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Abstract

The categories and appearance of salient objects vary
from image to image, therefore, saliency detection is an
image-specific task. Due to lack of large-scale saliency
training data, using deep neural networks (DNNs) with pre-
training is difficult to precisely capture the image-specific
saliency cues. To solve this issue, we formulate a zero-shot
learning problem to promote existing saliency detectors.
Concretely, a DNN is trained as an embedding function
to map pixels and the attributes of the salient/background
regions of an image into the same metric space, in which
an image-specific classifier is learned to classify the pix-
els. Since the image-specific task is performed by the clas-
sifier, the DNN embedding effectively plays the role of a
general feature extractor. Compared with transferring the
learning to a new recognition task using limited data, this
formulation makes the DNN learn more effectively from
small data. Extensive experiments on five data sets show
that our method significantly improves accuracy of exist-
ing methods and compares favorably against state-of-the-
art approaches.

1. Introduction
Detecting salient objects or regions of an image, i.e.

saliency detection, is useful for many computer vision
tasks. As a preprocessing step, saliency detection is appeal-
ing for many practical applications, such as content-ware
video compression [37], image resizing [2], and image re-
trieval [10]. A plethora of saliency models have been pro-
posed in the past two decades to locate conspicuous image
regions [4, 6, 5]. Although much effort has been devoted
and significant progress has been made, saliency detection
remains a challenging open problem.

Conventional saliency detection methods usually utilize
low-level features and heuristic priors which are not robust
enough to discover salient objects in complex scenes, nei-
ther are capable of capturing semantic objects. Deep neural
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Figure 1. Images and the corresponding feature maps from the last
convolution layer of VGG16 [25]. The small binary mask in each
image indicates the salient object of this image.

networks (DNNs) have been used to remedy the drawbacks
of conventional methods. They can learn high-level seman-
tic features from training samples, thus are more effective
in locating semantically salient regions, yielding more ac-
curate results in complex scenes.

DNNs usually need to be trained on a large dataset, while
training data for saliency detection is very limited. This is-
sue is generally solved by pre-training on a large dataset for
other tasks, such as image classification, which easily leads
to several problems. First, saliency detection is an image-
specific task, and labels should be assigned to pixels de-
pending on the image content. However, features produced
by pre-trained feature extractors are supposed to work for
all images. For example, signs and persons are salient ob-
jects in the first column of Figure 1 , while they belong to
the background in the second column. However, the regions
of signs and persons are indiscriminately highlighted in the
feature maps in the two columns. With this kind of feature
extractor, the prediction model might be enforced to learn
to map similar features into opposite labels, which is diffi-
cult for small training dataset. Second, categories and ap-
pearance of salient objects vary from image to image, while
small training data is not enough to capture the diversity.
For example, the six salient objects shown in Figure 1 come
from six different categories and differ wildly in their ap-
pearance. Consequently, it might be hard to learn a unified
detector to handle all varieties of salient objects.



Considering the large diversity of salient objects, we
avoid training a deep neural network (DNN) that directly
maps images into labels. Instead, we train a DNN as an
embedding function to map pixels and the attributes of the
salient/background regions into a metric space. The at-
tributes of the salient/background regions are mapped as
anchors in the metric space. Then, a nearest neighbor
(NN) classifier is constructed in this space, which assigns
each pixel with the label of its nearest anchor. As a non-
parametric model, the NN classifier can adapt well to new
data and handle the diversity of salient objects. Addition-
ally, since the classification task is performed by the NN
classifier, the goal of the DNN is turned to learning a gen-
eral mapping from the attributes of the salient/background
regions to anchors in the embedding space. Compared with
directly learning to detect diverse salient objects, this would
be easier for the network to learn on limited data.

