facial attributes
describe local properties. In other words, the probability of
an attribute to appear in a face image is far from being uni-
form in the spatial domain. We build our facial attribute
prediction model jointly with a deep semantic segmentation
network. This harnesses the localization cues learned by the
semantic segmentation to guide the attention of the attribute
prediction to the regions where different attributes naturally
show up. As a result of this approach, in addition to recog-
nition, we are able to localize the attributes, despite merely
having access to image level labels (weak supervision) dur-
ing training. We evaluate our proposed method on CelebA
and LFWA datasets and achieve superior results to the prior
arts. Furthermore, we show that in the reverse problem,
semantic face parsing improves when facial attributes are
available. That reaffirms the need to jointly model these
two interconnected tasks.

1. Introduction

Nowadays, state-of-the-art computer vision techniques
allow us to teach machines different classes of objects, ac-
tions, scenes, and even fine-grained categories. However,
to learn a certain notion, we usually need positive and neg-
ative examples from the concept of interest. This creates
a set of challenges as the examples of different concepts
are not equally easy to collect. Also, the number of learn-
able concepts is linearly capped by the cardinality of the
training data. Therefore, being able to robustly learn a set
of sharable concepts that go beyond rigid category bound-

aries is of tremendous importance. Visual attributes are one
particular type of the sharable concepts. They are human
describable and machine detectable. The fact that attributes
are generally not category-specific suggests that one can po-
tentially describe an exponential number of categories with
various combinations of attributes. Naturally, attributes are
“additive” to the objects (e.g., horn for cow). It means that
an instance of an object may or may not take a certain at-
tribute while in either case the category label is preserved
(e.g., a cow with or without horn is still a cow). Hence,
attributes are especially useful in problems that aim at mod-
eling intra-category variations such as fine-grained classifi-
cation.

Despite their additive character, attributes do not appear
in arbitrary regions of the objects (e.g., the horn, if appears,
would show up on a cow’s head). This notion is the basis
of our work. That is, in order to detect an attribute, instead
of the entire spatial domain, we should focus on the region
in which that attribute naturally shows up. We hypothe-
size that the attribute prediction can benefit from localiza-
tion cues. However, attribute prediction benchmarks come
with holistic image level labels. In addition, sometimes it is
hard to define a spatial boundary for a given attribute. For
instance, it is not clear that according to which spatial re-
gion in a face one decides if a person is “attractive” or not.
To tackle this challenge, we transfer localization cues from
a relevant auxiliary task to the attribute prediction problem.

Using bounding box to show the boundary limits of an
object is a common practice in computer vision. However,
regions that different attributes occupy drastically change in
shape and form. For example, in a face image, one cannot
effectively put a bounding box around the region associated
to “hair”. In fact, the shape of the region can be used as
an indicative signal on the attribute. Therefore, we need an
auxiliary task that learns detailed localization information
without restricting the corresponding regions to be in cer-
tain pre-defined shapes.

Semantic segmentation has all the aforementioned char-
acteristics. It is the problem of assigning class labels to ev-
ery pixel in an image. As a result, a successful semantic
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segmentation approach has to learn pixel-level localization
cues which implicitly encode color, structure, and geomet-
ric characteristics in fine detail. In this work, we are inter-
ested in facial attributes. Hence, the semantic face parsing
problem [21] is a suitable candidate to serve as an auxiliary
task to spatially hint the attribute prediction methods.

To perform attribute prediction, we feed an image to a
fully convolutional neural network which generates feature
maps that are ready to be aggregated [15] and passed to
the classifier. However, global pooling [15] is agnostic to
where, in spatial domain, the attribute-discriminative acti-
vations occur. Hence, instead of propagating the attribute
signal to the entire spatial domain, we funnel them into the
semantic regions. By doing so, our model learns where to
attend and how to aggregate the feature map activations.
We refer to this approach as Semantic Segmentation-based
Pooling (SSP) where activations at the end of the attribute
prediction pipeline are pooled within different semantic re-
gions.

Alternatively, we can incorporate the semantic segmen-
tation into earlier layers of the attribute prediction network
with a gating mechanism. Specifically, we augment the max
pooling operation such that it does not mix activations that
reside in different semantic regions. To do so, we gate the
activation output of the last convolution layer prior to the
max pooling by element-wise multiplying it with the se-
mantic regions. This generates multiple versions of the ac-
tivation maps that are masked differently and presumably
discriminative for various attributes. We refer to this ap-
proach as Semantic Segmentation-based Gating (SSG).

