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Abstract. In this paper, we propose a method for detecting humans in
imagery taken from a UAV. This is a challenging problem due to small
number of pixels on target, which makes it more difficult to distinguish
people from background clutter, and results in much larger searchspace.
We propose a method for human detection based on a number of geo-
metric constraints obtained from the metadata. Specifically, we obtain
the orientation of groundplane normal, the orientation of shadows cast
by humans in the scene, and the relationship between human heights
and the size of their corresponding shadows. In cases when metadata is
not available we propose a method for automatically estimating shadow
orientation from image data. We utilize the above information in a geom-
etry based shadow, and human blob detector, which provides an initial
estimation for locations of humans in the scene. These candidate loca-
tions are then classified as either human or clutter using a combination
of wavelet features, and a Support Vector Machine. Our method works
on a single frame, and unlike motion detection based methods, it by-
passes the global motion compensation process, and allows for detection
of stationary and slow moving humans, while avoiding the search across
the entire image, which makes it more accurate and very fast. We show
impressive results on sequences from the VIVID dataset and our own
data, and provide comparative analysis.

1 Introduction

In recent years improvements in electronics and sensors have allowed for devel-
opment and deployment of Unmanned Aerial Vehicles (UAVs) on greater and
greater scale, in a wide variety of applications, including surveillance, military,
security, and distaster relief operations. The large amount of video data obtained
from these platforms, requires automated video analysis tools, whose capabilities
must include object detection, tracking, classification and finally scene and event
analysis. While a number of methods and systems exist for detecting and track-
ing vehicles in UAV video (e.g. [1] [2]), the same cannot be said about human
detection.

State of the art human detection methods such as [3] [4] [5] [6] [7], are de-
signed to deal with datasets containing imagery taken from the ground, either
in surveillance or consumer imagery scenario. People in that type of imagery are
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fairly large (e.g. 128x64 in the case of INRIA dataset). Also the camera in such
scenarios is generally oriented with the ground plane. In our case, the humans
are much smaller as seen in Figure 1. On average they are about 24x14 pixels
in size, and have no visible parts, this makes part detection methods such as [4]
and [6] inapplicable. Bag of feature models such as [5] also have great difficulty
due to a very small number of interest points that can be found. Another issue
is that since the camera is mounted on a moving aerial platform, the imaged
size and visible distinguishing features of a person can be reduced even further
when the camera is at a high elevation angle. Also, the moving aerial platform
introduces a large number of possible orientations at which a human can appear
in the scene. Due to lack of good distinguishing features of the human body in
aerial imagery, a brute force image search generates many false detections, and
is also quite slow. Hence, previous two works that specifically deal with aerial
imagery ([8] and [9]), opt to constrain the search with preliminary processing.

A very popular approach is to constrain the search using motion as in [10], or
Xiao et. al. [8]. They assume that only moving objects are of interest, and adopt
a standard aerial surveillance pipeline. First, they compensate for global camera
motion, then they detect moving objects, and finally classify each moving object
as either a person or vehicle using the combination of histograms of oriented
gradients (HOG) and a support vector machine proposed in [3]. The problem
with the motion constraint, is that since people are viewed from far away, their
motion is very subtle and difficult for the system to pick up. Of course, if people
are stationary, then the system cannot detect them at all. If there are shadows
present in the scene, then a number of additional problems arise. It is difficult
to localize the human, since its shadow is part of the moving blob, which also
makes the blobs more similar to each other making it more difficult to track
them. See Figure 8 for examples of these failures.

Miller et. al. avoid the moving object assumption [9], by assuming that at
least one Harris corner feature point will be detected on the human in each frame.
This generates a large number of candidates which are then suppressed through
tracking of the Harris corners in global reference frame. Each corner is then
classified using a OT-MACH filter. If a track contains more human classifications
than 20% of total track length, all points within track are labelled as human.
The problem with the above approach is the large number of potential human
candidates; they report 200 for a 320x240 image, and the need for a sophisticated
tracker to filter them out.