Concretely, we show the pipeline of our proposed
method in Figure 2. During training, the DNN is provided
with the true salient and background regions, of which the
label of a few randomly selected pixels are flipped, to pro-
duce anchors. The output of the NN classifier constitutes a
saliency map. The DNN can be trained end-to-end super-
vised by the loss between this saliency map and the ground
truth. When testing on an image, the saliency map of each
image is obtained as in training, but using approximate
salient/background regions detected by an existing method.
Although the approximate salient/background region is not
completely correct, it is often with similar attributes to the
true salient/background region. Thus, the corresponding
embedding vectors (i.e. anchors) would be close to the ones
of the true salient/background regions. Further, to produce
better results, we propose an iterative testing scheme. The
result of the NN classifier is utilized to revise anchors, yield-
ing increasingly more accurate results.

Our method can be viewed as a zero-shot learning prob-
lem, in which the approximate salient/background regions
detected by an existing method provide attributes for unseen
salient objects, and the model learns from the training data
to learn an image-specific classifier from the attributes to
classify pixels of this image. Extensive experiments on five
data sets show that our method can significantly improve ac-
curacy of existing methods and compares favorably against
state-of-the-art approaches.

2. Related works
Generally, saliency detection methods can be catego-

rized into two streams: top-down and bottom-up saliency.
Since our work addresses bottom-up saliency, here we
mainly review recent works on bottom-up saliency, mean-
while shortly mention top-down saliency. We also explore
the relation between our proposed method and top-down
saliency.

Bottom-up (BU) saliency is stimuli-driven, where
saliency is derived from contrast among visual stimuli.
Conventional bottom-up saliency detection methods often
utilize low-level features and heuristic priors. Jiang et
al. [12] formulate saliency detection via an absorbing
Markov chain on an image graph model, where saliency of
each region is defined as its absorbed time from boundary
nodes. Yang et al. [32] rank the similarity of the image re-
gions with foreground cues or background cues via graph-
based manifold ranking. Since the conventional methods
are not robust in complex scenes neither capable of cap-
turing semantic objects, deep neural networks (DNNs) are
introduced to overcome these drawbacks. Li et al. [16] train
CNNs with fully connected layers to predict saliency value
of each superpixel, and to enhance the spatial coherence
of their saliency results using a refinement method. Li et
al. [18] propose a FCN trained under the multi-task learn-
ing framework for saliency detection. Zhang et al. [34]
present a generic framework to aggregate multi-level con-
volutional features for saliency detection. Although the pro-
posed method is also based on DNNs, the main difference
between ours and these methods is that they learn a gen-
eral model that directly maps images to labels, while our
method learns a general embedding function as well as an
image-specific NN classifier.

Top-down (TD) saliency aims at finding salient regions
specified by a task, and is usually formulated as a super-
vised learning problem. Yang and Yang [33] propose a su-
pervised top-down saliency model that jointly learns a Con-
ditional Random Field (CRF) and a discriminative dictio-
nary. Gao et al. [9] introduced a top-down saliency algo-
rithm by selecting discriminant features from a pre-defined
filter bank.

Integration of TD and BU saliency has been exploited
by some methods. For instance, Borji [3] combines low-
level features and saliency maps of previous bottom-up
models with top-down cognitive visual features to predict
fixations. Tong et al. [26] proposed a top-down learning
approach where the algorithm is bootstrapped with training
samples generated using a bottom-up model to exploit the
strengths of both bottom-up contrast-based saliency mod-
els and top-down learning methods. Our method also can
be viewed as an integration of TD and BU saliency. Al-
though both our method and the method of Tong et al. [26]
formulate the problem as top-down saliency detection spec-
ified by initial saliency maps, there are certain difference
between the two. First, Tong’s method trains a strong model
via boostrap learning with training samples generated by a
weak model. In contrast, our method maps pixels and the
approximate salient/background regions into a learned met-
ric space, which is related to zero-shot learning. Second,
thanks to deep learning, our method is capable of captur-
ing semantically salient regions and does well on complex
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Figure 2. The pipeline of the proposed method. The input image (a) is first passed through our revised VGG network, resulting in an 512
channel feature map (b) of the same size as the input image. Each pixel is mapped to vectors e.g., (g) and (h) in the learned metric space
(j). Salient and background regions is also mapped to vectors i.e. anchors in the learned metric space. For instance, (e) and (f) are salient
and background anchors of this image respectively. During training, the salient and background pixels for producing anchors are selected
using a randomly flipped ground truth ((d) and (e) in the figure), see Sec.3.1. An nearest neighbor classifier is built that classifies each pixel
based on its distance to the anchors (see Eqn.3). Classification results of all pixels constitute a saliency map (i), of which loss between the
ground truth is used to supervise the network. During testing, the anchors are firstly produced according to an initial saliency map, here
(e) is the initial saliency map. Given anchors, the nearest neighbor classifier can produce a new saliency map (i), which is utilized to revise
the initial map as in Eqn.3. Then the revised map is used to produce new approximation to the anchors. Iterating the testing process would
result in an increasingly more accurate result.

