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Abstract

Since the first shape-from-shading technique was
developed by Horn in the early 1970s, different ap-
proaches have been continuously emerging in the past
two decades. Some of them improve existing tech-
niques, while others are completely new approaches.
However, there is no literature on the comparison and
performance analysis of these techniques. This is ex-
actly what is addressed in this paper.

1 Introduction

Shape-from-shading (SFS) deals with the recovery
of shape from a gradual variation of shading in the im-
age. Artists have long exploited lighting and shading
to convey vivid illusions of depth in paintings. In SFS,
it is important to study how the images are formed.
A simple model of image formation is the Lambertian
model. According to the Lambertian model, the gray
level at a pixel in the image depends on the light source
location, and the surface normal. In SFS, given a gray
level image, the aim is to recover the light source and
a surface normal at each pixel in the image.

In this paper, a total of eight well-known SF'S algo-
rithms are implemented and compared in terms of tim-
ing and accuracy, in order to analyze the advantages
and disadvantages of these approaches. The experi-
ments were performed on various images with differ-
ent light sources. The performance of the algorithms
was analyzed using depth error, surface gradient error
and CPU timing. The comparison showed that all of
them have some limitations. None of the algorithms
has consistent performance for all images, since they
work well for certain images, but perform poorly for
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others. In general, global approaches are more robust,
while local approaches are faster.

2 Shape from Shading

SFS techniques can be divided into two groups:
Global approaches and local approaches. Global ap-
proaches can be further divided into global minimiza-
tion approaches and global propagation approaches.
Global minimization approaches obtain the solution
by minimizing an energy function. Global propa-
gation approaches propagate the shape information
from known surface points (e.g., singular points) to
the whole image. Local approaches derive shape only
from the intensity information of the surface points in
a small neighborhood.

One of the earlier global minimization approaches
was by Tkeuchi and Horn [10]. Since each surface point
has two unknowns for the surface normal, and each
pixel in the image provides one gray value, therefore
image gray levels alone are not enough to recover the
shape. To overcome this, Ikeuchi and Horn introduced
two constraints: The brightness constraint and the
smoothness constraint. The brightness constraint re-
quires that the reconstructed shape produce the same
brightness as the input image at each surface point,
while the smoothness constraint forces the gradient of
the surface to change smoothly. The shape was com-
puted by minimizing an energy function which consists
of the above two constraints. Also using these same
constraints, Brooks and Horn (B&H) [2] minimized
the same energy function, in terms of surface normal
instead of surface gradient. Frankot and Chellappa [5]
enforced the integrability in B&H’s algorithm in or-
der to recover integrable surfaces (surfaces for which
Zgy = Zye). Surface slope estimates from the iterative
scheme were expressed in terms of a linear combina-
tion of a finite set of orthogonal Fourier basis func-
tions. The enforcement of integrability was done by
projecting the nonintegrable surface slope estimates
onto the nearest (in terms of distance) integrable sur-



face slopes. This projection was fulfilled by finding
the closest set of coefficients which satisfy integrabil-
ity in the linear combination. Their results showed
improvements in both accuracy and efficiency. Later,
Horn [8] also replaced the smoothness constraint in
his approach with an integrability constraint. The
major problem with Horn’s method is its slow con-
vergence. Szeliski [20] sped it up using a hierarchical
basis pre-conditioned conjugate gradient descent al-
gorithm. Based on the geometrical interpretation of
B&H’s algorithm, Vega and Yang [22] applied heuris-
tics to the variational approach so that the stability
of B&H’s algorithm was improved.

Instead of the smoothness constraint, Zheng and
Chellappa (Z&C) [24] introduced an intensity gradi-
ent constraint, which specifies that the intensity gra-
dients of the reconstructed image and the input image
are close to each other in both the z and y direc-
tions. Leclerc and Bobick (L&B) [11] solved directly
for depth by using a discrete formulation and employ-
ing a conjugate gradient technique. The brightness
constraint and smoothness constraint were applied to
ensure convergence, and a stereo depth map was used
as an initial estimate. Recently, Lee and Kuo (L&K)
[13] proposed an approach to recover depth using the
brightness and the smoothness constraint. They ap-
proximated surfaces by a union of triangular patches.
Unlike L&B’s method, this approach did not require
the depth from stereo as an initial value.