Since the semantic segmentation is not available for the
attribute benchmarks, we learn to estimate it using a deep
semantic segmentation network. Our approach is conceptu-
ally similar to [17] in which an encoder-decoder model is
built using convolution and deconvolution layers. However,
considering the relatively small number of available data for
the auxiliary segmentation problem, we modify the network
architecture in order to adapt it to our facial attribute pre-
diction problem. Despite being much simpler than [17], we
found our semantic segmentation network to be very effec-
tive in solving the auxiliary task of semantic face parsing.
Once trained, such network is able to provide localization
cues in the form of semantic segmentation (decoder output)
that decompose the spatial domain of an image into mutu-
ally exclusive semantic regions.

We show that both SSP and SSG mechanisms outper-
form the existing state-of-the-art facial attribute prediction
techniques while employing them together results in further
improvements.

2. Related Work
It is fair to say that the attribute prediction literature can

be divided into holistic and part-based approaches. The

common theme among the holistic methods is to take the
entire image into account when extracting features for at-
tribute prediction. On the other hand, part-based methods
begin with an attribute-related part detection and then use
the localized parts, in isolation from the rest of the image,
to extract features.

Our proposed method falls between the two ends of the
spectrum. While we process the image in a holistic fashion
to generate feature vectors for the classifiers, we employ
localization cues in the form of semantic segmentation.

It has been shown that part-based models generally out-
perform the holistic methods. However, they are prone to
the localization error as it can affect the quality of extracted
features. Among earlier works we refer to [13, 1, 3] as
successful examples of part-based attribute prediction ap-
proaches. More recently, in an effort to combine part-based
models with deep learning, Zhang et al. [23] proposed
PANDA, a pose-normalized convolutional neural network
(CNN) to infer human attributes from images. PANDA em-
ploys poselets [3] to localize body parts and then extracts
CNN features from the localized regions. These features
will later be used to train SVM classifiers for attribute pre-
diction. Inspired by [23] while seeking to also leverage the
holistic cues, Gkioxari et al. [5] proposed a unified frame-
work that benefits from both holistic and part-based clues
while utilizing a deep version of poselets [3] as part detec-
tors. Liu et al. [16] have taken a relatively different ap-
proach. They show that pre-training on massive number
of object categories and then fine-tuning on image level at-
tributes is sufficiently effective in localizing the entire face
region. Such weakly supervised method provides them with
a located region where they perform facial attribute predic-
tion. Finally, in a part-based approach, Singh et al. [20]
use spatial transformer networks [10] to locate the most rel-
evant region associated to a given attribute. They encode
such localization cue in a Siamese architecture to perform
localization and ranking for relative attributes.

3. Methodology

In this section, we begin with the attribute prediction
models assuming that the semantic regions are given. We
then move on to the semantic segmentation network and
provide details on how the semantic regions are generated.

3.1. Attribute Prediction Networks

To leverage the localization cues for facial attribute pre-
diction, we propose semantic segmentation-based pooling
and gating mechanisms. We describe our basic attribute
prediction model. Then, we explain SSP and SSG in de-
tail including how they are employed in the basic model,
simply as new layers, to improve facial attribute prediction.



3.1.1 Basic Attribute Prediction Network

Our basic attribute prediction model is a 12-layers deep
fully convolutional neural network. We gradually increase
the number of convolution filters from 64 to 1024 filters as
we proceed towards the deeper layers. Prior to any increase
in the number of convolution filters, we reduce the size of
the activation maps using max pooling. For such operation
both the kernel size and stride values are set to 2. In our ar-
chitecture, every convolution layer is followed by the Batch
Normalization [9] and PReLU [7]. The kernel size and
stride values of all the convolution layers are respectively
set to 3 and 1. The first 8 layers of our basic attribute pre-
diction network are similar in configuration to the encoder
part of the semantic segmentation network and detailed in
Table 1. The rest consists of 4 convolution layers of 512 and
1024 filters, two layers of each. At the end of the pipeline,
we aggregate the activations of the last convolution layer us-
ing global average pooling [15] to generate 1024-D vector
representations. These vectors are subsequently passed to
the classifier for attribute prediction. We train the network
using sigmoid cross entropy loss. Section 5 provides further
details on the training procedure.