We propose a very different approach. In particular we constrain the search
by assuming that humans are upright shadow casting objects. We utilize directed
low level computer vision techniques based on a set of geometric scene constraints
derived from the metadata of the UAV platform. Specifically, we utilize the
projection of the ground plane normal to find blobs normal to the ground plane,
these give us an initial set of potential human candidates. Similarly we utilize the
projection of shadow orientation to obtain a set of potential shadow candidates.
We then obtain a refined set of human candidates, which are pairs of shadow
and normal blobs that are of correct geometric configuration, and relative size.
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Fig. 1. On the left, are frames from some of the sequences, also examples of humans.
The humans are only around 24x14 pixels in size, and are difficult to distinguish from
the background. On the right, still image shadow detection using techniques from [11],
pixels belonging to humans, and large parts of background were incorrectly labelled as
gradient that belongs to shadow.

This is once again done based on projected directions, as well as the ratio of
assumed projected human height and projected shadow length.

Once the refined set of candidates has been obtained, we extract wavelet
features from each human candidate, and classify it as either human or clutter
using a Support Vector Machine (SVM). Note that the main idea behind our
geometric constraints is to improve the performance of any detection method
by avoiding full frame search. Hence other models, features, and classification
schemes suitable for aerial imagery can be used. Additionally, our method can be
used to alleviate object localization problems associated with motion detection
in presence of strong shadow.

The advantage of our constraints is that they do not require motion detection,
registration, and tracking, which are time consuming, and can have their own
problems. Additionally our method does not suffer degraded performance in
presence of strong shadows. A slight disadvantage is that to get the full benefit,
a strong shadow is necessary. However the initial set of candidates which we
generate without using the shadow still performs better than brute force full-
frame search (see section 4).

In absence of metadata, a static image shadow detector can be used to find
the shadows in the image. For this purpose we extend the geometry detection
method to work as a novel shadow detection method described in section 3.3.
We found that standard shadow detection methods such as [11] and [12] perform
poorly on real data (see Figure 1). The methods are based on obtaining illumi-
nation invariant (shadow-less) images, and comparing edges between these and
original images. Since the humans and their shadows look similar in our data,
the illumination invariant images would remove parts of shadows, humans and
strong background gradients.

The main contribution of this paper is a novel method constraining human
detection in aerial video, as well as a shadow detection method. In future work
we will extend it to other object types. Our use of shadow is somewhat coun-
terintuitive, since instead of treating it as a nuisance, we actually use it to help
with the detection.
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2 Ground-Plane Normal and Shadow Constraints

2.1 Metadata

The imagery obtained from the UAV has the following metadata associated
with most of the frames. It has a set of aircraft parameters latitude, longitude,
altitude, which define the position of the aircraft in the world, as well as pitch,
yaw, roll which define the orientation of the aircraft within the world. Metadata
also contains a set of camera parameters scan, elevation, twist which define the
rotation of the camera with respect to the aircraft, as well as focal length, and
time. We use this information to derive a set of world constraints, and then
project them into the original image.

2.2 World Constraints

The Shadow is generally considered to be a nuisance in object detection, and
surveillance scenarios. However, in the case of aerial human detection, the shadow
information augments the lack of visual information from the object itself, es-
pecially in the cases where the aerial camera is close to being directly overhead.
We employ three world constraints.

– The person is standing upright perpendicular to the ground plane.
– The person is casting a shadow.
– There is a geometric relationship between person’s height and the length of

their shadow. See Figure 2.

Given latitude, longitude, and time, we use the algorithm described in [13], to
obtain the position of the sun relative to the observer on the ground. It is defined
by the azimuth angle α (from the north direction), and the zenith angle γ (from
the vertical direction). Assuming that the height of the person in the world
is k we find the length of the shadow as l = k

tan(γ−90) , where γ is the zenith
angle of the sun. Using the azimuth angle α we find the groundplane projection
of the vector pointing to the sun, and scale it with the length of the shadow
S = 〈l cos(α), l sin(α), 0〉.