scenes, while Tong’s method uses hand-crafted features and
heuristic priors, which are less robust, Third, our method
produces pixel-level results, while Tong’s method computes
saliency value of each image region to assemble a saliency
map, which tends to be coarser.

3. The Proposed Method
Our method consists of three components: 1) a DNN as

an embedding function i.e. the anchor network, that maps
pixels and regions of the input image into a learned metric
space, 2) a nearest neighbor (NN) classifier in the embed-
ding space learned specifically for this image to classify its
pixels, and 3) an iterative testing scheme that utilizes the
result of the NN classifier to revise anchors, yielding in-
creasingly more accurate results.

3.1. The anchor network

Let xmn denote a pixel of an image Xm. Each im-
age consists a salient and a background region, i.e. Xm =
Cm1∪Cm2. Each pixel of an image either belongs to salient
or background regions, denoted as n ∈ Cmk, k = 1, 2, re-
spectively. We use an embedding function modeled by a
DNN φ with parameter θ, to map each pixel to a vector in
a D-dimensional space:

φmn = φ(xmn;θ), (1)

where φmn is the embedding vector to the corresponding
pixel xmn.

The salient or background region Cmk is also mapped
into vectors in D-dimensional metric space by a DNN ψ
with parameter η:

µmk = ψ(Cmk;η), (2)

in which µmk is the mapping of the salient or background
region, i.e. anchors.

We assume that in the embedding space, all pixels of an
image cluster around the corresponding anchors of this im-
age. Then a nearest neighbor classifier can be built specif-
ically for this image by classifying each pixel according to
its nearest anchor. The probability of a pixel xmn of image
Xm belonging to Cmk can be given by the softmax over its
distance to the anchors:

p(Cmk|xmn) =
exp{−d(φmn,µmk)}∑
j exp{−d(φmn,µmj)}

, (3)

where φmn and µmk are the vectors of pixel xmn and the
salient / background anchor given by Eqn.1 and 2. d(·) de-
notes Euclidean distance.

The CNN embeddings can be trained using a gradient-
based optimization algorithm through maximizing the log
likelihood with respect to θ and η on the training set:

L =
∑
m,n

tmn log p(Cm1|xmn)+(1−tmn) log p(Cm2|xmn),

(4)
where tmn is the label of pixel xmn. tmn = 1 when
xmn ∈ C1, i.e. salient and tmn = 0 when xmn ∈ C2, i.e.
background.



In practice, the ground-truth will not be available dur-
ing testing, and the anchors are produced according to a
prior saliency map, which is inaccurate. Therefore, to match
training and testing conditions, during training we randomly
flip the label of each pixel with probability p when pro-
ducing the anchors using Eqn.2. In addition, this random
flipping also increases diversity of training samples, thus
helping reduce overfitting. We explain the training process
of the anchor network in Alg.1. Here, Lm denotes the log
likelihood on the image Xm.

Algorithm 1: Training the anchor network.

Input : Training set {(Xm, tm)},
in which tmn = 1 indicates xmn ∈ Cm1,
and tmn = 0 otherwise.