3.1.2 SSP: Semantic Segmentation-based Pooling

We argue that attributes usually have a natural correspon-
dence to certain regions within the object boundary. Hence,
aggregating the visual information from the entire spatial
domain of an image would not capture this property. This
is the case for the global average pooling [15] used above
in our basic attribute prediction model as it is agnostic to
where, in the spatial domain, activations occur. Instead of
pooling from the entire activation map, we propose to first
decompose the activations of the last convolution layer into
different semantic regions and then aggregate only those
that reside in the same region. Hence, rather than a sin-
gle 1024-D vector representation, we obtain multiple fea-
tures, each representing only a single semantic region. This
approach has an interesting intuition behind it. In fact,
SSP funnels the backpropagation of the label signals, via
multiple paths, associated with different semantic regions,
through the entire network. This is in contrast with global
average pooling that rather equally affects different loca-
tions in the spatial domain. We later explore this by visual-
izing the activation maps of the final convolution layer.

While we can simply concatenate the representations as-
sociated with different regions and pass it to the classi-
fier, it is interesting to observe if attributes indeed prefer
one semantic region to another. Also, whether what our
model learns matches human expectation on what attribute
corresponds to which region. To do so, we take a simi-
lar approach to [2] where Bilen and Vedaldi employed a
two branch network for weakly supervised object detection.
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Figure 1. Left: Standard convolution layer followed by max pool-
ing, Middle: SSG, Right: SSP. Note: In this work, there are 7
semantic regions and 40 attributes to predict.

We pass the vector representations, each associated to a
different semantic region, to two branches one for recog-
nition and another for localization. We implement these
branches as linear classifiers that map 1024-D vectors to
the number of attributes. Hence, we have multiple de-
tection scores for an attribute each inferred based on one
and only one semantic region. To combine these detection
scores, we begin by normalizing the output of the local-
ization branch using softmax non-linearity across different
semantic regions. This is a per-attribute operation, not an
across-attribute one. We then compute the final attribute de-
tection score by a weighted sum of the recognition branch
outputs using weights generated by the localization branch.
Figure 1, on the right, shows the SSP architecture.

3.1.3 SSG: Semantic Segmentation-based Gating

The max pooling is used to compress the visual information
in the activation maps of the convolution layers. Its efficacy
has been proven in many computer vision tasks such as im-
age classification and object detection. However, attribute
prediction is inherently different from image classification.
In image classification, we want to aggregate the visual in-
formation across the entire spatial domain to come up with
a single label for the image. Unlike that, many attributes are
inherently localized to image regions. Consequently, aggre-
gating activations that reside in the “hair” region with the
ones that correspond to “mouth”, would confuse the model
in detecting “smiling” and “wavy hair” attributes. We pro-
pose SSG to cope with this challenge.

Figure 1 shows a standard convolution layer followed by
max pooling on the left, and the SSG architecture in the
middle. The latter is our proposed alternative to the for-
mer. Here we assume the convolution layer to preserve the
number of input channels but it does not have to be. To gate



the output activations of the convolution layer, we broadcast
element-wise multiplication for each of the N = 7 seman-
tic regions with the entire activation maps. This generates
N copies (totally 1, 792 = 256 × 7 activation maps) of the
activations that are masked differently. Such mechanism
spatially decomposes the activation maps into copies where
activations with high values cannot simultaneously occur
in two semantically different regions. For example, gat-
ing with the semantic segmentation that corresponds to the
mouth region, would suppress the activations falling outside
its area while preserving those that reside inside it. How-
ever, the area which a semantic region occupies varies from
one image to another.

We observed that, directly applying the output of the se-
mantic segmentation network results in instabilities in the
middle of the network. To alleviate this, prior to the gating
procedure, we normalize the semantic masks such that the
values of each channel sum up to 1. We then gate the activa-
tions right after the convolution and before the Batch Nor-
malization [9]. This is very important since the Batch Nor-
malization [9] enforces a normal distribution on the output
of the gating procedure. Then, we can apply max pooling
on these gated activation maps. Since, given a channel, acti-
vations can only occur within a single semantic region, max
pooling operation cannot blend activation values that reside
in different semantic regions. We later restore the number
of channels using a 1×1 convolution. It is worth noting
that SSG can mimic the standard max pooling by learning a
sparse set of weights for the 1×1 convolution. In a nutshell,
semantic segmentation-based gating allows us to process
the activations of convolution layers in a per-semantic re-
gion fashion, and directly learns how to combine the pooled
values afterwards.

