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Abstract

Arguably, no single face detector fits all real-life scenar-

ios. It is often desirable to have some built-in schemes for

a face detector to automatically adapt, e.g., to a particu-

lar user’s photo album (the target domain). We propose a

novel face detector adaptation approach that works as long

as there are representative images of the target domain no

matter they are labeled or not and, more importantly, with-

out the need of accessing the training data of the source

domain. Our approach explicitly accounts for the notori-

ous negative transfer caveat in domain adaptation thanks

to a residual loss by design. Moreover, it does not incur

catastrophic interference with the knowledge learned from

the source domain and, therefore, the adapted face detec-

tors maintain about the same performance as the old detec-

tors in the original source domain. As such, our adaption

approach to face detectors is analogous to the popular in-

terpolation techniques for language models; it may opens a

new direction for progressively training the face detectors

domain by domain. We report extensive experimental re-

sults to verify our approach on two massively benchmarked

face detectors.

1. Introduction
Face detection is often the very first step in analyzing

faces. Recent literatures [3, 4, 5, 6] demonstrate the effec-
tiveness of deep learning for face detection. However, as a
massively data-driven method, the deep learning based face
detectors are inevitably biased accordingly to the training
data distribution. Collecting a comprehensive dataset for
training can be highly expensive, if not impossible. Besides,
considering the limited computational budget in real-world
applications, arguably, there is no single face detector that
fits all scenarios.

To address the discrepancy between the data distribution
in training and the deployment of the face detector, it is

highly desirable to have some adaptation mechanism built
for the face detectors. When there are labeled or unlabeled

images available from a particular target domain, one can
adapt the detectors to achieve better performance in the tar-
get domain than the original ones do.

In this paper, we propose a novel face detector adaptation
approach that is applicable whenever the target domain sup-
plies many representative images, no matter they are labeled
or not. It entails some very interesting properties which we
contend are missing or not explicitly discussed in the previ-
ous works of adapting face detectors [7, 8, 9].

First of all, our approach is designed to avoid negative

transfer, i.e., the adapted detector is supposed to perform
better than or at least on par with the original one in the
target domain. It is worth noting that the negative transfer
frequently occurs in domain adaptation [10, 11, 12], being a
notoriously hard problem to solve. Moreover, this problem
is likely more severe in the face detector adaptation since
the room to improve the state-of-the-art face detectors is
actually very small — for the same reason, we argue that it
is vital for a face detector adaptation algorithm to explicitly
take account of the negative transfer caveat.

Besides, we do not rely on the source data to conduct the
adaptation, in a sharp contrast to most domain adaptation
methods for generic visual recognition [13, 14, 15]. Indeed,
the face detector adaptation is supposed to be done without

accessing the source data because the source datasets are
often extremely large and contain sensitive identity infor-
mation. We note that some existing works on face detector
adaptation [9] actually follow this protocol.

At last but not the least, we strive to prevent our ap-

proach from catastrophic forgetting or the so called interfer-
ence [16, 17, 18] with the source domain. In this sense, our
method is analogous to the well-known language model in-
terpolation [19] where one extends the old language model
by interpolating it with the one trained for a new domain
such that, in expectation, the resulting model performs well
on all old domains as well the new domain. As such, our
approach may also open an alternative direction for training
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(1) (2) (3)
Figure 1. From left to right are face detection results on the FDDB dataset with a state-of-the-art face detector (1) [1, 2], the same detector
but adapted by our method to the target domain (FDDB) with no data annotation (2), and with some data annotations (3).

the face detectors, namely, one can progressively improve
the face detectors by growing the number of new domains
without the need of keeping the images of the old domains.

Overview of our approach. We adapt a deep learning
based face detector by fine-tuning [20, 21] it using both la-
beled and unlabeled images of the target domain. In order
to avoid the negative transfer, we devise a loss function to
approximate the expected performance improvement from
the old detector to the new one. Since the hypothesis space
— the set of networks specified by the weights — is the
same for the two detectors, to minimize the loss does not
change the old detector unless it finds another network that
is expected to perform better than the old one in the tar-
get domain. While the expected performance gain of a net-
work is mainly estimated by labeled data, we also augment
it by deriving a closed form of the network’s worst possi-
ble performance degradation that can be estimated by the
unlabeled images of the target domain.

