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Abstract

This paper revisits visual saliency prediction by evalu-
ating the recent advancements in this field such as crowd-
sourced mouse tracking-based databases and contextual
annotations. We pursue a critical and quantitative ap-
proach towards some of the new challenges including the
quality of mouse tracking versus eye tracking for model
training and evaluation. We extend quantitative evaluation
of models in order to incorporate contextual information by
proposing an evaluation methodology that allows account-
ing for contextual factors such as text, faces, and object at-
tributes. The proposed contextual evaluation scheme facil-
itates detailed analysis of models and helps identify their
pros and cons. Through several experiments, we find that
(1) mouse tracking data has lower inter-participant visual
congruency and higher fixation dispersion, compared to the
eye tracking data, (2) mouse tracking data does not totally
agree with eye tracking in general and in terms of different
contextual regions in specific, and (3) mouse tracking data
leads to acceptable results in training current existing mod-
els, and (4) mouse tracking data is less reliable for model
selection and evaluation. The contextual evaluation also
reveals that, among the studied models, there is no single
model that performs best on all the tested annotations.

1. Introduction
There has been a significant recent progress in the field

of visual saliency. Numerous models and datasets have been
introduced. The new databases have been expanded along
two dimensions: 1) increasing the number of images and
viewers, and 2) introducing richer contextual annotations
(e.g., image categories [2], and regional attributes [33],
etc.). To accomplish these objectives, researchers have been
relying on crowd sourcing schemes for recording eye move-
ments (e.g., using webcams [34]) or alternative signals such
as mouse movements and clicks (e.g. [14]), and annotations.
Along with these advances, however, new challenges have
surfaced that need to be addressed. For example, it remains
to be answered whether and to what degree different at-
tentional proxies agree with each other? Is it possible to

Figure 1. Visual comparison of fixation maps using eye and mouse
tracking, overlaid on images. From left to right: image, eye track-
ing, mouse tracking using Amazon Mechanical Turk (AMT), and
mouse tracking in controlled laboratory (LAB) from [33]. The red
and green circles indicate over and under estimation, respectively.

reach human level accuracy by utilizing large scale mouse
data? and how should these new types of data be used for
saliency model evaluation and construction? Fig. 1 visually
compares density maps from eye and mouse tracking. It de-
picts a noticeable difference between maps encouraging a
detailed quantitative study.
Our contributions. This paper presents 2 main contribu-
tions: (1) assessing the quality of crowd sourced mouse
tracking as an alternative to eye tracking and the effect of
such data on model training and evaluation, and (2) intro-
ducing a contextual evaluation scheme for evaluating mod-
els in a fine-grained manner. The contextual evaluation
is applicable to both model assessment and comparison of
mouse tracking with eye tracking. Further, this study will be
addressing some of the questions that have surfaced by in-
troduction of mouse tracking based databases and help bet-
ter understand saliency models’ performance.
Is this another benchmark? No. We are not carrying out
yet another benchmark. The literature is already replete
with benchmarks [3, 17, 4, 6], metric discussions [21, 26,
32, 7], review papers [28, 1], and analytical model compar-
isons [8]. Alternatively, we seek to answer some important
questions pertaining to mouse tracking as a substitute to eye
movements. The answers will benefit both model construc-
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tion and evaluation. We furthermore attempt to incorpo-
rate available contextual annotations into model evaluation
in order to facilitate automatic detailed analysis of models.
This will help us understand the strengths and weaknesses
of models better.

Related studies. Considering mouse tracking analysis for
visual saliency and fixation prediction, the most relevant
work is [14]. It proposes to use mouse tracking instead of
eye tracking in order to scale up data collection over stimuli
of larger magnitude (millions instead of hundreds or thou-
sands). Jiang et al. [14] analyzed some properties of mouse
data such as center-bias, evaluated mouse maps against fix-
ation maps, and compared saliency models using mouse
tracking data. There are, however, some aspects which are
overlooked in their work such as congruency among partic-
ipants, the effect of mouse tracking on training a saliency
model, model evaluation and comparison using mouse ver-
sus eye tracking. Here, we revisit Jiang et al.’s work and
conduct a systematic investigation of mouse data with re-
spect to eye movements.

