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Abstract—Motion in depth and/or zooming cause defocus blur. We
show how the defocus blur in an image can be recovered
simultaneously with affine motion. We introduce the theory, develop a
solution method and demonstrate the validity of the theory and the
solution by conducting experiments with real scenery.
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1 INTRODUCTION

THERE are at least two situations in practical computer vision
where displacement of a point in an image is accompanied by a
defocus blur. Firstly, when a camera of fixed focal length moves
along the line of sight some scene points move into focus and oth-
ers get blurred due to defocus. We term this situation defocussed
motion. The second situation arises when the camera zooms into a
scene without an auto-focus mechanism (or with a slow one).
Zooming has recently begun to be explored as a means to obtain
depth [7], [5], [9], to compute the real center of the image [5] and to
generally capture greater detail of a scene without moving. We
term this situation defocussed zoom.

Measuring the level of blur/deblur due to defocus/focus
caused by either camera zoom or camera motion along the optical
axis will achieve two effects. Firstly, it will allow the correct optical
flow to be computed despite the blur/deblur, and secondly it can
be used to obtain initial estimates of depth for structure-from-
motion and structure-from-zoom algorithms. These initial esti-
mates of depth would be computed using shape from defo-
cus/focus methods.

Work on shape from focusing and shape from defocus [11], [14],
[2], [16], [10] involving at least two images taken with different cam-
era parameters, has been conducted. However, these algorithms
measure the level of blur (and compute depth) but do not compute
blur in the presence of motion of the features in the image.

Older techniques for optical flow computation have been ana-
lyzed and compared [1]. Recent techniques include those which
handle large affine transformations [15], [8] and those which ex-
tend the affine model to include second order transformations of
moving planar patches [4]. Despite all these works, illumination
changes, photometric motion effects, and image features moving
in and out of focus when scene elements move in depth, are phe-
nomena that have not been addressed satisfactorily. Here, we ad-
dress the changes in defocus due to motion.

This paper computes both the blur level and affine parameters
simultaneously from a pair of input images. We introduce the
theoretical model of blur and affine motion; then we propose an
iterative solution method. We report experimental results with real
scenery. We are not concerned with motion blur since the under-
lying model is that of a stop-and-shoot sequence.

2 THEORETICAL FORMULATION

In this section, we develop the model and derive an equation re-
lating the unknown parameters, namely the affine transformation
and the level of blur.

It has been shown [6] that optical flow can be approximated by
an affine transformation in the case of negligible out-of-plane ro-
tations and in the case of planar patches. The theoretical formula-
tion has been developed to handle scenes consisting of large, pla-
nar patches within which the affine transform model for optical
flow is appropriate. Assume we have two images I1 and I2 where
the second image is obtained after a large camera motion consist-
ing of zooming in or out and rotation in the image plane. Even
with improved technology there is a mechanical limit to the speed
with which a camera can refocus itself. Hence, the large changes in
depth cause the camera to get out of focus and it is appropriate to
include defocus blur in the model of transformation that describes
the geometric changes undergone between the two images. In the
formulation below, we develop a linear relationship amongst the
unknowns, namely the parameters of the affine transformation as
well as the change in the level of blur between the two images. The
linear approximation is valid if the unknowns take small values,
and hence an iterative technique is developed to correctly recover
large unknown parameters.

For the sake of clarity in the development of the formulation,
we will first assume only a four-parameter affine transformation
A, where
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Here, the matrix B is composed of small elements which indi-
cate the difference of A from the identity matrix. The formulation
is then extended to the case of the general six-parameter affine
transform which includes image translation as well. In this case
the optical flow [u, v]T in that case can be expressed as
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T= ,  represents the underlying coordinate axes and
r
T T Tx y

T
= ,  represents the pure translation component of optical

flow.

2.1 Four-Parameter Affine Transformation

Let image Ia be an affinely transformed version of image I1 where
the transformation can be represented by the four-parameter ma-
trix A. Since deforming an image is equivalent to deforming the
underlying coordinate axes, we can write I r I ra1

r r1 6 1 6= A . Man-

matha [8] has shown that convolution of the first image I1 with a
Gaussian (G) is equivalent to the convolution of the second image

Ia with a Gaussian which has been deformed by the same trans-
formation A. That is,

I r G r I r G ra1
2 2r r r r1 6 4 9 1 6 4 9⊗ = ⊗, ,σ σA A AAT

where σ is any arbitrarily chosen value for standard deviation,

⊗ denotes convolution, the ordinary Gaussian G r
r
,σ 24 9  is
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and the generalized Gaussian G rA AATr
,σ 24 9  (i.e., the Gaussian

deformed by an affine transformation A) is
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To solve for the affine parameters in A an overdetermined system
can be obtained by convolving at several points 

r
li  in both images

[8] to get

I r G r l dr I r G r l d ri a i1
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where li is any image point, G′ is the derivative of G w.r.t. the im-
age coordinates. Equation (2) is Taylor’s first order expansion of

G r liA AATr r
−4 94 9,σ 2  about the point A

r r
r li−4 9 .