Our approach shares some spirits with AdaBoost [22]
and residual learning [23] in the sense that the cost function
of interest is a residual with respect to the source detector.
Arguably, the residual loss is best captured by a residual
detection score. Hence, we construct the target detector by
an offset to the source one. Jointly, the residual loss and
the offset detection score alleviate the urge of updating the
weights of the old detector, effectively reducing the effect
of catastrophic forgetting about the source domain.

The main contributions of this paper include both the
novel adaptation approach and the three key properties of
our method (cf. above) which we contend are missing from
the previous works and yet are supposed to be possessed

by a good face detector adaptation algorithm. We describe
the approach in Section 3 for supervised, semi-supervised,
and unsupervised settings after a review of the related works
(Section 2). We present extensive experimental studies in
Section 4 on two massively benchmarked face detectors.

2. Related work

Face detector adaptation. Jain and Learned-Miller use a
Gaussian process to update the low detection scores by as-
suming smoothness of the detections and that the detected
regions of high scores are more likely correct than the oth-
ers [7]. Wang et al. [8] and Li et al. [9] make similar as-
sumptions and yet use the regions of high detection scores
to re-train a new detector for the target domain using vo-
cabulary trees and probabilistic elastic part models, respec-
tively. When the target domain comprises video sequences,
the motion and tracking cues are usually very effective for
adapting the detectors [24, 25, 26, 27, 28].
Domain adaptation. There has been a rich line of works on
domain adaptation for generic visual recognition [13, 29],
such as object recognition [14], action recognition [30],
Webly-supervised learning [31, 32, 33], attribute detec-
tion [34], etc. They minimize the discrepancy between the
source and target by exploring the data from both domains.
However, the modern face detectors are often trained from
an extreme-scale training set, making it hard to carry the
source data to the adaptation stage. Domain adaptation in
the absence of the source data [35, 36] is the most rele-
vant to ours. Such methods use the source models either
for regularization [36] or to augment the features of the tar-
get data [35], while we consider a different problem, deep



face detectors, and refer to the source model in both the cost
function and the classifier of the target face detector.
Negative transfer is a notorious caveat in domain adap-
tation [37, 38, 39, 40]. Whereas existing works attempt to
solve this problem by defining intuitive statistical measures,
we directly tackle it with a novel cost function motivated by
the safe semi-supervised learning [41, 42, 43]. Nonetheless,
we devise the cost function in such a way of seamlessly in-
tegrating it with the deep models. Besides, we derive an
analytic form for the unsupervised adaptation, getting rid of
the cumbersome EM style optimization.
Catastrophic forgetting or interference [17, 44, 45, 18]
refers to that a pre-trained network cannot perform well
on the old tasks after it is fine-tuned for a new task. Re-
cent years witness an upsurge of interest in this problem,
including the exploitation of a local winner-takes-all activa-
tion function [46], dropout [16, 47], a knowledge distilla-
tion loss [48, 49, 50], pathway connections [51], and pro-
gressive networks [52]. We argue that it is probably easier
to deal with the catastrophic forgetting problem for domain
adaptation which can be seen as a special case of sequential
multi-task learning, due to that the source and target do-
mains share the same semantic labels. We leverage exactly
this idiosyncrasy to re-parameterize the target classifier as
the source classifier plus an offset.

3. Approach
A face detector usually consists of two components:

proposing candidate face regions from an image and clas-
sifying or scoring the regions. In this work, we adapt
deep convolutional neural networks based face detectors
to a given target domain by calibrating the second compo-
nent, i.e., the classifiers. For simplicity, we express a deep
face detector (e.g., [2]) as �(wTF (x; ✓)), where �(z) =
(1 + exp(�z))�1 is the sigmoid function indicating how
likely the region proposal x out of an image is a face. The
feature representations F (x; ✓) of this region is extracted
by a convolutional neural network, where ✓ collects all the
network parameters except the classifier weights w. Given
such a detector pre-trained in the source domain, our goal
is to adapt it to the target domain without using any source
data and that the adapted face detector �(ewTF (x; e✓)) is not
hurt by negative transfer or catastrophic forgetting.