Considering contextual model analysis, the most rele-
vant to this paper is the recent study by Bylinskii et al. [8].
They chose several top-performing saliency models based
on deep learning architectures over the MIT300 dataset [6].
They then conducted a behavioral study by asking Amazon
Mechanical Turk workers to label (1 out of 15 labels) im-
age regions falling on > 95% of the fixation heatmap. An-
alyzing failure of models on those regions, they found that
about half the errors made by models are due to failures in
accurately detecting parts of people, faces, animals, and text
which means that models should try to improve on those ar-
eas. The main criticism to such a human-based evaluation
is that it is limited to the number of models, subjects, and
images making it expensive to conduct in large scale. To ad-
dress such shortcomings, we extend the existing evaluation
schemes and propose a systematic framework for contextual
model evaluation. We then employ the proposed technique
for detailed comparison of mouse tracking and eye tracking
whenever possible.

The benchmark and metric studies have some common-
alities with the current study in terms of methodology. For
example, Borji et al. [4] analyzed different parameters af-
fecting saliency evaluation (e.g., center-bias, class cate-
gories, etc) in order to benchmark models. Riche et al. [26]
employed statistical analysis in order to do metric selection
for saliency evaluation. They show a small number of met-
rics is enough for model evaluation as many metrics carry
similar information. This study is, however, addressing the
impact of mouse tracking as an alternative to eye tracking
for learning saliency.

Database Tracking Technology (O, I) Contextual Annotation
ET wET MT OL IC OA FB

FIGRIM [5] × — — (15,630) × × — —
EFC [15] × — — (16,500) × — × —
KTH Koostra [19] × — — (31, 99) — × — —
NUSEF [25] × — — (25, 758) — × — —
CAT2000 [2] × — — (24, 4000) — × — —
salObj [22] × — — (12, 850) × — — —
iSUN [34] — × — (3, 8926) × × — —
SALICON [14] — — × (60, 10000) × — — —
OSIE [33] × — × (15, 700) × — × ×

Table 1. Comparison of databases in terms of augmented annota-
tions and eye tracking technology. (O, I) corresponds to the aver-
age number of observers and the number of images. The tracking
technologies are ET: commercial high-end eye tracking devices,
wET: webcam based eye tracking, MT: mouse tracking. Type of
contextual information are OL: object type and localization, IC:
image category and scene type, OA: object attributes, FB: fore-
ground/background property of objects.

2. Saliency databases & contextual annotation

There exists numerous databases for saliency evaluation.
As of this writing, 23 datasets are enumerated by [6]. These
databases are often compared with each other in terms of
stimuli and experimental setup (e.g., number of observers,
distance to image center, recording device, task, etc.). In-
stead of comparing datasets along these dimensions, we
study them in terms of augmentation with extra informa-
tion. There are different levels of augmentation including,
image class categories, object localization, and object at-
tribute annotations.

Table 1 summarizes the information of some of the
most notable augmented databases. As depicted, most of
the databases have object category annotations in terms
of object bounding boxes, object masks or object bound-
aries. There are, however, only two databases with con-
textual object attribute annotations: Eye Fixation in Crowd
(EFC) [15] and Object and Semantic Images and Eye-
tracking (OSIE) [33]. The EFC database is collected for
analyzing saliency in crowds. It contains face bounding box
localizations and their attributes such as if a face is frontal,
profile, back or occluded.

The OSIE database has the widest range of contextual
annotations consisting of twelve boolean attributes convey-
ing semantic meaning of objects. These attributes include:
Text, Face (includes: back, profile, and frontal faces), Emo-
tion (if a face conveys emotion), Sound (objects producing
sound), Smell (objects with a scent), Taste (anything that
can be tasted), Touch (anything with tactile feeling), Motion
(moving/flying object), Operability (natural or man-made
tools used by holding with hands), Watchable (man-made
objects designed to be watched), Touched (an object be-
ing touched), and Gazed (if an object is gazed by some-
one in the image). Besides rich contextual annotations,
OSIE defines the foreground/background property of ob-
jects, which is desirable to validate how well a model dis-
criminates background and foreground regions.
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The OSIE dataset provides an invaluable opportunity for
comparing mouse and eye tracking. It consists of 700 im-
ages, 15 observers for eye tracking (OSIE EYE), approx-
imately 46 mouse tracking participants using a controlled
laboratory setup (OSIE LAB), and at least 86 mouse track-
ing participants using Amazon Mechanical Turk (OSIE
AMT). Thus, we base our study on OSIE dataset.

