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Abstract. In this paper, we tackle the problem of object detection and
tracking in a new and challenging domain of wide area surveillance. This
problem poses several challenges: large camera motion, strong parallax,
large number of moving objects, small number of pixels on target, sin-
gle channel data and low framerate of video. We propose a method that
overcomes these challenges and evaluate it on CLIF dataset. We use me-
dian background modeling which requires few frames to obtain a work-
able model. We remove false detections due to parallax and registration
errors using gradient information of the background image. In order to
keep complexity of the tracking problem manageable, we divide the scene
into grid cells, solve the tracking problem optimally within each cell us-
ing bipartite graph matching and then link tracks across cells. Besides
tractability, grid cells allow us to define a set of local scene constraints
such as road orientation and object context. We use these constraints as
part of cost function to solve the tracking problem which allows us to
track fast-moving objects in low framerate videos. In addition to that,
we manually generated groundtruth for four sequences and performed
quantitative evaluation of the proposed algorithm.

Keywords: Tracking, Columbus Large Image Format, CLIF, Wide Area
Surveillance

1 Introduction

Recently a new sensor platform has appeared on the scene, allowing for persistent
monitoring of very large areas. The dataset examined in this paper is Columbus
Large Image Format or CLIF dataset. In CLIF, the sensor consists of six cameras
with partially overlapping fields of view, mounted on an aerial platform flying
at 7000 feet. All six cameras simultaneously capture 4016x2672 intensity images
at 2 frames per second. See Figure 1(a) for an example of global camera mosaic.

CLIF dataset belongs to the domain of Wide Area Surveillance (WAS), which
could be used to monitor large urban environments, as an aid in disaster relief,
as well as traffic and accident management. Monitoring such a large amount of
data with a human operator is not feasible, which calls for an automated method
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(a) (b)

Fig. 1: (a) CLIF data - all six cameras. (b) top shows two consecutive frames overlayed
in two different color channels: red is frame t, green is frame t + 1. (b) bottom shows
how far vehicles move between consecutive frames. Red boxes show vehicle positions
in previous frame and blue boxes show vehicle positions in next frame.

of processing the data. An initial step for such a system would be the detection
and tracking of moving objects such as vehicles moving on highways, streets and
parking lots.

Data obtained from such a sensor is quite different from the standard aerial
and ground surveillance datasets, such as VIVID and NGSIM, which have been
used in [1, 2], as well as aerial surveillance scenario [3–5]. First, objects in WAS
data are much smaller, with vehicle sizes ranging from 4 to 70 pixels in grayscale
imagery, compared to over 1500 pixels in color imagery in the VIVID dataset.
Second, the data is sampled only at 2 Hz which when compared against more
common framerates of 15-30 Hz is rather low. Third, the traffic is very dense
comprising thousands of objects in a scene compared to no more than 10 objects
in VIVID and no more than 100 in NGSIM.

The first issue makes object detection difficult, but more importantly it dis-
allows the use of shape and appearance models for objects during tracking as in
[3, 1, 5, 6] and necessitates an accurate velocity model. However, issues two and
three make initialization of a velocity model extremely difficult. High speed of
vehicles on highway combined with low sampling rate of the imagery results in
large displacement of objects between frames. This displacement is larger than
spacing between objects, making proximity based initial assignment produce
incorrect labeling which results in incorrect velocity model.

Highspeed 60Hz cameras have been used to address this problem in dense
scenarios [7, 8], where the high sampling rate makes initial proximity based as-
signment meaningful. Instead, we leverage structured nature of the scene to
obtain a set of constraints and use them in our tracking function. Specifically,
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Fig. 2: This figure shows different stages of our pipeline. First, we remove global camera
motion using point based registration, then we model the background using a 10 frame
median image, perform background subtraction and suppress false positives due to
parallax and registration errors. We track objects within individual grid cells, then
perform handover of tracks between grid cells.

we derive road orientation and traffic context constraints to help with initial as-
signment. We cannot define context based on appearance of neighboring objects
and background as has been done in [9], instead, we define a descriptor for the
geometric relationship of objects with their respective neighbors.