In order to facilitate the adaptation to the target domain,
we need the access to some representative images of that
domain. We envision that a real use case of the face de-
tector adaptation entails many unlabeled target images and
yet only a small number or even none of labeled ones. Our
approach takes account of both scenarios.

3.1. Unsupervised face detector adaptation
We first consider the unsupervised face detector adaption

in which we have access to the proposed regions {xt}Tt=1

of the target domain but not their labels — the labels {yt 2
{0, 1}} are unknown. The objective is to obtain a high-
quality face detector �(ewTF (x; e✓)) for the target domain
using the pre-trained face detector �(wTF (x; ✓)) and the
unlabeled images of the target domain.

Our approach is originally motivated by the works on
safe semi-supervised learning [42, 41, 43], where the idea
is to trust the classifier pre-trained from the labeled data as
much as possible and to improve upon it only relatively. In
our context, the relative performance change for any data
point (xt, yt), yt 2 {0, 1}, of the target domain is

RESt(ew, e✓) := C
�
yt,�(ewTF (xt; e✓))

�

� C
�
yt,�(w

TF (xt; ✓))
�
, (1)

where C(y, ŷ) is a performance measure, which is imple-
mented as the multi-class classification accuracy in [41],
top-k precision, F-score, and area under the ROC curve
in [42], and log-likelihood in [43]. We instead use the cross-
entropy C(y, ŷ) = �y log ŷ� (1� y) log(1� ŷ) in this pa-
per. This choice seamlessly integrates it with the stochastic
training procedure for deep neural networks.

When there are no labels available in the target domain,
we find a robust target face detector that improves upon the
source one under the worst case scenario,

min
u, e✓

�

2
kuk22 + Et max

yt2{0,1}
RESt(w + u, e✓), (2)

where Et denotes the mean average 1
T

PT
t=1. We introduce

this notation to stress the fact that the expected performance
change from the old face detector to the adapted one can be
unbiasedly estimated by the mean average over the target
examples. We overload the notation yt a little and use the
fact that the groundtruth labels are binary. We also decom-
pose the classifier of the target detector by w+u, where w
are the parameters of the source detector’s classifier. This
decomposition is mainly for two reasons. First, we can in-
terpret Eq. (1) as the residual between the performances of
the two face detectors. Arguably, this quantity is accord-
ingly best captured by the residual detection score between
the two detectors. Hence, we re-parameterize the binary
classifier of the target face detector as ew = w + u. Sec-
ond, notice that the `2 regularization over the offset weights
u effectively constrains the classifier (ew) of the target face
detector around that (w) of the source detector. This pre-
vents the classifier from shifting around, taxing less than
otherwise over the network weights e✓ for the overall target
face detector to generate right predictions. Accordingly, the
resultant representations F (x; e✓) do not significantly devi-
ate from the original representations F (x; ✓) for the region
proposal x of either source or target domain. In other words,
the network does not catastrophically forget the knowledge
extracted from the source domain.



To fit problem (2) to the existing deep learning tools
(e.g., Tensorflow), we first note that there is an analyti-
cal solution to the inner maximization. Denote by at =
�((w + u)TF (xt; e✓)), āt = 1 � at, bt = �(wTF (xt; ✓)),
b̄t = 1� bt. We have the following,

max
yt2{0,1}

RESt(w + u, e✓), 8t (3)

, max
yt2{0,1}

�yt log at � (1� yt) log āt

+yt log bt + (1� yt) log b̄t
(4)

) yt = 1 if log at + log b̄t � log āt � log bt < 0

and yt = 0 otherwise.
(5)

Next, we substitute the above back to Eq. (2) which then
reduces to the canonical minimization problem and can be
conveniently solved by programming the cost function us-
ing some off-shelf deep learning tools.