3. Metrics
Metrics of saliency evaluation. Numerous metrics for
saliency evaluation have been introduced in the past. Some
of them are: ROC-based metrics (e.g., AUC [30], AUC-
Judd [18], AUC-Borji [4], shuffled AUC (sAUC) [4, 36],
binned AUC [32]), similarity-based metrics (e.g., Corre-
lation Coefficient (CC) [16], Kullback-Leibler divergence
(KL) [21, 36, 13], Similarity score (SIM) [17], Earth
mover’s distance (EMD) [17], Information Gain (IG) [20]),
Normalized scanpath saliency (NSS) [24], and metrics
based on fixation sequence (e.g., Scanpath evaluation
score [4]). For brevity, we skip explaining them in details
and refer the readers to relevant publications [4, 7, 21, 26].

Minor variations in metrics can sometimes have signif-
icant consequences in the metric interpretation. For exam-
ple, [13] employ KL metric as a technique to measure the
similarity between the distribution of fixated and random
locations in a saliency map, while in [6, 26], the KL is
measured in terms of the similarity between fixation den-
sity maps and saliency maps. Consequently, in [13] a higher
KL value is better and in [6] a lower value is superior. It is
worth noting that we follow [6] in our experiments.
The appropriate metrics. Many of the saliency metrics
convey the same information making model performance
interpretation difficult. For easier interpretability of the re-
sults, we are motivated to select a subset of metrics. To this
end, mouse tracking data, OSIE AMT, is evaluated against
human eye fixation data, OSIE EYE. For the metrics, the
Spearman’s rank correlation coefficient (ρ) is computed be-
tween the score values of images. Classical multidimen-
sional scaling (MDS) is then employed for 2D visualization
of the correlation matrix. Results are summarized in Fig. 2,
indicating an overall high correlation between the metrics.
Considering the projection on the first eigenvalue (x-axis)
— it is the most contributing eigenvalue —, metrics can
be grouped into three clusters. The biggest cluster includes
metrics that encode fixation information, AUC-based met-
rics as well as NSS and IG. The other two clusters consist
of (1) CC and SIM, and (2) EMD and KL. We choose SIM,
KL, and sAUC for reporting the performance of models.
The sAUC is preferred over other AUC metrics and NSS be-
cause a) it has well-defined lower and upper bound values,
b) it has a defined chance-level value, and c) it accounts for
center-bias in fixation distributions [4]. SIM and KL met-
rics are selected as they act complementary to each other,

Algorithm 1 Computing metrics of contextual evaluation for a
saliency map: how to scale your preferred conventional metric for
exploiting contextual data. � is the element-wise product.
Input: Sal : a saliency map of size W ×H , a tensor of contextual masks

Cm of size W ×H×O, where O is the number of regions, the con-
textual attribute matrix Ca of size O×N , which reports existence of
an attribute, where N is the number of attributes, and human fixation
map Fix of size W ×H .

Output: A vector of contextual attributes’ evaluation Score of size N .
1: for all o regions in Cm do
2: Salo = Sal� Cm(:, :, o)
3: Fixo = Fix� Cm(:, :, o)
4: s = compute metric(Salo, Fixo)
5: for all n attributes in Ca do
6: if Ca(o, n) is true then
7: update mean(Score(n), s)
8: end if
9: end for

10: end for

according to Fig. 2.
Contextual saliency evaluation. To perform contextual
evaluation, we use existing metrics with regard to contex-
tual annotations. That is, given an image, we employ the ex-
isting metrics within specified regions of images, which are
associated with contextual attributes. Algorithm 1 presents
how to compute the agreement between human eye fixations
and saliency maps inside annotated regions associated with
attributes such as gaze, face, and text.

In principle, all existing saliency evaluation metrics can
be employed for the purpose of contextual evaluation by the
proposed algorithm. The result of such a contextual evalua-
tion is a vector of scores that helps investigating the pros and
cons of a model capturing each property. While we recom-
mend using the contextual scores for a fine-grained analysis,
it is also possible to summarize the scores into one for the
purpose of model ranking. To achieve this, given the score
vector of a saliency map, Score, we define a weighted av-
erage score as CScore =

∑N
n=1 wnScoren where N is the

number of contextual attributes and w is the weight vector
indicating the importance of each property.