2 Method

Our proposed method consists of the following modules (see figure 2 for refer-
ence). First, we register images using a point correspondence based alignment
algorithm. Then we perform motion detection via a median image background
model. We perform gradient suppression of the background difference image to
remove motion detection errors due to parallax and registration. Once we have
moving object blobs, we divide the scene into a number of grid cells and opti-
mally track objects within each grid cell using Hungarian algorithm. The use
of overlapping cells is a novel idea which makes possible the use of O(n3) Hun-
garian algorithm in a scene containing thousands of objects and provides a way
to define a set of structured scene constraints to disambiguate initialization of
the algorithm. The contribution of our paper is a method for performing object
detection and tracking in a new and challenging Wide Area Surveillance dataset
characterized by low framerate, fast camera motion and a very large number of
fast moving objects. In rest of the paper, we describe how we address all of the
challenges and provide details for the individual modules.

2.1 Registration

Prior to motion detection in aerial video, we remove global camera motion.
The structured man-made environment in these scenes and large amount of
detail yields itself nicely to a point-matching based registration algorithm. It is
also much faster than direct registration method. We detect Harris corners in
frames at time t as well as at time t + 1. Then we compute SIFT descriptor
around each point and match the points in frame t to points in frame t+1 using
the descriptors. Finally, we robustly fit a homography Ht+1

t using RANSAC,
that describes the transformation between top 200 matches. Once homographies
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Fig. 3: Left shows a background model obtained using mean which has many ghosting
artifacts from moving objects. Right shows background model obtained using median
with almost no ghosting artifacts.

between individual frames have been computed, we warp all the images to a
common reference frame by concatenating the frame to frame homographies.

2.2 Detection

After removing global camera motion, we detect local motion generated by ob-
jects moving in the scene.

To perform motion detection, we first need to model background, then mov-
ing objects can be considered as outliers with respect to the background. Prob-
abilistic modeling of the background as in [10] has been popular for surveillance
videos. However, we found these methods to be inapplicable to this data. In
the parametric family of models, each pixel is modeled as either a single or a
mixture of Gaussians. First, there is problem with initialization of background
model. Since it is always that objects are moving in the scene, we do not have
the luxury of object-free initialization period, not even a single frame. Addition-
ally, since the cameras move, we need to build the background model in as few
frames as possible, otherwise our active area becomes severely limited. Further-
more, high density of moving objects in the scene combined with low sampling
rate makes the objects appear as outliers. These outliers can be seen as ghost-
ing artifacts as shown in figure 3. In the case of single Gaussian model, besides
affecting the mean, the large number of outliers make the standard deviation
high, allowing more outliers to become part of the model, which means many
moving objects become part of the background model and are not detected.

A mixture of Gaussians makes background modeling even more complex by
allowing each pixel to have multiple backgrounds. This is useful when background
changes, such as in the case of a moving tree branch in surveillance video. This
feature, however, does not alleviate any of the problems we highlighted above.

Therefore, we avoid probabilistic models in favor of simple median image
filtering, which learns a background model with less artifacts using fewer frames
(figure 3). We found that 10 frame median image has fewer ghosting artifacts
than mean image. To obtain a comparable mean image, it has to be computed
over at least four times the number of frames which results in smaller field of
view and makes false motion detections due to parallax and registration errors
more prominent.

We perform motion detection in the following manner. For every 10 frames
we compute a median background image B, next we obtain difference image i.e.
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Fig. 4: Left to right: Section of original image, gradient of the median image, motion
blobs prior to gradient suppression, motion blobs after gradient suppression. Bottom
row shows an area of image that has false motion detections due to parallax and
registration errors, top row shows a planar area of the image.