Remarks. Eq. (2) is interesting in a few ways. The resid-
ual term indicates the relative loss by the target face detec-
tor with respect to the source detector. If, for the ease of
discussion, we assume the adapted face detector performs
about the same on all the target examples, then the residual
is large only when the source face detector does a good job
and correctly classifies the data point (xt, yt) — incurring
small cross-entropy loss. The data points with small cross-
entropy loss values by the source detector would be penal-
ized more, because of their relative large residuals, than the
other data in the optimization process. As a result, the new
face detector is enforced to imitate the source detector: if
a data point is correctly classified by the source detector’s
classifier, so should it be by the target detector.

In our experiments, we initialize the weights of the tar-
get face detector (e✓,w,u) by the source detector (✓,w,0).
Hence, after solving Eq. (2), the new detector gives rise to
no higher loss than the source face detector; the residuals
are either negative or zero. As a result, there is no nega-

tive transfer to the target domain in expectation. Moreover,
since we seek to minimize the residual loss for the worst
possible label assignments (cf. maxyt in Eq. (2)), the ob-
tained detector is not worse than the source one (i.e., no
negative transfer) for any label assignments to the region
proposals {xt}.

We note that the search space of the possible label as-
signments in Eq. (2) could be reduced by imposing similar
assumptions as in [7, 8, 9]. In particular, for the region pro-
posals whose prediction scores are high (low) by the source
face detector, we may assign 1’s (0’s) to them. The worst
case label assignment would then be applied only to the re-
gions of which the source detector is unsure. We leave this
to the future work.

3.2. Supervised face detector adaptation

In the supervised face detector adaptation, we are given
a small set of labeled face images of the target domain
{(xt, yt)}Tt=1 which is by itself insufficient for training a
high-quality face detector. Following Eq. (2), it is now nat-
ural to write out the objective function under the supervised
setting as below,

min
u, e✓

�

2
kuk22 + Et RESt(w + u, e✓). (6)

Note that the second cross-entropy term of Eq. (1) has no ac-
tual effect in the problem (6) — the minima of (u, e✓) remain
the same if we remove that term from Eq. (6). However, we
keep it there for the ease of presentation.

3.3. Semi-supervised face detector adaptation

Recall that we aim to adapt a pre-trained deep neural net-
work based face detector to the target domain that supplies
many unlabeled images and possibly some labeled ones. In-
deed, a real use case of the face detector adaptation likely
falls under this semi-supervised regime. In this case, we ini-
tialize the target detector by copying the weights from the
source detector, and then alternate between the supervised
and unsupervised adaptations in our training. In particular,
we update the target face detector twice in each iteration by
the gradients of eq. (6) and eq. (2), respectively.

4. Experiments
Our approach is model-agnostic, in the sense that it is

readily applicable to different types of face detectors. In
this section, we report extensive experimental results on two
massively benchmarked deep face detectors.

Face detectors and source domains. We experiment
with two deep learning based face detectors: Cas-
cadeCNN [53] and Faster-RCNN [1, 2]. The CascadeCNN
face detector is fast but extracts relatively weaker features
while the Faster-RCNN model runs slower due to its use of
a bigger network and more discriminative features.

In particular, CascadeCNN is trained by 25,000 faces
from the AFLW dataset [54]. The Faster-RCNN face de-
tector is trained using the training set of WIDER FACE
dataset [6], which provides 32,203 images and 393,703 la-
beled faces with a high degree of variability in scale, pose,
occlusion, etc. Per the comparison experiments in [2], the
open-sourced Faster-RCNN face detector model is superior
over 11 other top-performing detectors, all of which are
published after 2015. Finally, it is interesting to note that
both AFLW and WIDER FACE strive to cover a wide spec-
trum of face appearance variations, making them effective
sources to adapt from.



The target domain. The FDDB [55] dataset is a popular
face detection benchmark. It contains 2,854 images and a
total of 5,171 labeled faces. The images are randomly par-
titioned into 10 folds, of which we use the first six as our
training set, the seventh for validation, and the remaining
three for testing. We also evaluate our method on Caltech
Occluded Faces in the Wild (COFW) dataset [56]. Due to
limited space, we report the results on COFW in the supple-
mentary materials.