3.2. Semantic Segmentation Network

We have previously explained the rationale behind em-
ploying semantic face parsing to improve facial attribute
prediction. Our design for the semantic segmentation net-
work follows an encoder-decoder approach, similar in con-
cept to the deconvolution network proposed in [17]. How-
ever, considering the limited number of training data for the
segmentation network, we have made different design deci-
sions to reduce the complexity of the model while preserv-
ing its capabilities. The encoder consists of 8 convolution
layers in blocks of 2, separated with 3 max pooling layers.
This is much smaller than the 13 layers used in the decon-
volution network [17]. At the end of the encoder part, rather
than collapsing the spatial resolution as in [17], we maintain
it at the scale of one-eighth of the input size. The decoder
is a mirrored version of the encoder replacing convolution
layers with deconvolution and max pooling layers with up-
sampling. Unlike [17] that uses switch variables to store
the max pooling locations, we simply upsample the activa-

Layer Operations Output size

Conv11 Conv, BN, PReLU 64×218×178
Conv12 Conv, BN, PReLU 64×218×178
MaxPool1 Max Pooling 64×109×89
Conv21 Conv, BN, PReLU 128×109×89
Conv22 Conv, BN, PReLU 128×109×89
MaxPool2 Max Pooling 128×55×45
Conv31 Conv, BN, PReLU 256×55×45
Conv32 Conv, BN, PReLU 256×55×45
MaxPool3 Max Pooling 256×28×23
Conv41 Conv, BN, PReLU 512×28×23
Conv42 Conv, BN, PReLU 512×28×23

Deconv41 Deconv, BN, PReLU 512×28×23
Deconv42 Deconv, BN, PReLU 512×28×23
UpSample3 UpSampling 512×55×45
Deconv31 Deconv, BN, PReLU 256×55×45
Deconv32 Deconv, BN, PReLU 256×55×45
UpSample2 UpSampling 256×109×89
Deconv21 Deconv, BN, PReLU 128×109×89
Deconv22 Deconv, BN, PReLU 128×109×89
UpSample1 UpSampling 128×218×178
Deconv11 Deconv, BN, PReLU 64×218×178
Deconv12 Deconv, BN, PReLU 64×218×178
Deconv13 Deconv, BN, PReLU 7×218×178

Table 1. Configuration of the Semantic Segmentation Network.
For all the convolution/ deconvolution layers, kernel size and stride
values are respectively set to 3 and 1. To prevent confusion, we are
not showing the side loss layers, namely Deconv43, Deconv33 and
Deconv23.

tion maps (repetition with nearest neighbor interpolation).
We increase (decrease) the number of convolution (decon-
volution) filters by a factor of 2 after each max pooling
(upsampling), starting from 64 (512) filters as we proceed
along the encoder (decoder) path. Every convolution and
deconvolution layer is followed by Batch Normalization [9]
and PReLU [7]. To cope with the challenge of relatively
small number of training data, we propagate the seman-
tic segmentation loss at different depths along the decoder
path. That is, before each upsampling layer, we compute
the loss by predicting the semantic segmentation maps at
different scales. We then aggregate these losses with equal
weights prior to backpropagation. Finally, while [17] em-
ploys VGG16 [19] weights to initialize the encoder, we train
our network from scratch. These design decisions allow
us to successfully train the semantic segmentation network
with the limited number of training data. Detailed config-
uration of the semantic segmentation network is shown in
Table 1.

4. Experimental Results

4.1. Training Semantic Segmentation Network

In this paper, we are interested in facial attribute pre-
diction. Hence, face parsing problem [21] which aims at
pixel-level classification of a face image into multiple se-



Figure 2. Examples of the Helen face dataset [14] supplemented
with segment label annotations [21] and then grouped into 7 se-
mantic classes. In bottom row, colors indicate different class la-
bels.