2.3 Image Constraints

Before we can use our world constraints for human detection, we have to trans-
form them from the world coordinates to the image coordinates. To do this we
use the metadata to obtain the projective homography transformation that re-
lates image coordinates to the ground plane coordinates. For an excellent review
of the concepts used in this section see [14].

We start by converting the spherical latitude and longitude coordinates of the
aircraft to the planar Universal Transverse Mercator coordinates of our world
Xw = east, and Yw = north. Next, we construct a sensor model that transforms
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any image point p′ = (xi, yi) to the corresponding world point p = (Xw, Yw, Zw).
We do this by constructing the following sensor transform.

Π1 = T a
ZwT e

XwT n
Y wRy

ZwRp
XwRr

Y wRs
ZaRe

XaRt
Y a, (1)

where T a
Zw, T e

Xw, and Tn
Y w are translations for aircraft position in the world

- altitude, east, and north respectively. Ry
Zw, Rp

Xw, and Rr
Y w are rotations for

the aircraft - yaw, pitch and roll respectively. Rs
Za, Re

Xa and Rt
Y a are rotation

transforms for camera - scan, elevation, and tilt, respectively.
We transform 2D image coordinates p′ = (xi, yi) into 3D camera coordinates

p̂′ = (xi, yi,−f), where f is the focal length of the camera. Next, we apply the
sensor transform from equation 1, and raytrace to the ground plane (see Figure
2 (a)).

p = RayTrace(Π1p̂
′). (2)

Ray tracing requires geometric information about the environment, such as
the world height at each point, this can be obtained from the digital elevation
map of the area - DEM. In our case, we assume the scene to be planar, and
project the points to the ground plane at zero altitude Zw = 0.

For any set of image points p′ = (xi, yi), raytraycing gives a corresponding
set of ground plane point p = (Xw, Yw, 0). Since we are assuming only one
plane in the scene we only need correspondences of four image corners. We then
compute a homography, H1, between the two sets of points, such that p = H1p′.
Homography, H1, will orthorectify the original frame, and align it with the North
Direction. Orthorectification removes perspective distortion from the image and
allows the measurement of world angles in the image. We use the inverse of the
homography H−1

1 to project the shadow vector defined in world coordinates into
the image coordinates. (see Figure 4 (a)).

S′ = SH−1
1 . (3)

Now, we obtain the projected ground plane normal (refer to Figure 2 (b)). We
generate a second sensor model, where we lower the camera along the normal
direction Zw, by k, which is the assumed to be a person’s height.

Π2 = (T a
Zw − [I|k])T e

XwT n
Y wRy

ZwRp
XwRr

Y wRs
ZaRe

XaRt
Y a. (4)

Using the above sensor model Π2 we obtain a second homography H2 using the
same process that was used for obtaining H1. We now have two homographies,
H1 maps the points from the image to the ground plane, and H2 maps the
points from the image to a virtual plane parallel to the ground plane that is
exactly k units above the ground plane. We select the center point of the image
p′c1 = (xc, yc), and obtain its ground plane coordinates pc1 = H1p′c. Then we
map it back to the original image using H2, p′c2 = H−1

2 pc. The projected normal
is then given by

Z′ = p′c2 − p′c1. (5)
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Fig. 2. Left, the sensor model Π1 maps points in camera coordinates into world co-
ordinates (since the transformation between image and camera coordinates is trivial
we do not show it in the image).X corresponds to East direction, Y to North, Z to
vertical direction. Vector S is pointing from an observer towards the sun along the
ground. It is defined in terms of α - azimuth angle between northern direction and the
sun. Zenith angle γ is between vertical direction and the sun. The height of a human
is k, and the length of the shadow is l. We place the image plane into the world, and
raytrace through it to find the world coordinates of the image points (we project from
the image plane to the ground plane). We compute a homography H1 between image
points and their corresponding world coordinates on groundplane. Right, illustrates
how we obtain the projection of the groundplane normal in the original image. Using
a lowered sensor model Π2 we obtain another homography H2, which maps points in
camera coordinates to a plane above the ground plane. Mapping a world point pc1

using H1, and H2, gives two image points p′c1, and p′c2. Vector from p′c1 to p′c2 is the
projection of the normal vector.