Equation (2) cannot be solved for the unknown A since G on
the R.H.S. can’t be evaluated. Hence we rewrite it in a linear form
of the unknown B. To achieve this we express the generalized
Gaussian in terms of the ordinary Gaussian and its derivatives
using Taylor’s expansion of (2) about the matrix B = 0 (meaning no

affine transformation) where B A I= − = �
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can be expanded up to first order terms in B about point B = 0
yielding

            G(., σ2AAT) < G(., σ2) + σ2 b11 Gxx(., σ
2) + σ2 b12 Gxy(., σ

2)

                                 + σ2 b21 Gyx(., σ
2) + σ2 b22 Gyy(., σ

2)

When the affine transformation is small, this is a reasonable
approximation. Ignoring second and higher order terms in the
components of B and setting 

r r
r r1 = A , (2) is rewritten as
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The derivation obtained earlier in [8], and our (3) are now ex-
tended to include defocus blur. Denote the left hand side of (3) by
,1

r
r1 6  and the right hand side by ,a rA

r1 6 . Then

, ,1
r r
r ra1 6 1 6≈ A .                                      (4)

Now let us assume that image Ia is further transformed by a blur to
yield another image I2 (see Fig. 1). The actual point spread function
is given by the convolution of the diffraction limited point spread
function (Airy disc) with the geometrically aberrated (defocused)
blur function (circle) ([12, pp. 147-150]). At lower levels of blur,
diffraction effects dominate and the blur can be approximated by
the Gaussian, which is an approximation of the Airy disc. At
higher levels of blur, the defocus effects dominate and the blur can

be approximated by a convolution with a pill-box function as used
in [3], [13], [10] (see Fig. 2). Hence, our model assumes the Gaus-
sian model for small levels of blur and the pill-box model for
larger levels.
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where increasing values of the radius R imply increasing levels of
blur. Define the generalized Pillbox function, a pillbox deformed
by affine A, as
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where |A| denotes the determinant of A. Using mathematical
substitution we see that
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In order to convolve the right hand side of (4) with the appropriate
Pill-box function, we first multiply (4) by (5) to yield
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The last step follows from the fact that
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The left-hand side of (6) represents a convolution at point 
r
r . If this

is repeated at every point in the image, we have
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We will assume that the unknowns B and R are very small. The

function P r R
r
, , A−14 9  can then be approximated by the Gaussian
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Fig. 1. Conceptual model incorporating affine transformation and defo-
cus blur.

Fig. 2. Pillbox function.
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The last step uses the result that the convolution of two Gaussians
yields another Gaussian.

The right side of (6) can be expressed as
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The last step follows because convolution is commutative, and
because I2 is obtained from Ia as a result of a convolution with a
Pillbox function. Finally, equating (7) and (8) we get a relationship
which is linear in the unknown B, albeit still nonlinear in R.

2.2 General Affine Transform Including Image Translation

Now add arbitrary image translation δ
r
T  to the above affine trans-

formation and blurring. We see that convolution about a point
r r
r T+ δ  by a Gaussian G r
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Thus (9) relates the affine unknowns, B and δ
r
T  and the level of

blur R. To solve this equation, we linearize in δ
r
T  and subsequently

in R.
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we obtain (9) in a linear form of the unknowns B and δ
r
T .

Finally, we linearize in the unknown radius of blur, R. We first
set σ2 = η and define
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Expanding the left hand side of (9) about η1,
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The last step follows from ∂
∂ = ∇G G1 2 2

1η .

The overall computation is embedded in a two-level pyramid
scheme. All parameters are estimated using the higher level first,
and then are propagated as initial estimates for the detailed level.

A translational component of T Tx
s

y
s T

,4 9  in an image shrunk by a

factor of s corresponds to sT sTx
s

y
s T

,4 9  in the original image. The

pyramid is constructed by performing bilinear interpolation to
shrink overlapping patches of the original images.

3 SOLUTION METHOD

Using one or more values of σ (in our experiments, values of σ
were chosen as 1.75, 2.5, 3.0, 3.5, 4.5) as well as different values of

li
→

 an over-determined system is obtained to solve for the un-

knowns, the affine parameters B, the residual translation δ
r
T  and

the radius of blur R. In practice even if the initial estimate of the
translation is three to four pixels in error, the above method is able
to rightly identify the exact image translation to subpixel accuracy.