We claim that this choice — WIDER FACE or AFLW
as the source domain and FDDB as the target domain —
well represents the real application scenarios of face de-
tector adaptation. On the one hand, there is a large train-
ing set in the source domain for us to learn a generic face
detector that performs very well on different testing sets.
WIDER FACE relies on diverse data sources since it em-
ploys Google and Bing to acquire the images and AFLW is
a large-scale dataset collected from Flicker. On the other
hand, the target domain of FDDB images are relatively ho-
mogeneous, all sampled from the Yahoo! news website.
They are mostly professional photos sharing some common
idiosyncrasies.

Evaluation metrics. Both WIDER FACE and FDDB
datasets have defined and released the code for standard
evaluation metrics. The Precision-Recall curve is used by
WIDER FACE. FDDB employs the ROC curves of discrete
and continuous scores computed from a bipartite graph. We
use their code to evaluate our results in order to have direct
comparison with existing methods.

Competing methods. We compare our approach to the
following competing baselines 1.

• Source refers to the detectors trained from the original
training data and is the starting point for our method to
fine-tune the neural network parameters.

• Fine-tuning [20] simply fine-tunes the models using
the labeled data of the target domain, if they are avail-
able, following the same way the detectors are trained
in their source domains yet with smaller learning rates.

• GP [7] is a Gaussian process based unsupervised face
detector adaptation method which uses the regions of
high detection confidence — far from p = 0.5 — to
update the detection scores of the other regions.

• LWF [57] is a recent learning without forgetting
(LWF) method that augments the conventional cross-
entropy loss with the knowledge distillation loss [50]
such that the adapted face detector preserves the re-
sponse characteristics learned from the source domain.

• GDSDA [58] introduces the generalized distilla-
tion [59] into semi-supervised domain adaptation.

1Please refer to our supplementary materials for the training details of
the competing methods.

• HTL [36] is a representative hypothesis transfer
method that transfers knowledge from the source do-
main to the target by augmenting the feature represen-
tations of the target domain.

• Gradient Reversal [60] is an effective method for the
domain adaptation of deep neural networks. The main
idea is to learn representations to fail the classifier that
predicts from which domain a data point comes. Since
it has to access the source domain data, it is actually
not fair to compare this method with the other base-
lines or ours. Nonetheless, we still include its results
in the FDDB experiment for reference.

Some experimental details. We freeze the first eight con-
volutional layers of the Faster-RCNN model for all the ex-
periments. We fine-tune all parameters of the last 48-net de-
tection net in the CascadeCNN model. The validation set of
the target domain is used to determine the hyper-parameters
of all the methods. For Faster-RCNN, we use � = 1e-3
and the base learning rates 1e-4 and 5e-4 for the supervised
and unsupervised settings, respectively. Early stopping hap-
pens at the 5,000th iteration for the supervised experiment
and the 6,000th for the unsupervised. For CascadeCNN, we
set � = 2 and the base learning rate 1e-4 for both super-
vised and unsupervised settings. For the supervised case,
we fine-tune the model for 8,000 iterations with the base
learning rate and another 4,000 iterations with the learning
rate of 1e-5. For the unsupervised, we fine-tune the model
for 10,000 iterations and divide the base learning rate by 10
at the 7,000th iteration.

4.1. Comparison results
We compare our algorithm with other competing meth-

ods in this section. We evaluate the effectiveness of all the
methods by varying the number of labeled data from the tar-
get domain. More specifically, all the methods have access
to the 6 folds of training images for the adaptation, while
only N folds out of the 6 are labeled, N 2 {0, 1, 3, 5, 6}.
It is a fully unsupervised setting when N = 0, a semi-
supervised adaptation setting when 1  N  5, and a su-
pervised adaptation setting when N = 6. Note that not all
the baseline methods can handle all the settings.

Figure 2 and Figure 3 together show the ROC curves of
the discrete scores on FDDB for the (a) CascadeCNN de-
tector and (b) Faster-RCNN detector; the curves of the con-
tinuous scores are included in the supplementary materials.

When N = 0 (unsupervised adaptation), most of the
above-mentioned competing methods are not applicable any
more. As shown in Figure 2, in this challenging setting,
we observe GP cannot improve the pre-trained high-quality
face detectors while our method still brings extra gains.