mantic regions is a suitable auxiliary task for us. To train
the semantic segmentation network, we begin with 11 seg-
ment label annotations per image that [21] provides to sup-
plement Helen face dataset [14]. These labels are as fol-
lows: background, face skin (excluding ears and neck), left
eyebrow, right eyebrow, left eye, right eye, nose, upper lip,
inner mouth, lower lip and hair. We combine left and right
eye (eyebrow) labels to create a single eye (eyebrow) label.
Similarly, we aggregate upper lip, inner mouth, and lower
lip to generate a single mouth label. As a result we end up
with a total of 7 labels (background, hair, face skin, eyes,
eyebrows, mouth and nose). Figure 2 illustrates a few in-
stances of the input images along with their corresponding
segment label annotations. The face parsing dataset [21]
comes with 2,330 images in three splits of 2000, 230 and
100, respectively for training, validation and test. How-
ever, for the attribute prediction task, we can use the en-
tire dataset to train the semantic segmentation network. We
train our model with softmax cross entropy loss. Section 5
provides details on the training procedure. Figure 3 shows
a few examples of segmentation maps generated by our net-
work. Despite very few number of training data used in its
training process, the semantic segmentation network is able
to successfully localize various facial regions in previously
unseen images. Later, we evaluate our proposed attribute
prediction model where these semantic segmentation cues
are utilized to improve facial attribute prediction.

4.2. Datasets and Evaluation Metrics

We mainly evaluate our proposed approach on the
CelebA dataset [16]. CelebA consists of 202,599 images
partitioned into training, validation and test splits with ap-
proximately 162K, 20K and 20K images in the respec-
tive splits. There are a total of 10K identities (20 images
per identity) with no identity overlap between evaluation
splits. Images are annotated with 40 facial attributes such
as, “wavy hair”, “mouth slightly open”, “big lips”, etc. In
addition to the original images, CelebA provides a set of
pre-cropped images. We report our results on both of these

Figure 3. Examples of the segmentation masks generated by our
semantic segmentation network for previously unseen images.
From left to right: background, hair, face skin, eyes, eyebrows,
mouth and nose.

image sets. It is worth noting that Liu et al. [16] have used
both the training and validation data in order to train dif-
ferent parts of their model. In particular, training data has
been used to pre-train and fine-tune ANet and LNet while
they train SVM classifiers using the validation data. In our
experiments, we only use the training split to train our at-
tribute prediction networks.

To supplement the analyses on CelebA dataset [16], we
also provide experimental results on LFWA[16]. LFWA has
a total of 13,232 images of 5,749 identities with pre-defined
train and test splits which divide the entire dataset into two
approximately equal partitions. Each image is annotated
with the same 40 attributes used in CelebA[16] dataset. For
the LFWA dataset [16], we follow the same evaluation pro-
tocol as the one for CelebA dataset [16].

To evaluate the attribute prediction performance, Liu et
al. [16] use classification accuracy/error. However, we be-
lieve that due to significant imbalance between the numbers
of positive and negatives instances per attribute, such mea-
sure cannot appropriately evaluate the quality of different
methods. Similar point has been raised by [18, 8] as well.
Therefore, in addition to the classification error, we also re-
port the average precision of the prediction scores.

4.3. Evaluation of Facial Attribute Prediction

For all the numbers reported here, we want to point out
that FaceTracer [12] and PANDA [23] use groundtruth land-
mark points to attain face parts. Wang et al. [22] use 5 mil-
lion auxiliary image pairs, collected by the authors, to pre-
train their model. Wang et al. [22] also use state-of-the-art
face detection and alignment to extract the face region from
CelebA and LFWA images. However, we train all our mod-



els from scratch with only attribute labels and the auxiliary
face parsing labels.

4.3.1 Evaluation on CelebA dataset

We compare our proposed method with the existing state-
of-the-art attribute prediction techniques on the CelebA
dataset [16]. To prevent any confusion and have a fair com-
parison, Table 2 reports the performances in two separate
columns distinguishing the experiments that are conducted
on the original image set from those where the pre-cropped
image set have been used. We see that even our basic
model with global average pooling, with the exception of
the MOON [18], outperforms previous state-of-the-art tech-
niques. Accordingly, we can make two observations.

First, a simple yet well designed architecture can be very
effective. Liu et al. [16] combine three deep convolu-
tional neural networks with SVM and Rudd et al. [18] have
adopted VGG16 [19] topped with a novel objective func-
tion. These models are drastically larger than our basic net-
work. Specifically, in [16], LNeto and LNets have network
structures similar to AlexNet [11]. AlexNet has 60M pa-
rameters. Thus, only the localization part in [16], not con-
sidering ANet, has a total of 120M parameters. Rudd et
al. [18] adopt VGG16 [19] that has 138M parameters. Our
basic attribute prediction network has only 24M parame-
ters thanks to replacing fully connected layers with a single
global average pooling.