∑N
n=1 wn = 1,

where:

wn =
# of fixations on attribute n

# of fixations on images with attribute n
. (1)

To further summarize the scores over a database, the aver-
age over scores, mean CScore, is employed.

It is worth noting that all the attributes may not be present
in all the images when computing the average contextual
score. Thus, the average should be done with respect to the
number of images having an attribute, and not all images.

4. Analysis of mouse tracking data

Inter-participant visual congruency. “How is the inter-
participant visual congruency (IPVC) on mouse tracking
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Figure 2. Selecting the appropriate metric using multidimensional scaling (MDS) analysis. From left to right: metrics Spearman’s rank
correlation matrix, the normalized eigenvalues and the MDS visualization of metrics. The middle panel indicates that 2D visualization is
enough. The x-axis in the third panel corresponds to the first eigenvalue.

Data SIM KL sAUC
OSIE EYE 0.54±0.06 4.71±1.44 0.76±0.06
OSIE AMT 0.43±0.03 6.37±0.91 0.61±0.03

Table 2. The comparison of inter-participant visual congruency be-
tween eye tracking (EYE) and mouse tracking amazon mechani-
cal turk (AMT) data. Mean and standard deviation are reported.
The smoothing parameter for generating the maps is the optimized
value reported in [33, 14].

data compared to eye tracking?” The inter-participant1 vi-
sual congruency reflects the amount of consistency among
participants in viewing the same image. To compute the
amount of IPVC, we follow the one-versus-all scheme as
in [29]. That is, we take out one participant and compare it
against the fixation map of all other participants. This pro-
cess is repeated for all the observers and for all the images.

The results are summarized in Table 2, where ANOVA
analysis shows all the metrics are significantly different be-
tween groups (ρ < 0.001). As depicted, there is higher
visual congruency between the participants of the eye track-
ing experiments compared to the mouse tracking. In other
words, the mouse tracking data shows a higher dispersion
between participants. Since the stimuli is the same, this sug-
gests that mouse tracking data is not as accurate as expected
for substituting eye tracking.

We furthermore complement the IPVC by conducting
another analysis to measure the performance as a function
of the number of participants. The number of participants
are kept equal to the number of observers in OSIE EYE for
OSIE AMT, that is, 15 participants. Due to larger number
of participants in OSIE AMT, we make 10 disjoint folds,
covering all the mouse participants of OSIE AMT. For each
fold, we randomly select p participants from the participants
of a fold and evaluate them against all the participants of
that fold. The process is repeated 10 times. Similar proce-
dure is employed for OSIE EYE, except that there is only

1We use the term inter-participant instead of inter-observer to signify
the role of other recording mediums such as mouse.

one fold of participants here. It is worth noting that we
keep the smoothing factor to the optimum value reported
by [33, 14] that produces the maximum performance for the
case of all participants for efficiency reasons.

Fig. 3 summarizes the results. Akin to the IPVC exper-
iment, there exists a higher dispersion between the mouse
participants compared to the eye tracking participants. The
KL and SIM, however, converge to their upper bounds for
maximum participants since they are designed to produce 0
and 1 for exactly similar inputs, respectively. The sAUC al-
ways shows a significant gap between mouse and eye data.
Number of participants. “How many participants are re-
quired in order to replicate eye tracking by following mouse
movements?” To answer the question, we randomly choose
participants from the mouse tracking data of OISE AMT,
and build a mouse density map to predict the eye fixation
density maps. We evaluate different number of participants.
The evaluation process is repeated 10 times and the mean
performance is reported.

Fig. 4 depicts the results, indicating a significant gap be-
tween mouse tracking and eye tracking. Even 90 partici-
pants contributing mouse data can not achieve the eye track-
ing performance of 15 observers. In one hand, this shows
there is no need for more than 40 or 50 mouse participants
consistent with the number used in SALICON [14]. On the
other hand, the result is alarming as the influence of the ex-
isting large gap on saliency models is not well-investigated.
Contextual information and gaze allocation. “How is
gaze allocated to different regions and does mouse tracking
data capture the same contextual information as eye track-
ing does?” The gaze allocation on different image parts and
their contextual annotations is investigated by measuring
the average allocated gaze over all contextual annotations
and images. The results are summarized in Fig. 5. Aligned
with the numerous studies on attention guiding features, it
is not surprising that regions associated with face, motion,
and watchable property are more attended.