All of the above approaches deal with a single
smooth surface. Malik and Maydan [14] developed
the first solution for piecewise smooth surfaces. They
combined the line drawing and shading constraints in
an energy function, and recovered both surface nor-
mal and line labeling through the minimization of the
energy function.

The first global propagation approach was the char-
acteristic strip technique by Horn [7]. A characteris-
tic strip is a line in the image along which the sur-
face depth and orientation can be computed if these
quantities are known at the starting point of the line.
Horn’s method constructs initial surface curves around
the neighborhoods of singular points (singular points
are the points with maximum intensity) using a spher-
ical approximation. The shape information is prop-
agated simultaneously along the characteristic strips
outwards, assuming no crossover of adjacent strips.
The direction of characteristic strips are identified as
the direction of intensity gradients. In order to get a
dense shape map, new strips have to be interpolated
when neighboring strips separate too much.

Oliensis [15] observed that the smoothness con-

straint is only needed at the boundaries if we have
initial values at the singular points. Therefore, the
surface should be reconstructed from the interior of
the image outward, instead of from the boundary in-
ward. Based on this idea, Dupuis and Oliensis (D&O)
[4, 16] formulated SFS as an optimal control problem,
and solved it using numerical methods. The proof of
equivalence between the optimal control representa-
tion and SFS was illustrated. Their initial algorithm
[4] required priori depth information for all the sin-
gular points. A later extension [16] could determine
this information automatically by assuming twice dif-
ferentiable depth, isolated singular points and nonzero
curvature at singular points. Following the main idea
of D&O’s approach, Bichsel and Pentland (B&P) [1]
proposed a minimum downhill approach for SF'S which
converged in less than ten iterations.

Among the local approaches, two are by Pentland,
one by Lee and Rosenfeld (L&R), and one by Tsai
and Shah(T&S). Pentland [17] recovered shape infor-
mation from the intensity, and its first and second
derivatives. He used the assumption that the surface
is locally spherical at each point. Under the same
spherical assumption, L&R [12] computed the slant
and tilt of the surface in the light source coordinate
system through the first derivative of the intensity.
A later approach by Pentland [18] used the linear ap-
proximation of the reflectance function in terms of the
surface gradient, and applied a Fourier transform to
the linear function to get a closed form solution for the
depth at each point. Similar to Pentland’s method,
T&S [21] applied the discrete approximation of the
gradient first, then employed the linear approximation
of the reflectance function in terms of the depth di-
rectly. Their algorithm iteratively recovered the depth
at each point without using any global information.

3 Experimental Images

It is very difficult to choose good test images for
SFS algorithms. A good test image must match the
assumptions of the algorithms, e.g. Lambertian re-
flectance model, constant albedo value, and infinite
point source illumination. In this section, we describe
the images chosen to test the SFS algorithms.

The synthetic images were generated using true
depth maps, or range data obtained from a laser
range finder. We simply computed the surface gra-
dient (p = %, q = g_z) using the forward discrete
approximation of the depth, Z, and generated shaded
images using the Lambertian reflectance model. There
are at least two advantages of using synthetic images.
First, we can generate shaded images with different



light source directions for the same surface. Second,
with the true depth information, we can compute the
error and compare the performance.

We used five synthetic surfaces: Sphere, Syn-
thetic Vase, Mozart, Penny, and Sombrero. The
true depth maps of the first two surfaces, Sphere and
Vase, were generated mathematically.

Five real images were also used. Their light source
directions, S, given below, either were estimated by
the L&R method or provided with the images:

e Lenna: S = (1.5,0.866,1).
e Mannequin: S = (—0.345,0.345,0.875).

Pepper: S = (0.766,0.642,1).

David: S = (-0.707,0.707, 1).

Vase: S =(—0.939,1.867,1.0).

4 Experimental Results

We implemented eight of the twelve algorithms dis-
cussed in this paper. Szeliski’s algorithm was not im-
plemented since it is a faster version of B&H’s algo-
rithm. We did not implement Ikeuchi and Horn’s al-
gorithm because it resembles B&H’s. Since B&P’s
algorithm is a simplification of Dupuis and Oliensis’s,
we implemented B&P’s algorithm only.