Output: CNN embedding φ(·;θ) and ψ(·;η)
1 for training iterations do
2 Sample a pair of training image and ground truth

map (Xm, tm) from the training set.
3 Randomly flip the elements in tm with probability

p.
4 Compute the embedding vector φmn of each pixel

given by Eqn.1 and produce anchors µmk as in
Eqn.2.

5 Compute gradient of log likelihood Lm on this
image with respect to θ and η.

6 Update θ and η according to ∇θ,ηLm using a
gradient based optimization method.

7 end

3.2. Iterative testing scheme

In the testing phase, since the ground-truth is unknown,
it is not possible to obtain precise salient and background re-
gions to produce anchors as in the training time. Therefore,
we produce anchors using approximate salient/background
regions Ĉmk selected according to the saliency map Y (0)

m of
an existing method. An iterative testing scheme is proposed
to gradually revise the anchors using the result of the NN
classifier.

In the t-th iteration (t > 0), the anchors are generated
according to salient/background region Ĉmk selected by the
prior saliency map Y (t)

m . Given the anchors, we use the near-
est neighbor classifier as in Eqn.3 to compute the probabil-
ity of each pixel belonging to salient regions, i.e. saliency
value, constructing another saliency map Z(t)

m . Then, the
prior saliency map is updated with

Y (t+1)
m =

t

t+ 1
Y (t)
m +

1

t+ 1
Z(t)
m , (5)

where Y (t+1)
m is the prior saliency map which will be used

for selecting salient and background regions in the next it-

eration. This means that the prior map is updated to a
weighted sum of itself and the new result. After the first
iteration, the prior map is completely replaced by the new
result. The weight of the new result decreases with iterating,
which insures stability of the iteration process. The testing
algorithm of the proposed method is shown in Alg.2.

Figure 3 shows the process of the initial maps being
promoted by the proposed method. Although the initial
saliency map may not precisely separate the foreground and
background, it can often partially separate them, and thus
can provide information regarding categories and appear-
ance of salient objects in the image. For instance, in the
first image of Figure 3, though only a small part of the
foreground is highlighted, the initial map can tell us that
the foreground may be a gorilla, and the background con-
tains a piece of green. Then, its selected foreground / back-
ground regions should be similar to the true foreground /
background regions, leading to the corresponding anchors
close to the true ones in the learned metric space. Thereby
the nearest neighbor classification given by Eqn.3 can pro-
duce a good result. As the iterations progress, the approx-
imate anchors gradually approach to the true ones, which
would result in a better result. This, in turn could provide
an increasingly accurate approximation to the anchors, and
thus a more accurate result. As shown in Figure 3, the ini-
tial maps are not appealing, while the modified maps by our
method look much better.

Algorithm 2: Testing algorithm of the proposed method.

Input : The input image X , the initial saliency map
Y (0), the number of iterations T .

Output: The promoted saliency map Y (T ).
1 Compute the embedding vector φn of each pixel xn

of X . for t ∈ {1, ..., T} do
2 Select the approximate salient Ĉ1 and background

region Ĉ2 according to Y (t).
3 Produce the approximate anchor

µ̂k = ψ(Ĉk;η), k = 1, 2.
4 Compute saliency value of each pixel according to

Eqn.3 to constitute another saliency map Z(t)
m .

5 Update the prior saliency map:
Y (t+1) ← t

t+1Y
(t) + 1

t+1Z
(t)

6 end

It is known that DNNs, which typically consist of many
parameters, have to be trained on large datasets to obtain
good performance. For tasks where training data is scarce,
such as saliency detection, revising a DNN that has been
pre-trained on image classification datasets is the most vi-
able option. Therefore, we also adopt a pre-trained DNN for
our purpose rather than training a DNN from scratch. We
modify the VGG16 [25] network, pre-trained on the Im-
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Figure 3. The process of the initial maps being promoted by the
proposed method.