Second, [18] and [16] are built on the top of networks
previously trained on massive object category (and facial
identity) data while we train all our networks from scratch.
Hence, we reject the necessity of pre-training on other large
scale benchmarks, arguing that CelebA dataset [16] itself
is sufficiently large for successfully training facial attribute
prediction models from scratch.

Experimental results indicate that under different set-
tings and evaluation protocols, our proposed semantic
segmentation-based pooling and gating mechanisms can be
effectively used to boost the facial attribute prediction per-
formance. That is particularly important given that our
global average pooling baseline already beats the majority
of the existing state-of-the-art methods. To see if SSP and
SSG are complementary to each other, we also report their
combination where the corresponding predictions are sim-
ply averaged. We observe that such process further boosts
the performance.

To investigate the importance of aggregating features
within the semantic regions, we replace the global average
pooling in our basic model with the spatial pyramid pooling
layer [6]. We use a pyramid of two levels and refer to this
baseline as SPPNet∗. While aggregating the output activa-
tions in different locations, SPPNet∗ does not align its pool-
ing regions according to the semantic context that appears

Classification Error%

Method Original Pre-cropped

FaceTracer [12] 18.88 –
PANDA [23] 15.00 –
Liu et al. [16] 12.70 –
Wang et al. [22] 12.00 –
Zhong et al. [24] 10.20 –
Rudd et al. [18]: Separate – 9.78
Rudd et al. [18]: MOON – 9.06
SPPNet∗ – 9.49
Naive Approach 9.62 9.13
BBox – 8.76
Ours: Avg. Pooling 9.83 9.14
Ours: SSG 9.13 8.38
Ours: SSP 8.98 8.33
Ours: SSP + SSG 8.84 8.20

Average Precision%

Method Original Pre-cropped

SPPNet∗ – 77.69
Naive Approach 76.29 79.74
BBox – 79.95
Ours: Avg. Pooling 77.16 79.74
Ours: SSG 77.46 80.55
Ours: SSP 78.01 81.02
Ours: SSP + SSG 78.74 81.45

Balanced Accuracy% [8]

Method Original Pre-cropped

Huang et al. [8] – 84.00
Ours: Avg. Pooling – 86.73
Ours: SSG – 87.82
Ours: SSP – 88.24

Table 2. Attribute prediction performance evaluated by the classi-
fication error, average precision and balanced classification accu-
racy [8] on the CelebA [16] original and pre-cropped image sets.

in the image. This is in direct contrast with the intuition be-
hind our proposed methods. Experimental results shown in
Table 2 confirm that simply pooling the output activations
at multiple locations is not sufficient. In fact, it results in a
lower performance than global average pooling. This veri-
fies that the improvement obtained by our proposed models
is due to their content aware pooling/gating mechanisms.

Naive Approach A naive alternative approach is to con-
sider the segmentation maps as additional input channels.
To evaluate its effectiveness, we feed the average pooling
basic model with 10 input channels, 3 for RGB colors and 7
for different semantic segmentation maps. The input is nor-
malized using Batch Normalization [9]. We train the net-
work using the same setting as other aforementioned mod-



Method Classification Error% AP%

FaceTracer [12] 26.00 –
PANDA [23] 19.00 –
Liu et al. [16] 16.00 –
Zhong et al. [24] 14.10 –
Wang et al. [22] 13.00 –
Ours: Avg. Pooling 14.73 82.69
Ours: SSG 13.87 83.49
Ours: SSP 13.20 84.53
Ours: SSP + SSG 12.87 85.28

Table 3. Attribute prediction performance evaluated by the classifi-
cation error and the average precision (AP) on LFWA [16] dataset.

els. Our experimental results indicate that such naive ap-
proach cannot leverage the localization cues as good as our
proposed methods. Table 2 shows that at best, the naive ap-
proach is on par with the average pooling basic model. We
emphasize that feeding semantic segmentation maps along
with RGB color channels to a convolutional network results
in blending the two modalities in an addition fashion. In-
stead, our proposed mechanisms take a multiplication ap-
proach by masking the activations using the semantic re-
gions.