Id = |I − B|. Prior to thresholding the difference image, we perform gradient
suppression. This is necessary to remove false motion detections due to parallax
and registration errors. Since we fit a homography to describe the transformation
between each pair of frames, we are essentially assuming a planar scene. This
assumption does not hold for portions of the image that contain out of plane
objects such as tall buildings. Pixels belonging to these objects are not aligned
correctly between frames and hence appear to move even in aligned frames.
Additionally due to large camera motion, there may be occasional errors in the
alignment between the frames. An example of this is bottom row of figure 4
where we show a small portion of an image containing a tall building (left). Due
to parallax error, the building produces false motion detections along its edges
(third image from the left). We suppress these by subtracting gradient of the
median image ∇B (second column) from the difference image i.e. Ird = Id−∇B.
The top row shows a planar section of the scene and contains moving objects.
As evident from figure 4, this procedure successfully suppresses false motion
detections due to parallax error without removing genuine moving objects. Also,
the method has the advantage of suppressing false motion detections due to
registration errors, since they too manifest along gradients. Note that above
method works under an assumption that areas containing moving objects will
not have parallax error which is valid for roads and highways.

2.3 Tracking

After detecting moving objects, we track them across frames using bipartite
graph matching between a set of label nodes (circled in blue) and a set of
observation nodes (circled in magenta). The assignment is solved optimally us-
ing the Hungarian algorithm which has complexity O(n3) where n is the number
of nodes. When we have thousands of objects in the scene, an optimal solution
for the entire scene is intractable. To overcome this problem, we break up the
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Fig. 5: The figure shows an example of the bipartite graph that we solve at every frame.
Four different types of edges are marked with numbers.

scene into a set of overlapping grid cells (see figure 8). We solve the correspon-
dence problem within each grid cell independently and then link tracks across
grid cells. The use of grid has an additional advantage of allowing us to exploit
local structured-scene constraints for objects within the grid cell, which will be
discussed later.

For each grid cell in every pair of frames we construct the following graph.
Figure 5 shows an example graph constructed for assigning labels between frames
t and t+1. We add a set of nodes for objects visible at t to the set of label nodes.
A set of nodes for objects visible at t + 1 are added to the set of observation
nodes, both types are shown in green. Since objects can exit the scene, or become
occluded, we add a set of occlusion nodes to our observation nodes, shown in
red. To deal with the case of reappearing objects, we also add label nodes for
objects visible in the set of frames between t− 1 and t− p, shown in yellow. We
fully connect the label set of nodes to the observation set of nodes, using four
types of edges.

1. Edge between label in frame t and an observation in frame t+ 1.
2. Edge between label in frame t− p and an observation in frame t+ 1.
3. Edge between a new track label in frame t and an observation in frame t+1.
4. Edge between a label and an occlusion node.

We define edge weights in the following manner. Weight for edge of type
3 is simply a constant δ. Weights for edges of type 1 and 2 contain velocity
orientation and spatial proximity components. Spatial proximity component Cp
is given by

Cp = 1− ∥xt−k + vt−k(k + 1)− xt+1∥√
S2
x + S2

y

, (1)

where x is the position of the object, Sx and Sy are the dimensions of the
window within which we search for a new object and k is the time past since
last observation of the object.

Velocity orientation component Cv is given by
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Fig. 6: This figure shows the process of estimating road orientation within a grid cell.
Objects tracked in frame t are shown in red, objects detected in frame t+1 are shown in
blue. (a) Obtain all possible assignments between objects in frame t and frame t+1. (b)
Obtain a histogram of resulting possible velocities. (c) Take mean of velocities which
contributed to the histogram peak.

t

t+1
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Fig. 7: Vehicles tracked at time t are shown in red while vehicles detected in frame t+1
are shown in blue. White arrows indicate the assignment of labels to objects based on
proximity only and correspond to resulting velocities of objects. Yellow arrows indicate
the road orientation estimate for this particular grid cell. (a) shows a case where road
orientation estimate can be used to disambiguate the assignment of labels and (b) shows
where it is not useful. To handle cases such as (b), we introduce a new constraint for
context of each vehicle, shown in (c). At frames t and t+1 we compute vectors between
vehicle of interest (green) and its neighbors (orange). We then compute a 2D histogram
of orientations and magnitudes of the vectors shown in (c).

Cv =
1

2
+

vt · vt+1

2∥vt∥∥vt+1∥ , (2)

where vt is the last observed velocity of an object, vt+1 is the difference between
xt+1, the position of observation in current frame, and xt−k, the last observed
position of object at frame t− k.