Below we discuss some important points about the
implementation of each algorithm, and analyze the re-
sults using 3-D plots of the depth maps. Due to space
limitation, the 3-D plots are not included here.

4.1 Brooks and Horn (B&H)

B&H’s approach requires occluding boundary in-
formation for the input image. Their algorithm com-
putes the shape in terms of surface normals. In order
to reconstruct the surface of the object, an integration
step must be applied to compute the depth. However,
neither finding the occluding boundary from an im-
age nor integrating the surface normals are easy tasks.
Since the primary objective of this survey paper is to
study SFS algorithms, we only tested two synthetic
images, sphere and synthetic vase with light source
(0,0,1), for which the occluding boundary informa-
tion was available. The results of the reconstructed
gray level images from the computed shape closely re-
semble the input images. A well-known problem of
B&H’s method is the slow convergence rate. In our
implementation, we forced the algorithm to terminate
when the error in the energy function starts to in-
crease, or the error is less than some threshold. It

took at least 400 iterations to achieve convergence for
our test images.

4.2 Zheng and Chellappa (Z&C)

The implementation of Z&C’s method is very
straightforward. We used the forward difference ap-
proximation to compute the partial derivatives. For
the border points, where the forward approximation
could not be applied, we switched to the backward
difference approximation for the first order partial
derivatives and set the second order partial deriva-
tives to zero. This method is very robust, since no
parameters have to be tuned.

Our implementation works well for most of the real
images, except for Mannequin and Vase. This is due
to the dark background in these two images, which
violates the uniform albedo assumption used in their
algorithm. The basic shape for Lenna and Pepper are
recovered with enough details. However, some errors
are observed around the mouth and on the cheeks in
Lenna. Their method also has a problem with light
source (0,0, 1), which will zero out most of the terms
in the approximation equation of the iterative method.
In order to get reasonable results for the images with
light source (0,0, 1), we used (0.01,0.01, 1) instead as
the light source direction. Their results also show
some error along the light source direction. We think
this is due to the use of the intensity gradient con-
straint instead of the smoothness constraint used in
their energy function, and the discrete approximation
used for computing the partial derivatives.

4.3 Leclerc and Bobick (L&B)

L&B’s approach was implemented without hierar-
chical structure, using the conjugate gradient rou-
tine. On the occluding boundary, the discrete ap-
proximations for the first order partial derivatives were
changed from the central difference approximation to
either the forward approximation or the backward ap-
proximation, and the second order partial derivatives
were set to zero. Their approach requires the output
from stereo as the initial estimate for the conjugate
gradient method. Since we do not have stereo pairs for
the test images, we used the true depth with 5% uni-
form random noise as the initial estimate, and tested
the algorithm on synthetic images only.

Their results depend heavily on the initial estimate
and the initial weight of the smoothness term, A. We
observed that the algorithm works well on two sets of
images, Sphere and Mozart, even when the light source
is from the side. The initial value of the smoothness



term was 0.25 for both sets of images, which was grad-
ually reduced to 0.01 by a factor of 0.7. The maximum
number of iterations for the conjugate gradient routine
was set to 200. This method is basically a combina-
tion of stereo and shape from shading. It is hard to
compare the performance of this method with other
SFS methods. Because it heavily relies on the initial
estimate from stereo, one has to take into account the
computation and accuracy involved in stereo as well.

4.4 Lee and Kuo (L&K)

L&K’s algorithm was implemented using the V-
cycle multigrid scheme to solve the linear system, as
reported in their paper. We used Gauss-Seidel relax-
ation as the smoothing operator, and as the exact
solver for the finest grid. Full-weighting restriction
was applied to transfer the residual from finer grids to
coarser grids, and bi-linear interpolation was applied
to make the prolongation from the coarser grid to finer
grids. The same stencil was used for the smoothness
term as given in their paper. The nodal points in the
finest grids were chosen to be the image pixels. Suc-
cessive linearizations were done through a maximum
of 10 successive iterations, and the number of V-cycles
was set to 10 for the first iteration, 2 for the second, 1
for the rest. The initial values for depths of the finest
grids, and corrections for the coarser grids, were all ze-
ros. Since the algorithm does not work for light source
direction (0,0, 1), we used (0.0001,0.0001, 1.0) as the
input light source direction instead. This light source
approximation is different from the (0.01,0.01, 1) used
in Z&(C’s algorithm. The implementation of Z&C’s al-
gorithm does not work with (0.0001,0.0001, 1.0).