Since the linearization is an approximation which holds true for
only small values of the unknowns, an iterative scheme was de-
veloped to handle large deformations (see Fig. 3). At the first it-
eration approximate values of the unknowns are obtained. An

Fig. 3. Overview of the iterative parameter estimation process.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  6,  JUNE  1998 655

intermediate synthetic image is then obtained by transforming (via
bilinear interpolation) the first image using the computed affine
parameters and then blurring the latter using the Pillbox model
of blur.

At the next iteration the difference between this intermediate
image and the second image is computed and the overall affine
parameters and degree of blur are calculated. The first image is
then transformed using these new parameters to form the next
intermediate image. This process is repeated until the residual of
the linear system is below a predetermined threshold.

As the linearization approximation is valid when the deforma-
tions are small and the method has to iteratively recover decreas-
ing values of the unknowns, the above method converges.

The parameters B and η1 are initialized to 0 and some σ2 re-
spectively, corresponding to no affine transformation or blurring.
At every iteration, we update Anew← Aresidual⋅Aprevious (matrix mul-
tiplication) and R as

R ← + −2 1
2η β σ                                (10)

and compute a new value of η1 as η σ1
2

2

2
= + R . A negative value

for η1 + β − σ2 indicates that the second image has been sharpened
instead of blurred. This allows automatic segmentation of an im-
age into areas which are blurred, sharpened or focally unperturbed
(i.e., R = 0).

4 IMPLEMENTATION AND RESULTS

We first describe results obtained when a real image was artifi-
cially deformed using large affine parameters and substantial lev-
els of blur. The method was then implemented on two real image
pairs, i.e., the second image in a pair was obtained by camera mo-
tion or zoom rather than artificially generated.

We ran several experiments on a wide range of test images. We
artificially deformed them by performing an affine transform us-
ing bilinear interpolation (expansion factors ranging from 0.7 to
1.4, rotations up to 30 degrees and image translations within four
pixels) followed by a blurring operation. The program correctly
recovered all parameters. The first image was then transformed
according to the parameters recovered with the effect of blurring
removed.

At every point a texture measure was computed. In a small
patch (typically 10 × 10) around the pixel the difference between
each pixel and its neighbor (at its right and below it) was summed.
When the average difference was less than 10 (gray-levels) the
pixel was not considered to have enough texture and the recovery

of affine parameters was not attempted there. The over-
determined system was solved using a least mean squares algo-
rithm. We used gradient descent. The residual of the least
squares system is interpreted as a measure of confidence in the
observed parameters. It was experimentally determined that the
number and organization of the points li (see (2)) at which con-
volutions are performed depend upon both the level of affine
deformation as well as the level of blur. For instance, when re-
covering relatively large values, such as a radius of blur of 3.5
pixels and a scaling factor of 1.2 as well as in-the-plane trans-
lation of [2, 2]T, one needed 121 evenly spaced points within a
41 × 41 grid. However for smaller deformations such as a radius
of blur of one pixel, a scale factor of 1.04, an in-the-plane rotation
of 2o, and an in-the-plane translation of [1.0, 0.5]T pixels, 25
evenly-placed points li were chosen within a 17 × 17 grid. If the
approximate level of deformation is known a priori, the number
and configuration of points li can be judiciously selected. The
optical flow is the translational component of the computed af-
fine transformation.

4.1 Artificially Deformed Image
An image of a brain (Fig. 4a) was transformed by
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(scaling of 1.3, rotation of 20o, translation of [−1, .7]T) and Pill-box
blurred with radius R = 3.5 pixels.

The artificially transformed image is shown in (Fig. 4b). The af-
fine transformation recovered were
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"
$# + −�
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and the radius of the blur was computed to be 3.5 pixels. Fig. 4c
has been generated from the first image using the recovered affine
parameters at the center of the image.

4.2 Pairs of Real Images
Experiments were then conducted on pairs of images of real scen-
ery. Below we elaborate the results obtained in two of these ex-
periments with real data.

4.2.1 Experiment 1: Geometrical Pattern
To facilitate computing the correct affine parameters using point
correspondences, geometric patterns were photographed with a
digital camera. Results are shown in Fig. 5.

            

                                     (a)                                                                        (b)                                                                        (c)

Fig. 4. Artificially transformed real image. (a) Original image. (b) Artificially deformed. (c) Regenerated using recovered affine parameters.
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Fig. 5a is the first image of a slanted geometrical pattern and
Fig. 5b is the second image, which is obtained by keeping the cam-
era stationary and using the zoom mechanism.