We define the weight for edges of type 1 and 2 as follows

w = αCv + (1− α)Cp. (3)

We found these to be sufficient when object’s velocity is available. If on the
other hand, velocity of the object is unavailable as in initial two frames or when
new objects appear in the scene, we use structured scene constraints to compute
weights for edges.
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Assigning labels based simply on proximity between object centroids is not
meaningful in wide area scenario. Due to low sampling rate (2 Hz), high scene
density and high speed of objects, proximity based assignment is usually incor-
rect (see figure 7). Therefore we use road orientation estimate and object context
as constraints from the structured scene.

Road orientaion estimate g is computed for each grid cell in the following
manner (see figure 6). First, we obtain all possible assignments between objects
in frame t and t+1. This gives us a set of all possible velocities between objects at
frames t and t+1. Next, we obtain a histogram of orientations of these velocities
and take the mean of orientations that contributed to peak of the histogram.
See Algorithm 1 for a formal description.

Algorithm 1 Algorithm to compute global
velocity for each cell in grid of size m x n using
detections Dt and Dt+1.

1: procedure computeGlobalVelocity
2: for i← 1,m do
3: for j ← 1, n do
4:
5: for all d ∈ Di,j

t do

6: for all d′ ∈ Di,j
t+1 do

7: θ = tan−1 (d′ − d)
8: Store θ in Θ
9: end for
10: end for
11:
12: h = histogram(Θ)
13: Find bin ψ s.t. mode(h) ∈ ψ
14: θ′ = mean(θ|θ ∈ ψ)
15: −→g (i, j) = [cos(θ′) sin(θ′)]
16:
17: end for
18: end for
19: end procedure

Algorithm 2 Algorithm to compute context
Φ(Oa

t ) for object a at frame t.

1: procedure computeContext
2: for all c do
3:
4: if ∥Oc

t −O
a
t ∥2 < r then

5: θ = tan−1 (Oc
t −O

a
t )

6: d = ∥Oc
t −O

a
t ∥2

7: Φ = Φ+N (µ,Σ)
8: ◃ N centered on (d, θ)
9: end if
10:
11: end for
12: end procedure

Note that orientation of g essentially gives us orientation of the road along
which vehicles travel, it does not give us the direction along that road. However,
even without the direction, this information is oftentimes sufficient to disam-
biguate label assignment as shown in figure 7(a). When vehicles travel along
the road in a checkerboard pattern, proximity based assignment will result in
velocities which are perpendicular to g. That is not the case when a number
of vehicles are traveling in a linear formation as in Figure 7(b). Therefore, we
introduce an additional formation context constraint (see figures 7(c) and 7(d)).
If we are trying to match an object Oa in frame t (or t− k) to an observation in
frame t+ 1, we compute object context as a 2 dimensional histogram of vector
orientations and magnitudes between an object and its neighbors.

In order to account for small intra-formation changes, when computing the
context histograms Φa and Φb, we add a 2D Gaussian kernel centered on the
bin to which a particular vector belongs. Furthermore, since 0◦ and 360◦ are
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Fig. 8: (a) This figure shows an example frame with grid overlayed onto an image. (b)
shows the grid cell search procedure for handing over tracks. The bold colored lines
correspond to OLLeft, OLBottom, and OLRight, in counterclockwise direction. Only
colored grid cells are searched, white cells are ignored.

equivalent, we make the kernel wrap around to other side of orientation portion
of the histogram.

The road orientation constraint component is defined as

Cg =
1

2
+

|g · vt+1|
2∥g∥∥vt+1∥ (4)

The purpose of this constraint is to prevent tracks from travelling across the
road. The context constraint is the histogram intersection between histograms
Φa and Φb:

Cc =

Nbins∑
p

Mbins∑
q

min(Φp,q
a , Φp,q

b ) (5)

Finally, weight for edge of type 3 is computed as follows,

w = α1Cg + α2Cp + (1− α1 − α2)Cc (6)

We solve the resulting bipartite graph using Hungarian algorithm. We track
all objects within each grid cell by performing the above procedure for all frames.
Next, we find and link tracks that have crossed the cell boundaries, using Al-
gorithm 3 utilizing the overlapping regions of the neighboring grid cells. (see
figure 8 for reference).