ageNet [7] dataset, into the pixel embedding φ(·,θ) and
region embedding ψ(·,η). Since the DNN serves as an em-
bedding instead of a classifier in the proposed method, we
remove all the fully connected layers of VGG, and only re-
tain its feature extractor component (VGG feature extrac-
tor). The VGG feature extractor consists of 5 convolution
blocks, each of which contains several convolution and non-
linear layers, as well as a pooling layer. We show the net-
work architecture and the overall structure of the proposed
method in Figure 2, and describe the details in the next
two subsections. In the figures and the text of this section,
nonlinearity layers and batch-normalization layers are omit
to avoid clutter. The combination of a convolution/fully
connected layer, a batch-normalization layer and a ReLU
nonlinear Convolution layers are referred to as a convolu-
tion/fully connected layers in this section.

3.3. Pixel embedding

Although effective in extracting hierarchical features,
VGG feature extractor makes the feature maps smaller than
the input image. This is not desirable for our method, be-
cause in order to map each pixel of the input image to a
vector in the learned metric space, the embedding CNN
should produce feature maps of the same resolution as the
input image. We adopt two strategies to obtain larger feature
maps: 1) remove the pooling layers of the last two convo-
lution blocks and use dilated convolutions in these blocks
to maintain receptive filed of the convolution filters, and 2)
append a subpixel convolution layer after each convolution
block of the VGG feature extractor to upsample the feature
maps of each convolution blocks to the input image size.
Subpixel convolution is an upsampling strategy originally
proposed in [24] for image super-resolution. To produce a
C-channel tensor of N times the input size, the subpixel
convolution firstly performs convolution on the feature map
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Figure 4. Two different structures of the region embedding. The
Σ symbol denotes averaging over pixels of the region. Top and
bottom streams indicates Conv-based and FC-based region em-
bedding respectively.
to get a N2 × C-channel tensor of the input size. Then, the
elements of the N2 × C-channel tensor are rearranged into
a C-channel output tensor of N times the size of the input
tensor.

Five C-channel feature maps can be produced though
adding a subpixel convolution layer after each of the five
convolution blocks. Then the five C-channel feature maps
are cascaded into a 5C-channel feature map. Directly us-
ing the features of this 5C-channel feature map to represent
each pixel is not the best option since features of different
convolution blocks are in different ranges. To solve this, we
add two extra convolution layers after the subpixel convo-
lution layers, to convert the 5C-channel feature maps into a
D-channel feature map, in which each pixel corresponds to
a D-dimensional vector. In our implementation, we set C
to 64 and D to 512.

3.4. Region embedding

For simplicity, we let the pixel embedding φ(·,θ) and
the the region embeddingψ(·,η) share the common feature
extractor and subpixel convolution upsample layers. New
layers are append after the subpixel convolution layers to
map the 5C-channel feature map of an image region to a
D-dimensional vector.

As shown in Figure 4, we consider two different struc-
ture of the region embedding: Conv-based and FC-based re-
gion embedding. In the Conv-based region embedding, the
5C-channel feature map of an image region is passed into
convolution layers, resulting in a D-channel feature map.
Then the D-dimensional embedding vector is given by av-
eraging the D-channel feature map over pixels. The FC-
based region embedding uses fully connected layers to map
the average over pixels of the 5C-channel feature map into
a D-dimensional vector.

4. Experiments
4.1. Datasets

We apply our method to five benchmark datasets to eval-
uate its performance. Details of these datasets are as fol-



lows.
ECSSD [31] contains 1000 natural images with multiple

objects of different sizes. Some of the images come from
the challenging Berkeley-300 dataset.

PASCAL-S [19] stems from the validation set of PAS-
CAL VOC2010 [8] segmentation challenge and contains
850 natural images.

HKU-IS [16] has 4447 images with high-quality pixel-
wise annotations. Images in this dataset are chosen to in-
clude multiple disconnected objects or objects touching the
image boundary.