We compute the ratio between the projected shadow length and the projected
person height as

η =
|S′|
|Z′| . (6)

3 Human Detection

3.1 Constraining the Search

In order to avoid the search over the entire frame, the first step in our human
detection process is to constrain the search space of potential human candidates.
We define the search space as a set of blobs oriented in direction of shadow,
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Fig. 3. This figure illustrates the pipeline of applying image constraints to obtain an
initial set of human candidates.

and direction of normal. To do so we utilize the image projection of the world
constraints derived in the previous section - the projected orientation of the
normal to the ground plane Z′, the projected orientation of the shadow S′, and
the ratio between the projected person height, and projected shadow length η.
See Figure 3.

Given a frame I, we compute gradient oriented in the direction of the shadow
by applying a 2D Gaussian derivative filter,

G(x, y) = cos(θ)2xe−
x2+y2

σ2 + sin(θ)2ye−
x2+y2

σ2 , (7)

θ is the angle between the vector of interest and the x axis,and take its absolute
value. To further suppress gradient not oriented in the direction of the shadow
vector we perform structural erosion along a line in the direction of the shadow
orientation:

|∇IS′ | = erode(∇I,S′). (8)

We obtain |∇IZ′ | using the same process. Next, we smooth the resulting gradient
images with an elliptical averaging filter whose major axis is oriented along the
direction of interest:

IB
S′ = |∇IS′ | ∗GS′ , (9)

where BS′ is an elliptical averaging filter, whose major axis is oriented along the
shadow vector direction, this fills in the blobs. We obtain IB

Z′ using GZ′ . Next,
we apply an adaptive threshold to each pixel to obtain shadow and normal blob
maps.

MS′ =
{

1 if IB
S′ > t ·mean(IG

S′)
0 otherwise, (10)

See Figure 4 for resulting blob maps overlayed on the original image. We obtain
MZ′ using the same method. From the binary blob maps we obtain a set of
shadow and object candidate blobs using connected components. Notice that
a number of false shadow and object blobs were initially detected, and later
removed.
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(a) (b) (c)

s′Z′

2.284

Fig. 4. (a) shows shadow blob map MS′ (shown in red), and normal blob map MZ′

(shown in green), overlayed on the original image. Notice there are false detections at
the bottom of the image. Yellow arrow is the projected sun vector S′, the projected
normal vector z′ is shown in green, and the ratio between the projected normal and
shadow lengths is 2.284 (b) shows example candidates being refined. A valid configu-
ration of human and shadow blobs (top) results in an intersection of the rays, and is
kept as a human candidate. An invalid configuration of blobs (bottom) results in the
divergence of the rays, and is removed from the set of human candidates. (c) shows
refined blob maps after each normal blob was related to its corresponding shadow blob.

3.2 Exploiting Object Shadow Relationship

The initial application of the constraints does not take into account the relation-
ship between the object candidates and their shadows, and hence generates many
false positives. Our next step is to relate the shadow and human blob maps, and
to remove shadow-human configurations that do not satisfy the image geometry
which we derived from the metadata. We search every shadow blob, and try to
pair it up with a potential object blob, if the shadow blob fails to match any
object blobs, it is removed. If an object blob never gets assigned to a shadow
blob it is also removed.