When N = 6, all the training images of the target do-
main are labeled (supervised adaptation), we outperform
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Figure 2. Detection results comparison on FDDB under unsupervised (0 out of 6 folds labeled), semi-supervised (3 out of 6 folds labeled),
and supervised settings: our method generally outperforms all competing methods and does not suffer from negative transfer.
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Figure 3. More detection results under semi-supervised settings with N = {1, 5} out of 6 folds training images annotated. Combined with
Figure 2, our method can generally bring additional performance gains from additional annotated data.
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Figure 4. Ablation Studies about our approach on FDDB (supervised adaptation)



(a) Easy Set (b) Medium Set (c) Hard Set

Figure 5. Evaluation of catastrophic forgetting on source domain after supervised adaptation to target domain: detection results on valida-
tion set of WIDER FACE (Easy, Medium and Hard sets).

all the competing methods when adapting the CascadeCNN
detector. Even for the high-quality FasterRCNN detector,
our method gives rise to the largest improvement among all
the methods, including Gradient Reversal which takes ad-
vantage of the extra training data in the source domain.

Under the semi-supervised setting, which is more realis-
tic, our method achieves significant and consistent improve-
ment for both face detectors over the original Source detec-
tors. With the additional results shown in Figure 32, varying
N from 0 to 6, our method generally performs better and
better as more annotated data become available.

Overall, compared with Source models, our method
does not cause negative transfer, while all the other com-
peting methods suffer from negative transfer to some extent
excluding Gradient Reversal.

4.2. Ablation study
We investigate our proposed method by examining its

ablated versions. Recall that our approach is two-pronged.
On the one hand, it uses the residuals in the cost function
to explicitly prevent negative transfer in terms of the cross-
entropy loss. On the other hand, it re-parameterizes the clas-
sifier of the target detector by ew = w + u, where w is the
classifier weights of the source detector. Figure 4 shows that
both components contribute to the performance improve-
ment in our method. The ROC curve of the source detector
is included for reference. Clearly, we observe that the two
components mutually complement. Besides, removing the
residual loss (Ours w/o residual loss) hurts our method more
than directly optimizing the classifier weights ew without re-
parameterization (Ours w/o residual score).

4.3. The effect of no catastrophic forgetting
Finally, we evaluate the catastrophic forgetting in the

domain adaptation context. After adapting all competing
methods to the target domain (FDDB), we evaluate their
performance back to the source domain (WIDER Face). We

2The scale of the horizontal axis of the top-right panel differs from
the other panels of CascadeCNN. If we used the same scale as the others
instead, the fine-tuning results would be left out.

test on the validation set of the WIDER Face in our exper-
iment. Source refers to the one without adaptation and is
thus with no forgetting at all.

As shown in Figure 5, it is not surprising to see that
fine-tuning leads to severe forgetting about the source do-
main. This observation is well-aligned with prior arts. Af-
ter all, domain adaptation can be seen as a special case
of the sequential multi-task learning, under which previous
studies have shown that fine-tuning causes catastrophic for-
getting [16, 48]. Both LWF and our methods maintain a
reasonably good performance in the source domain com-
pared with the Source detector. LWF prevents forgetting
about the source domain using a knowledge distillation loss,
while we do so by the residual loss coupled with the resid-
ual detection score. Thanks to the `2 regularization over
the offset vector u in the classifier of the adapted detector,
there is no noticeable difference between the new classifier
(w + u) and that (w) of the source face detector. We test
both classifiers stacked over the network of the adapted de-
tector and find that their corresponding curves almost over-
lap, as shown in Figure 5.

5. Conclusion
In this paper, we revisit the face detector adaptation prob-

lem under the new context of deep learning based face de-
tectors. The approach we proposed offers three key prop-
erties which we contend are missing or not explicitly dis-
cussed in the existing face detector adaptation works. In
short, the adaptation of face detectors is supposed to be exe-
cuted in the absence of the source domain’s data, with little
negative transfer, and incurring no catastrophic forgetting
about the source domain. Our approach explicitly accounts
for all the requirements by two residuals: a residual loss to
avoid negative transfer and a residual classifier to alleviate
catastrophic forgetting. We demonstrated the effectiveness
of our approach by adapting two face detectors from two
large-scale source datasets to two smaller target datasets.
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