For most of the images, the smoothing factor was
2000, and the level of grids was computed by L =
log(M) — 1, where M is the size of the image. How-
ever, to eliminate the effect of over-smoothing, we used
200 as the smoothing factor for Sombrero and David,
and we ran only 1 iteration for David, Mannequin and
Penny. The depth maps, after the first iteration, con-
tain more detail but have a smaller range. After 10
iterations, details are smoothed out, but the depth
range is wider. This means that more iterations will
provide more low frequency information, which over-
takes the high frequency information from the initial
iterations.

The algorithm works well, even when the light
source is from the side, except in the cases of Sphere
and Vase which create the most self-shadows. The
recovered surfaces are well outlined, but lack details
and have a tendency to be over-smoothed. Although
different smoothing factors can be used for different

images in order to get the best results, small changes
in the smoothing factor will not affect the results very
much.

4.5 Bichsel and Pentland (B&P)

In the implementation of B&P’s algorithm the ini-
tial depth values for the singular points were assigned
a fixed positive value, and the depth values for the
other points were initialized a large negative value.
Instead of computing the distance to the light source,
only the local surface height was computed and max-
imized, in order to select the minimum downhill di-
rection. This was based on the fact that the distance
to the light source is a monotonically increasing func-
tion of the height when the angle between the light
source direction and the optical axis (z-axis here) is
less than 90 degrees. Height values were updated with
a Gauss-Seidel iterative scheme and the convergence
was accelerated by altering the direction of the pass
at each iteration.

The algorithm provides the best results for the cases
when the light source is on the side; even the sphere
can be recovered very well when the light source comes
from the side. However, the algorithm does not give
good results for real images except for Pepper. This,
we think, is due to the inaccuracy of the initial singular
points, and noise in the real images. The algorithm
is very fast; usually only 5 iterations are required to
provide reasonable results.

4.6 Lee and Rosenfeld (L&R)

Their method estimates the depth of an image using
local spherical assumption and intensity derivatives.
This makes the algorithm unsuitable for non-spherical
surfaces, and very sensitive to noise, which is observed
in the depth maps obtained for the real images and
some synthetic images, such as Penny or Mozart. The
intensity of the real images varies slightly, causing the
depth estimation to falter, while the synthetic images
yield good depth maps, due to the smooth surfaces.

4.7 Pentland (P)

Pentland’s algorithm [18] produces good results on
most surfaces that change linearly, even if the sur-
face has a naturally varying surface such as a person’s
face. However, this algorithm falls apart when the sur-
face changes in a non-linear manner; this is clearly ob-
served from the results of Sphere. For real images, the
algorithm produces the best results except for Vase.
The details of Mannequin are not recovered and in-
accuracy is high around the eye regions in David and
Lenna.



4.8 Tsai and Shah (T&S)

Their method works very well on smooth objects
with the light source close to the viewing direction.
However, it is sensitive to the intensity noise, such as
the black hole on the nose of Mozart image or the
shadow areas. The problem of the convex/concave
ambiguity is clearly shown in the result for the Som-
brero image with light source (0,0, 1). The results for
real images are good for Mannequin, David and Vase,
but noisy for Lenna and Pepper, especially in the top
and bottom regions of Pepper, and the nose, eyes, and
hat regions of Lenna. These are regions where there
are sudden intensity changes, which cause roughness
in the depth estimate due to the relationship between
depth and intensity.

5 Error Analysis

In this section, we will quantitatively analyse the
results for the synthetic images, for which the true
depth maps are available, by using the following error
measures:

e Mean and standard deviation of depth er-
ror (Tables 1-2). For each algorithm, we com-
pared the recovered depth with the true depth
from the range image. The output depth from
each algorithm was first normalized according to
the range data, then compared with the range
data for mean and standard deviation of depth
EeITOor.

e Mean gradient error (Table 3). This indicates
the error in the surface orientation. The stan-
dard deviation is not used here, since it does not
have any physical meaning. The forward discrete
approximation was used to compute the gradient
from the recovered depth.