Given a shadow blob, M i
S′ , we search in an area around the blob for a po-

tential object blob M j
Z′ . We allow one shadow blob to match to multiple normal

blobs, but not vice versa,since the second case is not very likely to be observed.
The search area is determined by major axis lengths of M i

S′ and M j
Z′ . For any

object candidate blob, M j
Z′ that falls within the search area, we ensure that it

is in the proper geometric configuration relative to the shadow blob (see Figure
4 (b)) as follows. We make two line segments li, and lj , each defined by two
points as follows li = {ci, ci + QS′}, and lj = {cj , cj − QZ′}. Where ci, and cj

are centroids of shadow and object candidate blobs respectively, and Q is a large
number. If the two line segments intersect, then the two blobs exhibit correct
object shadow configuration.

We also check to see if the lengths of the major axes of M i
S′ and M j

Z′ conform
to the projected ratio constraint η. If they do then we accept the configuration.
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Depending on the orientation of the camera in the scene, it is possible for
the person and shadow gradients to have the same orientation. In that case the
shadow and object candidate blobs will merge, the amount of merging depends
on the similarity of orientations S′ and Z′. Hence, we accept the shadow object
pair if

M i
S′ ∩M j

Z′

M i
S′ ∪M j

Z′
> q(1− abs(S′ · Z′)), (11)

where q was determined empirically. For these cases the centroid of the person
candidate blob is not on the person. Therefore for these cases we perform local-
ization, where we obtain a new centroid by moving along the shadow vector S′,
as follows

c̃ = c +
m

2
(1− 1

η
)

S′

‖S′‖ , (12)

where m is the length of the major axis of shadow blob M i
S′ .

3.3 Constraints without Metadata

Having all of the metadata, quickly provides a set of strict constraints for a
variety of camera angles, and time of day. However, there may be cases when
the metadata is either unavailable, or worse, is incorrect. In such cases it is
acceptable to sacrifice some of the generality, and computation time to obtain
a looser set of constraints that still perform well. Assuming that humans are
vertical in the image, and ignoring the ratio between the size of humans and
their shadows, we can still exploit the orientation of the shadow in the image, as
well as the relationship between humans and their shadows, as described below.

We find the orientation of the shadow in the image in the following manner.
We quantize the search space of shadow angle θ between 0◦ and 360◦, in incre-
ments of d (we used 5 in our experiments). Keeping the normal orientation fixed,
and ignoring shadow to normal ratio, we find all human candidates in image I
for every orientation θ using technique described in sections 3.1 & 3.2 (see Fig-
ure 5). We track the candidates across different θ. Similar angles θ will detect
the same human candidates. Therefore, each human candidate Ci has a set Θi

for which it was detected, and a set Oi which is a binary vector, where each
element corresponds to whether the shadow and human blobs overlapped. Then,
the set of orientations for which it was detected due to overlap is Θo

i , and the
set of orientations for which it was detected without overlap is Θō

i (see Figure
5). We remove any candidate which has been detected over less than p orien-
tations, since a human is always detected as a candidate if shadow and normal
orientations are similar, and the resulting blobs overlap according to equation
11 (as in 5 (b) & (f)). Here p depends on quantization, we found that it should
encompass at least 70◦.

If there are two or more humans casting shadows on planes parallel to the
ground plane (poles will work for the task as well), their orientations will be
consistent. We find the optimal shadow orientation θ̂ by treating each Θō

i as a
sequence and then finding the longest common consecutive subsequence β among
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Fig. 5. (The flow chart shows our method for finding optimal shadow orientation for
a given image in the absence of metadata. Top row shows human candidate responses
obtained for different shadow orientations. A human candidate is then described by a
vector of orientations for which it was detected, and a binary overlap vector. Optimal
orientation θ̂ is the average of longest common consecutive non-overlapping subse-
quence of orientations among all human candidates. The image on the rights shows
refined human candidate blobs for an automatically estimated shadow orientation of
35◦, without metadata. Corresponding metadata derived value of θ for this frame is
46.7◦. Blobs that were detected using metadata can be seen in fig. 4