Fig. 5 also compares the gaze allocation to annotated re-
gions by eye tracking with gaze allocation by mouse track-
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ing. The results indicate that on average mouse and eye
tracking show the same trend (ρ = 0.94 and ρ = 0.94 for
LAB and AMT, respectively). On a finer scale, however,
they have different characteristics. For example, eye track-
ing shows more gaze allocation to faces than motion, while
mouse tracking allocates more attention to motion than
faces. Furthermore, eye tracking associates more attention
to text, emotion, gazed and watchable regions while mouse
tracking affiliate more attention to smell, taste, touch, and
operability. Some properties are almost identical in grab-
bing attention by mouse and eye, e.g., sound and touched.
Contextual performance of mouse maps. “How well does
mouse tracking capture contextual information in compar-
ison to eye tracking?” To answer this question, we evalu-
ate mouse density maps against eye tracking ground truth.
The contextual evaluation of mouse maps against eye track-
ing for both OSIE AMT and OSIE LAB is summarized in

Fig. 6. Results show a gap between mouse tracking and eye
tracking. This gap becomes more significant for some prop-
erties, e.g., background regions are the mostly inconsistent
areas SIM < 0.6 and KL > 0.8. This can be an indica-
tor that mouse tracking may have a better agreement with
eye tracking as long as salient areas are foreground. This
finding also agrees with the existence of higher dispersion
in mouse tracking, shown by IPVC analysis in Table 2 and
experiment of Fig. 3.

Training on mouse data. “What is the effect of training a
model by mouse data on its performance?” We aim to an-
swer this question by training a model on mouse data and
evaluating it against eye tracking data in two experiments.
In the first experiment, training database is OSIE and the
test set is the MIT1003 [18]. We utilize the open source
implementation of SALICON model [12], a.k.a OpenSali-
con [27]. The training is done using the same initialization
and 3 epochs, feeding all the images 3 times using the same
random image order, for each ground truth type, including
eye tracking (EYE) and mouse tracking data using labora-
tory (LAB) and Amazon Mechanical Turk (AMT). Since
MIT1003 [18] does not have contextual annotation, we only
report the traditional scores for it.

Table 3 reports the result of training OpenSalicon using
mouse and eye tracking data. The statistical significance
test indicates that all the paris of trained OpenSalicon model
(by mouse or eye data) are significantly different than each
other in terms of the metrics for (p < 0.001), except for
the sAUC. This indicates that while training using mouse
data is similar to training using eye data in terms of sAUC,
the generated saliency maps are not necessarily similar to
ground truth. Fig. 7 depicts some examples, showing that
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Figure 6. Comparison of mouse density maps and fixation density maps against fixation ground truth (for eye tracking KL=0 and SIM=1).

Figure 7. Visual comparison of saliency maps from OpenSalicon,
trained by mouse and eye data. From left to right: ground truth,
maps from OpenSalicon trained by eye tracking and mouse track-
ing, respectively.

Model (Training GT) SIM KL sAUC
Human Performance 1 0 0.75
OpenSalicon (EYE) 0.390 1.198 0.715
OpenSalicon (AMT) 0.364 1.249 0.717
OpenSalicon (LAB) 0.365 1.257 0.722

Table 3. The effect of training ground truth source on model per-
formance: OpenSalicon performance on MIT1003. The training
is carried out on OSIE database using eye tracking (EYE), mouse
data from amazon mechanical turk (AMT), and laboratory (LAB)
as training ground truth (GT).

while the model trained on mouse data captures the salient
area, it is prone to over estimation.

The second experiment is carried out on OSIE dataset
using a 5 fold cross-validation scheme. That is, one-fifth
of the data is used for test and the rest for training. All the
images are used in disjoint folds. In each fold, the saliency
maps are predicted for the test set and contextually evalu-
ated. The evaluation is always performed using OSIE EYE
as ground truth, that is, even if a model is trained on OSIE
AMT or LAB, the evaluation of test fold is done using eye
tracking-based ground truth.