2.4 Handling Multiple Cameras

There can be several possible frameworks for tracking objects across overlap-
ping cameras which employ inter-camera transformations. One possible way is
to establish correspondences at the track level where objects are detected and
tracked in each camera independently, and afterwards, tracks belonging to the
same object are linked. But, this approach has a serious issue which arises from
the fact that background for a particular frame of a camera can only be modeled
on overlapping region of all frames used for background. This reduces the area
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Algorithm 3 Algorithm for object handover across grid cells. The size of grid is m x n. S(i, j)

represents all tracks for the sequence in the cell at ith row and jth column in grid.

1: procedure interCellHandover
2: for i← 1,m do
3: for j ← 1, n do
4: Calculate OLLeft, OLRight and OLBottom ◃ See figure 8
5: for all si,j ∈ S(i, j) do
6:
7: if ∃ k | si,jk > OLRight then

8: completeTrack(si,j , S(i+ 1, j))

9: else if ∃ k | si,jk > OLRight ∧ ∃ k | si,jk > OLBottom then

10: completeTrack(si,j , S(i+ 1, j + 1))

11: else if ∃ k | si,jk > OLBottom then

12: completeTrack(si,j , S(i, j + 1))

13: else if ∃ k | si,jk < OLLeft ∧ ∃ k | si,jk > OLBottom then

14: completeTrack(si,j , S(i− 1, j + 1))
15: end if
16:
17: end for
18: end for
19: end for
20: end procedure

1: procedure completeTrack(s, S) ◃ s=track to complete, S=tracks in neighboring cell
2: for all s′ ∈ S do
3: if ∃ (l,m) | sl.detectionID = s′m.detectionID ∧ sl.t = s′m.t then
4: assign s and s′ unique label
5: end if
6: end for
7: end procedure

of region where objects can be detected. When objects are detected in cameras
separately, reduction in detection regions results in the loss of overlap between
two cameras. While methods for matching objects across non-overlapping cam-
eras exist [1, 11, 12, 6], low resolution and single channel data disallow the use
of appearance models for object hand over, and reacquisition based on motion
alone is ambiguous. The increased gap between cameras arising from detection
adds further challenge to a data already characterized by high density of objects
and low sampling rate of video.

In order to avoid above problems, we perform detection and tracking in global
coordinates. We first build concurrent mosaics from images of different cameras
at a particular time instant using the Registration method in §2.1 and then
register the mosaics treating each concurrent mosaic as a single image.

One problem with this approach, however, is that cameras can have differ-
ent Camera Response Functions or CRFs. This affects the median background,
since intensity values for each pixel now come from multiple cameras causing
performance of the detection method to deteriorate. To overcome this issue, we
adjust the intensity of each camera with respect to a reference camera using the
gamma function [13] i.e.

I ′C(x, y) = βIC(x, y)
γ , (7)
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Fig. 9: This figure shows the result of multi-camera intensity equalization. Notice the
seam in image on left which in not visible in equalized image on right.

where IC(x, y) is the intensity of the original image at location (x, y). We find
β, γ by minimizing the following cost function:

argmin
β,γ

∑
(x,y)∈IC1∩IC2

(IC1(x, y)− I ′C2(x, y))
2, (8)

where IC1 ∩ IC2 is the overlap between the two cameras. The cost function is
minimized using a trust region method for nonlinear minimization. The approx-
imate Jacobian matrix is calculated by using finite difference derivatives of the
cost function. Transformation in equation 7 is then applied to each frame of
the camera before generating concurrent mosaics. Results for this procedure are
shown in figure 9.

3 Results

We validated our method on four sequences from CLIF 2006 dataset. Sequences
1 to 3 are single camera sequences while sequence 4 has multiple cameras. The
average number of objects in these sequences are approximately 2400, 1000,
1200 and 1100 respectively. Objects in sequence 2 and 3 undergo merging more
often than objects in the other two sequences. This is primarily due to oblique
angle between highway and camera in these sequences as opposed to top view
in sequences 1 and 4. Figure 10 shows some of the tracks from these sequences.