all Θō. Subsequence β must span at least 20◦ but no more than 40◦. Finally,
the optimal orientation θ̂ = mean(β). If we cannot find such a subsequence
then there are either no shadows, or the orientation of the shadow is the same
as the orientation of the normal, so we set θ̂ to our assumed normal. Figure 5
shows an example frame for which human candidates, were detected using the
automatically estimated shadow orientation. There is a 10◦ difference between
estimated orientation, and orientation derived from the metadata. This is the
same frame as in Figure 4, qualitative examination of the shadow blobs, seems
to indicate that the estimated orientation is more accurate than the one derived
from the metadata, however the computation time of obtaining it is much larger.
In practice this issue can be dealt with in the following manner. The angle can
be estimated in the initial frame, and in subsequent frames it can be predicted
and updated using a Kalman filter.

3.4 Object Candidate Classification

Wavelets have been shown to be useful in extracting distinguishing features from
imagery. So in the final step of our method, we classify each object candidate as
either a human or non-human using a combination of wavelet features and SVM
(Figure 6). We chose wavelet features over HOG because we obtained higher
classification rate on a validation set. We suspect that this is due to the fact
that in the case of HOG, the small size of chips does not allow for the use of
optimal overlapping grid parameters reported in [3], giving too coarse sampling.
We apply Daubechies 2 wavelet filter to each chip, where the low-pass, and
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Fig. 6. Object candidate classification pipeline. Four wavelet filters (LL, LH, HL, HH)
produce scaled version of original image, as well as gradient like features in horizontal
vertical and diagonal directions. The resulting outputs are vectorized, normalized, and
concatenated to form a feature vector. These feature vectors are classified using SVM.

high-pass filters for a 1-D signal are defined as

φ1(x) =
√

2
3∑

k=0

ckφ0(2x− k), ψ1(x) =
√

2
3∑

k=0

(−1)k+1c3−kφ0(2x− k), (13)

here c = ( (1+
√

(3))

4
√

(2)
,

(3+
√

(3))

4
√

(2)
,

(3−
√

(3))

4
√

(2)
,

(1−
√

(3))

4
√

(2)
), are the Daubechies 2 wavelet

coefficients, and φ0 is either row or column of original image, and . In the case
of the 2D image, the 1D filters are first applied along x, and then y directions.
This gives to four outputs LL, LH, HL, HH. Where LL is a scaled version of
the original image, and LH, HL, and HH, correspond to gradient like features
along horizontal, vertical and diagonal directions. We used only one level, since
adding more did not improve the performance. We vectorize the resulting out-
puts, normalize their values to be in the [0, 1] range, and concatenate them into
a single feature vector. We train a Support Vector Machine [15] on the result-
ing feature set using the RBF kernel. We use 2099 positive and 2217 negative
examples w × h: 14× 24 pixels in size.

During the detection stage, we compute the centroid of the remaining object
candidate blobs M i

Z′ , extract a w×h chip around each centroid, extract wavelet
features, and classify the resulting vector using SVM. If focal length data is avail-
able then the chip size could be selected automatically based on the magnitude,
and orientation of the projected normal |Z′|. Note, that this would amount to
the use of absolute scale information, which would require a minor change in the
geometry portion of the method to account for the effect of perspective distor-
tion. The change amounts to computation of multiple shadow, and normal vector
magnitudes for different regions of the image. However, since the sequences in
the VIVID 3 dataset do not have correct focal length information, the size of
the people in the images is approximately the same, and there is generally little
perspective distortion in aerial video, we selected the w × h to be equal to the
size of chips in the training set.
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4 Results

We performed both qualitative and quantitative evaluation of the algorithm.
Qualitative evaluation is shown on sequences from VIVID3 and 4 as well as
some of our own data. The data contains both stationary and moving vehicles
and people, as well as various clutter in the case of VIVID4. Vehicles cast a
shadow, and are usually detected as candidates, these are currently filtered out
in the classification stage, however we plan to extend the geometry method for
vehicle detection as well. For quantitative evaluation we evaluated our detec-
tion methods on three sequences from the DARPA VIVID3 dataset of 640x480
resolution, and compared the detection against manually obtained groundtruth.
We removed the frames where people congregated into groups. We used the fol-
lowing evaluation criteria Recall vs False Positives Per Frame (FPPF). Recall
is defined as TP