Figure 8 summarizes the results. Overall, training on eye
tracking data achieves a better performance (better mean
CScore). There are, however, some differences in terms
of contextual performance. For example, training Open-
Salicon on mouse tracking data produces better scores for
background, while training on eye tracking results in su-
perior scores for foreground. Smell is learned better on
mouse tracking AMT ground truth, while faces, emotion,
and sound are better captured by a model trained on eye

tracking data. To summarize, the findings suggest that the
mouse tracking can generally be an acceptable replacement
for training data, though the models trained on it can be
slightly inferior to the model’s trained on eye tracking.
Evaluation on mouse data. “How does evaluation on
mouse tracking data affect our understanding of a model’s
performance?” We have already observed that there are
some differences between mouse tracking and eye track-
ing in terms of contextual behavior and participant visual
congruency. While we could not find severe differences on
training a model using either eye tracking or mouse track-
ing, a crucial question is: will the same phenomenon be ob-
served for model selection and evaluation by mouse data?

To answer this question, we evaluate several models,
including, OpenSalicon [27], SalNet [23] (deep network),
BMS [35], AWS [10], GBVS [11], Judd [18], eDN [31],
CovSal [9] on two databases and ground truth data. The
models are chosen based on their performance report on
MIT300 [17] and code availability at the time of this writ-
ing. We train OpenSalicon on MIT1003 [18]. The pre-
trained models of SalNet, eDN, and Judd models, provided
by the authors, are used. GBVS, CovSal, AWS, and BMS
models do not need training.

The test databases are OSIE, eye tracking and mouse
tracking (AMT) ground truths and the MIT300 [17]. We
report the traditional sAUC, KL, and SIM scores for each
model and database for the sake of comparability between
databases. The average rank score of each model, RAS, is
computed by averaging over the rank of each score of the
model. The models are ranked based on the RAS value.

The results are summarized in Table 4. It shows there is
inconsistency between models’ ranks on different databases
and settings. To investigate the severity of this phe-
nomenon, we computed the Spearman’s rank correlation be-
tween the pairs of models’ ranks on databases. The result
reveals that the pair of OSIE eye tracking and MIT300 eye
tracking has ρ = 0.95 while the pair of OSIE eye track-
ing and OSIE mouse tracking has the ρ = 0.73. Similarly,
the pair of OSIE mouse tracking and MIT300 eye tracking
has ρ = 0.80. To conclude, evaluating models on the same
images with different ground truth produces much different
ranking compared to evaluating models on different images
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Figure 8. The effect of training ground truth source on model performance. OpenSalicon is trained and tested on OSIE images using 5
fold cross-validation. OpenSalicon (EYE) is trained on eye fixations where OpenSalicon (AMT) and OpenSalicon (LAB) are trained on
mouse tracking from amazon mechanical turk and laboratory, respectively. The test ground truth is always eye tracking and the human
performance from eye tracking (Human Eye) is reported as the upper bound (for human KL=0 and SIM=1).

using eye tracking based ground truth.
This finding adversely affects the reliability of mouse

tracking ground truth as an alternative to eye tracking for
model evaluation because the rank correlation of saliency
models on the same images using different ground truth
sources (eye tracking and mouse tracking) is significantly
lower than the rank correlation of models by different im-
ages and eye tracking ground truth.

5. Contextual model evaluation
Over still images, the previous research [8] has shown

that models are still consistently under-predicting seman-
tically important image regions (e.g. text, people, actions,
and etc.). Computing scores over the whole image and
averaging large image collections conceals such deficien-
cies. Thus, as models continue to improve, measuring more
precisely how they preform over contextually annotated re-
gions becomes a necessity. We, here, employ the proposed
contextual evaluation scheme for model assessment. Using
the models, OpenSalicon [27] (trained on MIT1003), Sal-
Net [23] (deep network), BMS [35], AWS [10], GBVS [11],
Judd [18], eDN [31], CovSal [9], we compute the saliency
maps for the OSIE EYE and contextually evaluate them.

Table 5 summarizes the results in terms of contextual
scores and the mean CScore. Considering the overall score,
the mean CScore is numerically different than the tradi-
tional scores. While OpenSalicon is the overall top per-
forming model, it is not the winner on all contextual prop-
erties. Different models tend to favor different properties.
This helps identify a model’s deficiency and choose an ap-
propriate model for a specific application. For example, the
AWS model is better capturing text areas, while it is not
the best model among the current models in terms of mean
CScore. Therefore, for a text processing application, AWS
may be a better model in order to curtail excess data. More
importantly, the proposed scheme allows one to identify the
weak points of a saliency model more easily and efficiently.