SOD [31] has 300 images, and was originally designed
for image segmentation. Pixel-wise annotations of salient
objects were generated by [13]. This dataset is challenging
since many images contain multiple objects either with low
contrast or touching the image boundary.

DUTS [27] is a large scale dataset containing 10533
training images and 5019 test images. All the training
images are collected from the ImageNet DET training/val
sets [7], while test images are collected from the ImageNet
DET test set and the SUN dataset [30]. Accurate pixel-level
ground truths are provided.

4.2. Evaluation metrics

We employ Precision-Recall curve, F-measure curve, F-
measure score and MAE score to quantitatively evaluate
the performance of the proposed method and compare with
other methods.

The precision of a binary map is defined as the ratio of
the number of salient pixels it correctly labels, to all salient
pixels in this binary map. The recall value is the ratio of
the number of correctly labeled salient pixels to all salient
pixels in the ground-truth map:

precision =
|TS ∩DS|
|DS|

, recall =
|TS ∩DS|
|TS|

, (6)

in which TS denotes true salient pixels, DS denotes de-
tected salient pixels by the binary map, and | · | denotes
cardinality of a set.

The F-measure, denoted as Fβ , is an overall performance
indicator computed by the weighted harmonic of precision
and recall:

Fβ =
(1 + β2) · precision · recall
β2 · precision + recall

, (7)

where β2 is set to 0.3 as suggested in [1] to emphasize the
precision.

Given a saliency map whose intensities are in the range
of 0 and 1, a series of binary maps can be produced by
thresholding the saliency map with different values in [0,
1]. Precision and recall values of these binary maps can be
computed according to Eqn. 6. F-measure can be computed

according to Eqn. 7. Plotting the (precision, recall) pairs
of all the binary maps results in the precision-recall curve,
and plotting the (F-measure, threshold) pairs results in the
F-measure curve.

Also as suggested in [1], we use twice the mean value
of the saliency maps as the threshold to generate binary
maps for computing the F-measure. Notice that some works
have reported slightly different F-measures using different
thresholds. But as far as we know, twice the mean value is
the most commonly used threshold.

As complementary to PR curves, mean absolute error
(MAE) is used to quantitatively measure the average dif-
ference between the saliency map S and the ground truth
map G:

MAE =
1

H

H∑
i=1

|Si −Gi|.

MAE indicates how similar a saliency map is compared to
the ground truth. It is widely used in different pixel-level
prediction tasks such as semantic segmentation and image
cropping [22].

4.3. Implementation details

Our method is implemented in Python with the PyTorch1

toolbox. We train and test our model on a PC with a 3.6GHz
CPU, 32GB RAM and a GTX 1080 GPU.

We train our model on the training set of DUTS dataset.
As in [20], we augment the training data by horizontal flip-
ping and cropping the images to reduce overfitting. The
probability p of randomly flipping ground truth when pro-
ducing anchors during training is set to 0.05. We compare
two type of region embedding in Sec.4.4, and adopt the
Conv-based one in other experiments. Adam [14] optimiza-
tion method is used for training our model. Learning rate
is set to 1e-3. We do not use a validation set, and train our
model until its training loss converges. The training pro-
cess takes almost 16 hours and converges after around 300k
iterations with mini-batch of size 1.

When comparing performance with other methods, the
number of iterations T in the iterative testing scheme
(Alg. 2) is set to 1. We discuss the effect of larger T val-
ues in Sec.4.4. When testing, the proposed method runs at
about 15 fps with 256 256 resolution on our computer with
a 3.6GHz CPU and a GTX 1080 GPU. We release our code
for future comparisons23.