For quantitative evaluation, we manually generated ground truth for the four
sequences. Due the sheer number of objects, smaller size and similar appearance,
generating ground truth for each object is a daunting task. We selected one
region from sequence 1,3 and 4 and two regions from sequence 2 for ground
truth. Objects were randomly selected and most of them undergo merging and
splitting. The number of objects for which ground truth was generated are 34
for sequence 1, 47 and 60 for sequence 2 and 50 each for sequences 3 and 4.

Our method for evaluation is similar to [2] and measures performance of both
detection and tracking. We compute the following distance measure between
generated tracks and ground truth tracks:

D(Ta, Gb) =
1

|Ω(Ta, Gb)|2
∑

t∈Ω(Ta,Gb)

∥xa
t − xb

t∥2, (9)
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where Ω(Ta, Gb) denotes the temporal overlap between Ta and Gb, |.| denotes
cardinality while ∥.∥ is the Euclidean norm. A set of pairs are associated i.e.
(a, b) ∈ A iff Ta and Ga have an overlap. The optimal association,

A∗ = argmin
A

∑
(a,b)∈A

D(Ta, Gb) subject to Ω(Ta, Tc) = ∅ ∀(a, b), (c, b) ∈ A (10)

is used to calculate the performance metrics. Abusing notation, we define

A(Gb) = {Ta|(a, b) ∈ A}. (11)

The first metric Object Detection Rate, measures the quality of detections
prior to any association:

ODR =
# correct detections

# total detections in all frames
. (12)

We cannot compute ODR for each track and then average, because that
would bias the metric towards short tracks as they are more likely to have all
detections correct. Further notice that, it is not possible to detect false positives
as the number of ground truth tracks is less than number of objects. A related
metric, Track Completeness Factor,

TCF =

∑
a

∑
Tb∈A(Ga)

|Ω(Tb, Ga)|∑
a |Ga|

, (13)

measures how well we detect an object after association. TCF will always be less
than or equal to ODR. The difference between ODR and TCF is the percentage
of detections that were not included in tracks. Finally, Track Fragmentation
measures how well we maintain identity of the track,

TF =

∑
a

|A(Ga)|

|{Ga|A(Ga) ̸= ∅}| . (14)

Weighing the number of fragments in a track with length, we get Normalized
Track Fragmentation,

NTF =

∑
a

|Ga| · |A(Ga)|∑
a|A(Ga) ̸=∅

|Ga|
. (15)

which gives more weight to longer tracks as it is more difficult to maintain
identity for long tracks than short ones.

We compare our method with the standard bipartite matching using greedy
nearest-neighbor initialization. Initial assignment is done based on proximity
while linear velocity model is used for prediction. Standard gating technique is
used to eliminate unlikely candidates outside a certain radius. The same reg-
istration and detection methods were used for all experiments. The values of
parameters for our tracking method were α = 0.5 (eq. 3) and α1 = α2 = 0.33
(eq. 6). Table 1 shows the comparison between both methods:
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Table 1: Quantitative Comparison

ODR TCF TF NTF TCF TF NTF

Seq1 0.975 0.716 2.471 2.506 0.361 13.06 13.11

Seq2 0.948 0.714 2.894 2.895 0.489 12.55 12.55

Seq3 0.972 0.727 2.76 2.759 0.583 8.527 8.53

Seq4 0.984 0.824 1.477 1.48 0.638 6.444 6.443

Our Method GreedyBIP

As can be seen from table 1, our method achieved better TCF and TF be-
cause unique characteristics of WAS demand the use of scene-based constraints
which were not leveraged by the standard bipartite matching. We derived road
orientation estimate and object context using only the image data, which allowed
for better initialization and tracking performance.

4 Conclusion

We analyzed the challenges of a new aerial surveillance domain called Wide Area
Surveillance, and proposed a method for detecting and tracking objects in this
data. Our method specifically deals with difficulties associated with this new
type of data: unavailability of object appearance, large number of objects and
low frame rate. We evaluated proposed method and provided both quantitative
and qualitative results. These preliminary steps pave way for more in-depth
exploitation of this data such as scene modeling and abnormal event detection.
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