In terms of model ranking and benchmark, computing
the ranks as before, the ranks would be OpenSalicon>

SalNet> BMS> AWS> GBVS> eDN> Judd> CovSal.
The proposed approach is thus producing similar ranks to
the traditional metrics, where the correlation between the
model ranks by traditional metrics and mean CScore is
ρ = 0.98 on OSIE EYE and ρ = 0.91 in comparison with
the model ranks of MIT300.

6. Conclusions and future research
The results of this study show that the inter-participant

visual congruency is significantly lower for mouse track-
ing data in comparison to the eye tracking. We also learn
that even 90 mouse tracking participants can not be as ac-
curate as the maps from 15 eye tracking participants. This
signifies the inefficiency of the mouse tracking and the fact
that less accurate ground truth are obtained by employing
mouse tracking. On a fine-grained analysis, this is evident
in the disagreement between mouse and eye tracking on
background regions. Nonetheless, mouse tracking captures
an acceptable level of visual saliency as a low cost alterna-
tive to eye tracking.

Analyzing the effect of data type on training deep models
using OpenSalicon [27], the open source implementation
of [12], reveals that OpenSalicon trained on mouse tracking
achieves a sAUC score close to the same model trained on
eye tracking data. Further, it captures most salient regions,
though it may not produce similar maps to human fixation
maps according to SIM and KL scores. This motivates that
mouse tracking data can be useful for model training.

In terms of model evaluation, our results are not in fa-
vor of mouse tracking data. Mouse tracking seems a less
reliable ground truth for model evaluation and ranking. The
rank correlation of models are significantly smaller between
OSIE EYE and OSIE AMT (same images; different ground
truth source type), compared to OSIE EYE and MIT300
(different images; both with eye tracking ground truth), 0.73
vs. 0.95. Due to this, we do not recommended to compare
models solely based on mouse tracking data.
Future directions. Our results show that mouse tracking
data in general offers a first order approximation to eye
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OSIE database MIT300 database
Eye tracking Mouse tracking (AMT) Eye tracking

Model sAUC KL SIM RAS R sAUC KL SIM RAS R sAUC KL SIM RAS R
Human 0.89 0 1 – – 0.77 0 1 – – 0.81 0 1 – –
OpenSalicon [27] 0.80 0.79 0.52 1 1 0.68 0.55 0.67 3 4 0.72 0.83 0.50 2 2
SalNet [23] 0.78 0.86 0.50 2 2 0.69 0.44 0.73 1 1 0.69 0.81 0.52 1.33 1
BMS [35] 0.78 1.04 0.44 2.66 3 0.68 0.47 0.65 2.66 3 0.65 0.81 0.51 2.33 3
AWS [10] 0.76 1.10 0.43 4 4 0.68 0.47 0.64 3 4 0.68 1.07 0.43 4.33 5
GBVS [11] 0.68 1.10 0.43 4.33 5 0.60 0.44 0.66 2.33 2 0.63 0.87 0.48 4 4
Judd [18] 0.68 1.30 0.36 5 6 0.60 0.51 0.60 4 6 0.60 1.12 0.42 6.33 6
eDN [31] 0.68 1.31 0.36 5.33 7 0.59 0.52 0.59 5 7 0.62 1.14 0.41 6.66 7
CovSal [9] 0.59 2.26 0.40 6 8 0.53 2.82 0.49 6.3 8 0.57 2.68 0.47 6.66 7

Table 4. Comparing eye tracking and mouse tracking ground truth data for model evaluation. RAS is the average rank score over metrics
and R is the final rank.
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Human 0.71 0.79 0.84 0.84 0.83 0.81 0.77 0.84 0.80 0.76 0.78 0.78 0.85 0.86 0.80
OpenSalicon 0.59 0.65 0.73 0.69 0.64 0.65 0.61 0.74 0.60 0.63 0.64 0.63 0.74 0.71 0.66
SalNet 0.55 0.65 0.69 0.66 0.69 0.64 0.62 0.70 0.60 0.60 0.60 0.62 0.68 0.72 0.64
BMS 0.56 0.63 0.68 0.64 0.64 0.63 0.61 0.63 0.58 0.60 0.60 0.62 0.65 0.74 0.62
AWS 0.57 0.60 0.60 0.62 0.61 0.60 0.60 0.63 0.57 0.59 0.59 0.60 0.64 0.74 0.60
eDN 0.51 0.61 0.65 0.62 0.57 0.54 0.57 0.58 0.52 0.52 0.54 0.56 0.56 0.67 0.57
Judd 0.48 0.61 0.64 0.62 0.56 0.53 0.54 0.59 0.51 0.50 0.54 0.56 0.55 0.67 0.56
GBVS 0.49 0.60 0.61 0.58 0.55 0.54 0.56 0.56 0.52 0.50 0.55 0.56 0.54 0.66 0.55
CovSal 0.47 0.61 0.63 0.59 0.52 0.49 0.52 0.52 0.50 0.48 0.51 0.56 0.50 0.61 0.53