4.4. Ablation studies

Quantitative comparison between the two types of re-
gion embedding is shown in Table 1. From this comparison

1https://github.com/pytorch
2http://ice.dlut.edu.cn/lu/
3https://github.com/zengxianyu/lps



Baseline UCF RFCN ELD
Methods Fβ MAE Fβ MAE Fβ MAE
BS 0.8394 0.0776 0.8337 0.1069 0.8098 0.0789
FC 0.8902 0.0575 0.8941 0.0628 0.8820 0.0592
Conv 0.8805 0.0560 0.8885 0.0570 0.8689 0.0577

Table 1. Comparison in terms of F-measure (the larger the better)
and MAE (the smaller the better) between two types of region em-
bedding evaluated on ECSSD dataset. The best and the second
best methods are in red and green respectively. BS: baseline; FC:
baseline promoted by the proposed method with FC-based region
embedding; Conv: baseline promoted by the proposed method
with Conv-based region embedding.

Figure 5. Quantitative effect evaluated on ECSSD dataset in terms
of F-measure and MAE of the proposed iterative testing scheme.
Different lines represents the effect of applying the proposed
method on different algorithms.

we can see that the performance of FC-based and Conv-
based region embedding is comparable. The FC-based re-
gion embedding yields relatively larger F-measure, while
Conv-based region embedding is more superior in terms of
MAE.

We show the effect of the proposed iterative approxima-
tion scheme in Figure 5. As shown in Figure 5, the first
iteration improve the F-measure and decrease MAE most
significantly. The improvement slows down with iterations,
and saturates gradually.

4.5. Performance

We choose 13 state-of-the-art methods as baselines,
including 8 deep learning based methods (Amulet [34],
SRM [29], UCF [35], DHS [20], NLDF [21], ELD [15],
RFCN [28], DSS [11]), and 5 conventional contenders
(BSCA [23], DRFI [13], wCO [36], DSR [17], BL [26]).
We apply our method to promote the performance of each
baseline method, by using its predicted saliency maps to
generate initial anchors in Eqn.3. Figure 6 shows the PR
curves of the baseline methods and the one promoted by our
method. Table 2 shows the F-measure and MAE scores of
8 deep learning based methods and the corresponding pro-
moted results. The quantified improvements in F-measure
and MAE of applying our method to conventional methods
are shown in Table 3. As shown in Figure 6, Table 2, and
Table 3, our method drastically promotes all the baseline
methods.

Based on our results, we make several fundamental ob-

ECSSD

HKU-IS

PASCAL-S

DUTS-Test

SOD
Figure 6. PR curves and F-measure curves of our method and the
the state-of-the-art methods.

servations:

1. Our proposed method decreases the MAE of SRM, the
best-performing method to date, by 15.3% on HKU-IS
dataset and 14.2% on ECSSD dataset.

2. Although our method is based on deep learning, it also
performs well when applied to conventional methods.
For instance, our method decreases the MAE of DRFI
by around 50% on both ECSSD and HKU-IS datasets.
Our method does not rely on any specific choice of
the initial map, and generalizes well across different
baseline methods.



ECSSD HKU-IS PASCALS DUTS-Test SOD
Methods Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

Amulet BS 0.8691 0.0590 0.8388 0.0521 0.7677 0.0982 0.6755 0.0851 0.7546 0.1407
Ours 0.8963 0.0509 0.8772 0.0446 0.7985 0.0920 0.7281 0.0828 0.7769 0.1336

SRM BS 0.8921 0.0542 0.8739 0.0458 0.8007 0.0850 0.7570 0.0587 0.8004 0.1265
Ours 0.9151 0.0465 0.9042 0.0388 0.8240 0.0810 0.8023 0.0558 0.8036 0.1170

UCF BS 0.8394 0.0776 0.8076 0.0740 0.7056 0.1262 0.6288 0.1173 0.6989 0.1640
Ours 0.8805 0.0560 0.8530 0.0546 0.7703 0.1044 0.6911 0.1051 0.7520 0.1470

DHS BS 0.8716 0.0588 0.8550 0.0525 0.7787 0.0937 0.7242 0.0670 0.7736 0.1278
Ours 0.9058 0.0482 0.8923 0.0421 0.8155 0.0859 0.7822 0.0610 0.7925 0.1216