¢ Difference images of the absolute depth er-
ror which provide the depth error distribution
over the images to show the dependence of error
on the underlying surface structure and image lo-
cation. The depth error images were obtained by
first calculating the absolute depth error at each
point, then rescaling it using the minimum and
the maximum value over the whole image. The
regions which have the least depth error and the
regions which have the most depth error can be
easily identified from these images.

e The histograms of the percentage depth er-
ror which show percentages of depth errors with
respect to true depths and distributions of these

percentages. The Y-axis of each plot represents
the number of pixels. The X-axis of each plot
represents the percentage depth error which was
computed pixel by pixel using the following for-
mula:

[true depth — estimated depth|

100%.
true depth %

There are some pixels with more than 100% er-
ror. This may happen at the points in the shadow
areas, the points with convex/concave ambiguity,
or at the object boundaries. All pixels which have
more than 100% error were plotted as 101% error.

For those algorithms which compute the surface
gradient together with the depth, we still use the dis-
crete approximation of the depth to calculate the sur-
face gradient in the gradient error table, in order to
be consistent with the other algorithms. Due to space
limitation, the difference images and histograms are
not included here.

From Table 1 (depth error), L&R’s method gives
the best results for the sphere; this is due to the
spherical assumption used in the algorithm. However,
it provides poor results for the real images. T&S’s
approach produces very good results for Sphere with
light source (0,0, 1), but not for images with the light
source from the side. This is due to the linearization of
the reflectance function in terms of depth. When the
intensity cannot globally reflect the depth informa-
tion, the algorithm falls apart. Pentland’s approach
also has this problem when the surface shape changes
nonlinearly, as with spherical surfaces. L&B’s conju-
gate gradient approach produces the least depth error
since the initial depth, used in our tests, is close to
the ground truth. On the average, B&P’s minimum
downhill approach gives good results even when the
light source is from the side; and the results of L&K’s
approach are close to the results of Z&C’s approach.

The standard deviation of depth (Table 2) agrees
with the average depth error in the sense that the one
with smaller average error would have smaller stan-
dard deviation in most cases.

From the gradient error (table 3), we find that Pent-
land’s approach gives the best results for most test
images, except for Sphere and Sombrero images with
light source direction (0,0, 1). This suggests that lo-
cal intensity information is sufficient for a good shape
estimation.

From these three error tables, we conclude that
there is no strict ordering for the accuracy of the al-
gorithms, however, overall L&B’s is the best, since
it uses good initial estimates. L&K’s places second,



especially in terms of the gradient error. Z&C’s al-
gorithm takes third place, followed by B&P’s, Pent-
land’s, T&S’s, and finally L&R’s.

From the difference images, we observe that L&B’s
algorithm is still the best, most of errors occur at the
boundaries of the objects. Among the remaining six
algorithms which do not require accurate initial val-
ues, L&R’s algorithm only has errors along half of
the object boundaries for spheres with light sources
(5,5,7) and (1,0,1). B&P’s algorithm also has low
error distribution for these two images. The error is
also very small in the center of all three vase images
for B&P’s, and L&R’s algorithms; and in the center
of vase image with light source (0,0, 1) for T&S’s al-
gorithm. For the Mozart images with light source
(5,5,7)and (1,0, 1), L&K’s, and B&P’s methods have
the lowest error at the face areas. For Penny and
Sombrero images, the errors for all six algorithms are
equally distributed over the whole image.

The histograms show that L&B’s algorithm gives
the best results, since we used the true depth with
+5% uniform random noise as the initial estimate.
None of the other algorithms give good results for
Penny and Sombrero images, since there are large
number of pixels with more than 100% error in the
histograms. For Mozart image, L&K’s algorithm gives
the best results even for the image with light source
from the side. L&R’s, and B&P’s algorithms give bet-

ter results for Sphere and Vase images.