The computation was run on this pair of images. The affine pa-
rameters obtained at the center were

0 9400 0 0146
0 0149 0 9327
. .
. .

�
! 

"
$#

along with an image translation of

−
−

�
! 

"
$#

0 12
0 05
.
.

and the radius of pillbox blur of 4.4 pixels.

The degree of blur and flow field in a central window of size
440 × 260 is displayed for every twentieth pixel. The blur level in-
creases as one travels from the bottom right to the top left and this
can be seen in Fig. 5c. Fig. 5d is the flow field in the same window.

4.2.2 Experiment 2: Two Objects at Different Depths
In the second experiment, we imaged two objects. One was a box
with an irregular design, the other was a slanted box with a pic-
ture of a woman. The camera’s translation component caused the
left object to get blurred and the right to get sharpened. The pro-
gram correctly recognized the two situations. We show the sub-
sampled radius map and motion for a 520 × 360 patch in the im-
age. The radii corresponding to points which got sharper/blurred

are shown as open/filled-in circles. Since the flow is large, the
flow image is highly subsampled. Areas corresponding to the
woman’s dress have insufficient texture to compute the motion
and blur.

To assess the accuracy of the blur parameter, we considered a
60 × 60 patch (Fig. 6e) centered on the position (205, 320). This
patch was affine transformed and blurred using the recovered
parameters. The modified patch (Fig. 6f) was compared with the
equivalent patch in the second image (Fig. 6g). In the difference
image (Fig. 6h), the average absolute error of the difference was
12 gray values and the maximum error was 67. In this experi-
ment, the camera’s aperture was deliberately set so that motion
induced a large level of blur in order to demonstrate that the
algorithm is able to handle large deformations.

5 DISCUSSION AND CONCLUSION

We conducted experiments to study the stability of the blur esti-
mates with respect to noise.

A series of experiments was performed where the second image
was deformed with increasing levels of affine deformation. In each
experiment both images were subjected to increasing levels of
Gaussian noise. In all the experiments the radius of blur in the
second image was set to three pixels. The percentage error of the
computed radius is plotted in Fig. 7.

    
                                                          (a)                                                                                                          (b)

    

                                                           (c)                                                                                                          (d)

Fig. 5. Experiment 1: Slanted geometric pattern. (a) First image. (b) Second image. (c) Radius map in central patch. Circle size is proportional to
radius of blur. (d) Flow field.
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                                                           (a)                                                                                                         (b)

   
                                                           (c)                                                                                                          (d)

         
                                                                                  (e)                                                           (f)

          
                                                                                  (g)                                                          (h)

Fig. 6. Experiment 2: Two objects at different depths. (a) First image. (b) Second image. (c) Radius map in 520 × 360 patch. Open/filled circles
show areas which have sharpened/blurred. (d) Flow field in same patch. (e) Patch from first image. (f) Regenerated with recovered values.
(g) Corresponding patch in second image. (h) Difference image.
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An artificially generated image of a sine pattern was employed.
In Experiment 1 (represented in Fig. 7 by a dotted line) the second
image was rotated by 15o, scaled by a factor of 1.2 and translated
by [1, 0] pixels. In Experiment 2 (represented by a dot-dash line)
the second image was rotated by 20o, scaled by a factor of 1.4 and
translated by [2, 2] pixels. In the third experiment (represented by
a line and circles), the image was rotated 25o, scaled by a factor of
1.5 and translated [3, 3] pixels. In all the experiments zero-mean
Gaussian noise was added to each pixel of both images. The stan-
dard deviation of the Gaussian was varied from zero to 225 in
steps of 25. An error of 100 percent in the figure implies that
covergence did not take place. It was seen that the performance
deterioriated gradually as the level of additive noise was increased
and as the degree of deformation of the second image was in-
creased. Thus, we conclude that the computation is robust to noise.

We have introduced a novel method to measure affine motion
and the defocus blur simultaneously. We have experimentally
demonstrated the validity of our model using real image pairs. A
future goal is to use the recovered blur to get initial estimates of
depth in an iterative computation of shape from motion.

Recent work [10] handles displacement of image points due to
blur using a telecentric lens. Our method obviates the need for an
additional lens by including the deformation in a more compre-
hensive computational model. In addition, we have shown how
the method can be used to segment an image into regions which
have blurred, sharpened or remained focally unperturbed during
the affine motion. Our method’s primary drawback is that it re-
quires the existence of fairly large planar patches in the images
and future work will address this.
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