NLDF BS 0.8781 0.0626 0.8735 0.0477 0.7787 0.0990 0.7426 0.0650 0.7906 0.1242
Ours 0.9046 0.0523 0.8986 0.0413 0.8121 0.0905 0.7867 0.0612 0.8058 0.1206

ELD BS 0.8098 0.0789 0.7694 0.0736 0.7179 0.1227 0.6277 0.0923 0.7115 0.1545
Ours 0.8689 0.0577 0.8443 0.0511 0.7694 0.1022 0.7043 0.0805 0.7606 0.1384

RFCN BS 0.8337 0.1069 0.8349 0.0889 0.7511 0.1323 0.7135 0.0901 0.7425 0.1696
Ours 0.8885 0.0570 0.8831 0.0437 0.7968 0.0946 0.7688 0.0666 0.7856 0.1323

DSS BS 0.8728 0.0617 0.8557 0.0501 0.7733 0.1031 0.7202 0.0648 0.7867 0.1262
Ours 0.9075 0.0492 0.8995 0.0394 0.8117 0.0906 0.7867 0.0588 0.8061 0.1187

Table 2. Comparison in terms of F-measure (the larger the better) and MAE (the smaller the better) score of our method against other deep
learning based methods. The best and the second best methods are in red and green respectively. BS: the baseline; Ours: the promoted
result of applying our method on the baseline.

ECSSD HKU-IS PASCALS DUTS-Test SOD
Methods Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

BSCA BS 0.7046 0.1821 0.6544 0.1747 0.6005 0.2228 0.4995 0.1961 0.5835 0.2516
Ours 0.7823 0.1043 0.7386 0.1075 0.6690 0.1654 0.5533 0.1711 0.6634 0.2001

DRFI BS 0.7329 0.1642 0.7218 0.1444 0.6181 0.2065 0.5406 0.1746 0.6343 0.2240
Ours 0.8136 0.0872 0.8061 0.0722 0.6943 0.1443 0.5895 0.1457 0.7069 0.1686

wCO BS 0.6763 0.1711 0.6769 0.1423 0.5998 0.2018 0.5058 0.1531 0.5987 0.2293
Ours 0.7792 0.1084 0.7765 0.0883 0.6844 0.1551 0.5932 0.1365 0.6732 0.1878

DSR BS 0.6617 0.1783 0.6773 0.1421 0.5574 0.2148 0.5182 0.1454 0.5962 0.2344
Ours 0.7993 0.1018 0.7992 0.0798 0.6806 0.1570 0.6353 0.1201 0.6916 0.1834

BL BS 0.6838 0.2159 0.6597 0.2070 0.5742 0.2487 0.4896 0.2379 0.5797 0.2669
Ours 0.7445 0.1255 0.7066 0.1255 0.6397 0.1788 0.5074 0.2007 0.6354 0.2053

Table 3. Comparison in terms of F-measure (the larger the better) and MAE (the smaller the better) score of our method against the
conventional methods. The best and the second best methods are in red and green respectively. BS: the baseline; Ours: the promoted result
of applying our method on the baseline.

3. Notice that the results shown here are obtained by iter-
ating Alg. 2 only once for fast testing speed. As shown
in Sec.4.4, better results can be achieved through iter-
ating Alg. 2 more times.

Figure 7 shows a visual comparison of saliency maps pro-
duced by some state-of-the-art methods and the promoted
ones by our method. It can be seen that the saliency maps
produced by our methods highlight salient regions that are
missed by the baselines. Further, our method can suppress
the background regions that are wrongly labeled as salient
by the baseline methods.

5. Conclusion

In this paper, we propose a novel learning method to
promote existing salient object detection methods. Ex-
tensive experiments on five benchmark datasets show that
our method can significantly improve accuracy of existing
methods and compares favorably against state-of-the-arts.
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Figure 7. Visual comparison of the algorithms promoted by our
method against the baseline algorithms. Input: input images; GT:
ground truth maps; A plus sign denotes the algorithm promoted by
our method.
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