6 Timing

CPU timing was computed on a SUN SPARC 4.
The disk /O time was not included, and only the com-
putational time was considered. Due to space limita-
tion, the CPU timing table is not included either. The
results show that the three local approaches are signif-
icantly faster than the global approaches; their times
depend only on the size of the input image. For the
global approaches, time not only depends on the size
of the input image, but also varies from scene to scene.
Among the global approaches, B&P’s algorithm is the
most efficient. L&B’s algorithm, without hierarchical
structure, takes the most time. L&K’s algorithm is
also time consuming, since it involves multigrid itera-
tions. Z&C’s algorithm is reasonably fast with pyra-
mid implementation. The order of the algorithms ac-
cording to CPU time, from the slowest to the fastest,
is L&B’s algorithm, L&K’s algorithm (in most cases,
L&B’s algorithm is slower than L&K’s), then followed
by Z&C’s, B&P’s, Pentland’s, L&R’s, and T&S.

7 Conclusions and Future Research

In this paper, we analysed a total of twelve existing
algorithms and grouped them into three different cat-
egories: global minimization techniques, global propa-
gation techniques, and local techniques, These group-
ings are based on the conceptual differences among the
algorithms. Eight representatives out of the twelve
were implemented in order to compare their perfor-
mance in terms of accuracy and time.

Overall, the global minimization techniques are
more robust to different scenes and noise. Among
them, L&B’s algorithm yields very good results due to
the use of good initial estimates from stereo. L&K’s al-
gorithm produces the second best results. The global
propagation techniques provide almost perfect results
if the estimates for singular points are accurate. The
local approaches tend to have more error for real, noisy
images, especially for L&R’s approach which is based
on intensity derivatives and the spherical assumption.
The conclusions from the timing is that the local ap-
proaches are faster than the global approaches, and
the global propagation approaches are a lot faster than
the global minimization approaches. The execution
times for local appraoches depend only on the size
of the input image. While for the global approaches,
time not only depends on the size of the input image,
but also varies from scene to scene.

There are several possible directions for future re-
search. As we noted, reflectance models used in SFS
are too simplistic; recently, more sophisticated mod-
els have been proposed. This not only includes more
accurate models for Lambertian, specular, and hy-
brid reflectance, but also includes replacing the as-
sumption of orthographic projection with perspective
projection, which is a more realistic model of cam-
eras. The traditional simplification of lighting condi-
tions, assuming an infinite point light source, can also
be eliminated by either assuming a non-infinite point
source, or simulating lighting conditions using a set of
point sources. This trend will continue. SFS methods
employing more sophisticated models will be devel-
oped to provide more accurate, and realistic, results.

Another direction is the combination of shading
with other cues. One can use results of stereo or range
data to improve results of SFS (such as [11] and [19]),
or use results of SFS or range data to improve results
of stereo. A different approach is to directly combine
results from shading and stereo (such as [3]).

Multiple images can also be employed by moving
either the viewer (as in [6]) or the light source (as in
[23]) in order to successively refine the shape. The
successive refinement can improve the quality of esti-



mates by combining estimates between image frames,
and reduce the computation time since the estimates
from the previous frame can be used as the initial val-
ues for the next frame, which may be closer to the
correct solution. By using successive refinement, the
process can be easily started at any frame, stopped at
any frame, and restarted if new frames become avail-
able. The advantage of moving the light source over
moving the viewer is the elimination of the mapping
of the depth map (warping) between image frames.
One problem with SFS is that the shape informa-
tion in the shadow areas is not recovered, since shadow
areas do not provide enough intensity information.
This can be solved if we make use of the informa-
tion available from shape-from-shadow (shape-from-
darkness) and combine it with the results from SFS.
The depth values on the shadow boundaries from SFS
can be used either as the initial values for shape-from-
shadow, or as constraints for the shape-from-shadow
algorithm. In the case of multiple image frames, the
information recovered from shadow in the previous
frame can also be used for SFS in the next frame.
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Table 1: Average 7 error for synthetic images.