Semantic Masks vs. Bounding Boxes To analyze the
necessity of semantic segmentation, we generate a baseline,
namely BBox, which is similar to SSP. However, we replace
the semantic regions in SSP with the bounding boxes on the
facial landmarks. Note that we use the groundtruth location
of the facial landmarks, provided in CelebA dataset [16], to
construct the bounding boxes. Hence, to some extent, the
performance of BBox is the upper bound of the bounding
box experiment. There are 5 facial landmarks including left
eye, right eye, nose, left mouth and right mouth. We use
boxes with area 202 (402 gives similar results) and 1:1, 1:2
and 2:1 aspect ratios. Thus, there are a total of 16 regions
including the whole image itself. From Table 2, we see that
our proposed models, regardless of the evaluation measure,
outperform the bounding box alternative suggesting that se-
mantic masks should be favored over the bounding boxes
on the facial landmarks.

Balanced Classification Accuracy Given the signifi-
cant imbalance in the attribute classes, also noted by [8, 18],
we suggested using average precision instead of classifica-
tion accuracy/error to evaluate attribute prediction. Instead,
Huang et al. [8] have adopted balanced accuracy measure.
To see if our proposed approach is superior to [8] under
balanced accuracy measure, we fine-tuned our models with
the weighted (∝ imbalance level) binary cross entropy loss.
From Table 2, we observe that under balanced accuracy [8],
all the variations of our proposed model outperform [8] with
large margins.

Region w/o Attributes w/ Attributes

Bakcground 89.25 89.64
Hair 47.56 48.32
Face skin 78.65 79.92
Eyes 46.83 56.33
Eyebrows 31.22 42.25
Mouth 62.03 65.42
Nose 77.40 77.74
Average 61.84 65.66

Table 4. Effect of facial attributes on semantic face parsing perfor-
mance evaluated by Intersection over Union (IoU%).

4.3.2 Evaluation on LFWA dataset

To better understand the effectiveness of our proposed ap-
proach, we report experimental results on the LFWA dataset
[16] in Table 3. We observe that, all the models proposed in
this work which exploit localization cues improve our ba-
sic model. Specifically, SSP + SSG achieves considerably
better performance than the average pooling basic model
with 1.86% in classification error and 2.59% in the average
precision. Our best model also outperforms all other state-
of-the-art methods.

4.4. Facial Attributes for Semantic Face Parsing

In this work, we established how semantic segmentation
can be used to improve facial attribute prediction. What if
we reverse the roles. Can facial attributes improve semantic
face parsing? To evaluate this, we jointly train two networks
where the first 8 layers of our basic attribute prediction net-
work share weights with the encoder part of the semantic
segmentation network. We optimize w.r.t the aggregation
of two losses. Specifically, the attribute prediction loss on
the CelebA [16] dataset and the semantic segmentation loss
on the Helen face [14] dataset using facial segment labels of
[21]. We follow pre-defined data partitions of [21], detailed
in section 4.1, and use Intersection over Union (IoU) as the
evaluation measure. Table 4 shows nearly 4% boost when
attributes are incorporated, indicating the positive effect of
attributes in improving semantic face parsing. This shows
that there exist an interrelatedness between attribute predic-
tion and semantic segmentation. In future, we will further
explore this promising direction.

4.5. Visualizations

Figure 4 illustrates per-attribute weights that the localiza-
tion branch of the SSP has learned in order to combine the
predictions associated with different semantic regions. We
observe that attributes such as “Black Hair”, “Brown Hair”,
“Straight Hair” and “Wavy Hair” have strong bias towards
the hair region. This matches our expectation. However, at-
tribute “Blond Hair” does not behave similarly. We suspect



Figure 5. Top fifty activation maps of the last convolution layer sorted in descending order w.r.t the average activation values. Top: Global
average pooling. Bottom: SSP.