K
L

OpenSalicon 0.13 0.24 0.25 0.38 0.46 0.39 0.39 0.41 0.39 0.24 0.29 0.27 0.55 1.31 0.30
SalNet 0.30 0.23 0.29 0.37 0.32 0.32 0.37 0.46 0.33 0.33 0.28 0.30 0.60 1.24 0.32
BMS 0.13 0.24 0.33 0.44 0.43 0.39 0.39 0.62 0.38 0.23 0.32 0.27 0.74 1.41 0.35
GBVS 0.14 0.22 0.32 0.42 0.47 0.40 0.35 0.62 0.36 0.26 0.32 0.27 0.78 1.34 0.35
AWS 0.12 0.27 0.38 0.47 0.48 0.42 0.38 0.63 0.40 0.24 0.32 0.28 0.78 1.40 0.37
eDN 0.13 0.25 0.36 0.45 0.49 0.41 0.38 0.65 0.37 0.26 0.33 0.29 0.79 1.58 0.37
Judd 0.14 0.26 0.36 0.44 0.49 0.42 0.39 0.65 0.38 0.26 0.34 0.29 0.80 1.59 0.37
CovSal 2.17 1.16 0.46 0.85 1.11 1.78 2.33 1.34 1.58 2.23 0.88 1.29 1.82 3.32 1.45

SI
M

SalNet 0.83 0.78 0.72 0.69 0.70 0.71 0.72 0.65 0.72 0.78 0.75 0.76 0.58 0.42 0.74
OpenSalicon 0.82 0.77 0.75 0.68 0.64 0.68 0.68 0.67 0.68 0.76 0.74 0.75 0.60 0.39 0.73
BMS 0.82 0.76 0.70 0.65 0.65 0.67 0.68 0.58 0.68 0.76 0.72 0.74 0.54 0.35 0.71
GBVS 0.82 0.77 0.70 0.66 0.63 0.67 0.70 0.59 0.69 0.75 0.72 0.74 0.51 0.37 0.71
AWS 0.83 0.75 0.68 0.65 0.63 0.66 0.69 0.59 0.68 0.76 0.72 0.74 0.52 0.35 0.70
eDN 0.82 0.75 0.68 0.64 0.62 0.66 0.68 0.57 0.68 0.75 0.71 0.73 0.50 0.31 0.69
Judd 0.82 0.75 0.68 0.65 0.62 0.65 0.68 0.57 0.67 0.75 0.71 0.73 0.50 0.30 0.69
CovSal 0.71 0.75 0.72 0.66 0.58 0.59 0.62 0.55 0.63 0.66 0.68 0.70 0.44 0.38 0.66

Table 5. Contextual evaluation of models on OSIE with eye tracking as ground truth. The sAUC, KL, and SIM scores for each of the
contextual properties, background, foreground and mean CScore, i.e., mean gaze weighted contextual score, are reported. The human
performance for KL=0 and SIM=1. Models appear in descending performance order for each score.

tracking. The mouse tracking data is useful for model train-
ing. A fine-grained analysis, however, highlights the short-
comings of mouse tracking data, in particular the effect of
contextual cues such as gaze direction, action end point,
etc. (see Fig. 1.) Our results suggest that high performance
achieved by recent saliency models, based on deep learning,
might be merely due to high volume of training data. Mouse
data, although noisy, has been very helpful but that does not
necessarily mean that collecting even more mouse data will
eventually get us to human level accuracy over fixations.

We believe that future research should focus on fine-

grained analysis of ground truth data and models in order to
understand attentional mechanism better and improve exist-
ing saliency models. Our research showed that there is no
single model performing best on all the contextual annota-
tions. This indicates models may be complementary to each
other and motivates further research towards understanding
models’ behaviors on fine-grained details.
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