Images

Methods Sphere Vase Mozart Penny Sombrero

S1] s2] 83 S1] s2] S3 S1] s2] 83 S1[S2] s3 S1] s2] 83
Zheng & Chellappa 10.3 | 10.9 | 26.6 8.5 | 12.3 8.5 15.1 | 16.6 | 10.5 7.2 | 4.8 | 4.8 7.0 6.6 5.6
Leclerc & Bobick 2.1 3.6 3.7 1.8 3.0 *k 1.7 4.7 5.5 2.2 | ¥x | KX 1.2 *k **
Lee & Kuo 16.0 | 10.3 | 10.9 10.0 7.5 7.9 16.0 8.8 | 114 7.6 | 4.7 | 44 6.9 5.4 7.7
Bichsel & Pentland 0.7 9.4 5.2 10.0 8.8 7.9 20.5 | 17.8 7.7 12.1 | 8.0 | 8.4 13.7 | 11.0 6.4
Lee & Rosenfeld 0.8 3.8 4.3 8.1 8.4 | 11.0 18.3 | 17.8 | 17.6 11.3 | 8.2 | 7.9 11.7 8.8 8.7
Pentland 17.3 | 20.1 | 14.0 11.2 | 13.6 9.0 15.7 | 22.5 | 19.7 74 | 6.4 | 6.6 7.3 7.6 7.3
Tsai & Shah 0.1 | 16.4 | 16.4 8.3 | 11.8 | 12.7 18.5 | 20.1 | 20.0 11.0 | 8.5 | 8.6 12.6 | 10.2 | 10.1

Table 2: Standard deviation of Z error for synthetic images.

Images

Methods Sphere Vase Mozart Penny Sombrero

S1] s2] 83 S1 ] s2] S3 S1 | S2] s3 S1] s2] S3 S1 | S2] s3
Zheng & Chellappa 13.1 | 159 | 174 11.1 | 17.0 13.9 18.4 | 17.2 | 15.9 13.5 7.4 5.5 11.9 | 10.5 | 10.4
Leclerc & Bobick 2.4 5.0 5.1 2.9 4.1 * K 2.1 7.1 7.7 3.1 * K * K 2.4 * K * K
Lee & Kuo 15.9 | 18.9 | 20.6 13.2 | 12.9 | 15.39 19.2 | 159 | 22.1 14.0 7.3 6.6 12.2 9.2 | 15.0
Bichsel €& Pentland 1.2 | 134 9.0 13.8 | 13.6 16.9 37.4 | 21.9 | 14.6 23.4 | 11.7 | 16.6 26.6 | 20.3 | 12.5
Lee & Rosenfeld 0.4 5.8 6.6 14.6 | 16.4 22.3 33.0 | 29.8 | 30.3 21.2 | 15.2 | 14.8 22.5 | 17.0 | 16.9
Pentland 17.5 | 18.3 | 19.3 12.6 | 18.9 11.1 18.2 | 24.2 | 20.5 12.2 | 10.6 | 11.1 12.2 | 12.6 | 12.6
Tsai & Shah 0.1 { 20.9 | 21.0 15.0 | 16.9 19.7 33.3 | 30.7 | 30.5 20.6 | 154 | 15.6 24.3 | 18.4 | 18.4

Table 3: Average p-q error for synthetic images.

Images

Methods Sphere Vase Mozart Penny Sombrero

S1 | S2 | S3 S1 | S2 | S3 S1 | S2 | S3 S1 | S2 | S3 S1 | S2 | S3
Zheng & Chellappa 2.8 1.6 1.7 2.2 1.5 1.3 2.3 1.1 1.1 1.3 1.1 1.0 1.3 1.0 0.7
Leclerc & Bobick 0.8 4.5 4.4 1.2 3.1 ** 0.5 8.4 9.5 1.2 ** ** 0.6 ** **
Lee & Kuo 2.3 1.4 1.4 1.6 0.9 0.9 1.7 0.7 0.6 1.3 1.1 1.0 0.8 0.7 0.6
Bichsel €& Pentland 0.3 5.8 2.5 2.7 4.9 1.9 3.1 8.1 1.9 1.7 4.4 1.1 1.2 3.3 0.5
Lee & Rosenfeld 0.1 6.5 6.7 1.3 3.3 2.2 6.8 | 13.7 | 12.8 4.3 8.4 7.0 1.3 2.5 2.3
Pentland 2.2 2.9 4.7 1.8 1.3 1.2 1.3 1.3 1.3 1.3 1.3 1.2 1.1 1.1 1.0
Tsai & Shah 0.1 0.9 0.9 1.4 1.4 2.6 6.7 5.5 5.6 4.2 5.2 4.8 1.2 1.5 1.5

S1, S2, and S3 stand for three different light sources, (0,0, 1), (5,5,7), and (1,0,1), and “*.*’ stands for unavailable data.