5	  
o	  
Cl
oc
k	  
Sh
ad
ow

	  
Ar
ch
ed

	  E
ye
br
ow

s	  
A4

ra
c5
ve
	  

Ba
gs
	  U
nd

er
	  E
ye
s	  

Ba
ld
	  

Ba
ng
s	  

Bi
g	  
Li
ps
	  

Bi
g	  
N
os
e	  

Bl
ac
k	  
Ha

ir	  
Bl
on

d	  
Ha

ir	  
Bl
ur
ry
	  

Br
ow

n	  
Ha

ir	  
Bu

sh
y	  
Ey
eb

ro
w
s	  

Ch
ub

by
	  

Do
ub

le
	  C
hi
n	  

Ey
eg
la
ss
es
	  

Go
at
ee
	  

Gr
ay
	  H
ai
r	  

He
av
y	  
M
ak
eu

p	  
Hi
gh
	  C
he

ek
bo

ne
s	  

M
al
e	  

M
ou

th
	  S
lig
ht
ly
	  O
pe

n	  
M
us
ta
ch
e	  

N
ar
ro
w
	  E
ye
s	  

N
o	  
Be

ar
d	  

O
va
l	  F
ac
e	  

Pa
le
	  S
ki
n	  

Po
in
ty
	  N
os
e	  

Re
ce
di
ng
	  H
ai
rli
ne

	  
Ro

sy
	  C
he

ek
s	  

Si
de

bu
rn
s	  

Sm
ili
ng
	  

St
ra
ig
ht
	  H
ai
r	  

W
av
y	  
Ha

ir	  
W
ea
rin

g	  
Ea
rr
in
gs
	  

W
ea
rin

g	  
Ha

t	  
W
ea
rin

g	  
Li
ps
5c
k	  

W
ea
rin

g	  
N
ec
kl
ac
e	  

W
ea
rin

g	  
N
ec
k5
e	  

Yo
un

g	  
	  

Nose	   Mouth	   Eyebrows	   Eyes	   Face	  skin	   Hair	   Background	  

Figure 4. Contribution of different semantic regions in attribute
prediction as learned by the localization branch of SSP. Values are
averaged over multiple random mini-batches of 32 images.

that it is because the semantic segmentation network does
not perform as consistent on light hair colors as it does on
the dark ones (refer to Figure 3). Attributes such as “Goa-
tee”, “Mouth Slightly Open”, “Mustache” and “Smiling”
are also showing a large bias towards the mouth region.
While these are aligned with our human knowledge, “Side-
burns” and “Wearing Necklace” apparently have incorrect
biases. Unlike the global pooling which equally affects a
rather large spatial domain, we expect SSP to generate ac-
tivations that are semantically aligned. To evaluate our hy-
pothesis, in Figure 5, we show the activations for the top
fifty channels of the last convolution layer. Top row cor-
responds to our basic network with global average pooling
while the bottom row is generated when we replace global
average pooling with SSP. We observe that, activations gen-
erated by SSP are clearly more localized than those obtained
from the global average pooling.

5. Implementation Details

All of our experiments were conducted on a single
NVIDIA Titan X GPU. We use AdaGrad [4] with mini-

batches of size 32 to train the attribute prediction models
from scratch. The learning rate and weight decay are re-
spectively set to 0.001 and 0.0005. We follow the same
setting for training the semantic segmentation network. We
perform data augmentation by randomly flipping (horizon-
tally) the input images. In SSP experiments, we resize the
output of the semantic segmentation network at Deconv23

layer to 14×12 (resolution of the final convolution layer).
To do so, we use max and average pooling operations. Since
max pooling increases the spatial support of the region, we
use it for the masks associated with eyes, eyebrows, nose
and mouth. This helps us to capture some context as well.
We use average pooling for the remaining regions. For SSG
experiments, we use the output of Deconv33 layer, in the se-
mantic segmentation network, as the localization cue. The
attribute prediction and semantic segmentation networks are
respectively trained for 40K and 75K iterations.

6. Conclusion

Aligned with the trend of part-based attribute prediction
methods, we proposed employing semantic segmentation to
improve facial attribute prediction. Specifically, we transfer
localization cues from the auxiliary task of semantic face
parsing to the facial attribute prediction problem. In order
to guide the attention of our attribute prediction model to
the regions which different attributes naturally show up, we
introduced SSP and SSG. While SSP is used to restrict the
aggregation procedure of final activation maps to regions
that are semantically consistent, SSG carries the same
notion but applies it to the earlier layers. We evaluated
our proposed methods on CelebA and LFWA datasets and
achieved state-of-the-art performance. We also showed
that facial attributes can improve semantic face parsing.
We hope that this work encourages future research efforts
to invest more in the interrelatedness of these two problems.
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