TP+FN , where FN is number of false negatives, TP is the num-
ber of true positives in the frame. To evaluate the accuracy of the geometry
based human candidate detector method, we require the centroid of the object
candidate blob to be within w pixels of the centroid blob, where w is 15. We
did not use the PASCAL measure of 50% bounding box overlap, since in our
dataset the humans are much smaller, and make up a smaller percentage of the
scene. In INRIA set inroduced in [3], an individual human makes up 6% of the
image, in our case the human makes up about 0.1%. Under these circumstances
small localization errors, result in large area overlap difference, hence we feel
that the centroid distance measure is more meaningful for aerial data. Figure
7 compares ROC curves for our geometry based method with and without the
use of object-shadow relationship refinement, and centroid localization, conven-
tional full frame detection method (we used HOG detection binaries provided
by the authors), and standard motion detection pipeline of registration, detec-
tion, and tracking. Figure 8 shows qualitative detection results. Conventional
full frame detection is not only time consuming, (our MATLAB implementation
takes several hours per 640x480 frame), but it also generates many false posi-
tives. By contrast preprocessing the image using geometric constraints to obtain
human candidates, is not only much faster (6 seconds per frame), but gives far
better results. Geometric constraints with the use of shadow based refinement,
and centroid localization provide the best performance. However even without
these additional steps, the geometric constraint based only on the projection of
the normal still give superior results to full frame, as well as motion constrained
detection. Motion based detection suffers from problems discussed in section 1,
and shown in Figure 8. Which is why the green ROC curves in Figure 7 are
very short. We implemented a part of [9] method, where instead of using the
OT-Mach filter, we used our wavelet SVM combination for classification. These
ROC curves are shown in black. We suspect that the poor performance is caused
by poor tracking results. They simply used a greedy approach based on euclid-
ian distance between the corners without any motion model. Therefore if a track
contains corners belonging to both people and background, the 20% track length
classification heuristic would introduce many false positives.



Geometric Constraints for Human Detection in Aerial Imagery 13

0 10 20 30 40 50
0

20

40

60

80

100

False positives per frame

D
e

te
ct

io
n

 R
a

te
GEOM

GEOM_NS

FULL

MOTION
HARRIS

309820004892Total People

82310061191Frames

Seq3Seq2Seq1

Fig. 7. SVM confidence ROC curves for sequences 1 (dashed-dotted), 2 (dashed), and
3 (solid). Our Geometry based method with shadow, object-shadow relationship re-
finement, and centroid localization is shown in red. Yellow curves are for our geometry
based method without the use of object-shadow relationship refinement, or centroid
localization. A standard full frame detector (HOG) is shown in blue. Green shows re-
sults obtained from classifying blobs obtained through registration, motion, detection,
and tracking, similar to [8]. Black curves are for our modified implementation of [9],
which uses Harris corner tracks.

5 Conclusions

We proposed a novel method for detecting pedestrians in UAV surveillance im-
agery. This is a difficult problem due to very small size of humans in the image,
and a large number of possible orientations. Our method takes advantage of the
metadata information provided by the UAV platform to derive a series of geomet-
ric constraints, and to project them into the imagery. In cases when metadata is
not available we proposed a method for estimating the constraints directly form
image data. The constraints are then used to obtain candidate out of plane ob-
jects which are then classified as either human or non-human. We evaluated the
method on challenging data from the VIVID 3 dataset, and obtained results su-
perior to both full frame search, motion constrained detection, and Harris tracks
constrained detection [9].
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(a) (b) (c) (d) (e)

Fig. 8. (a) (b) and (c) compare motion detection (top row), and our geometry based
method (bottom row). (a) Human is stationary and was not detected by the motion
detector. (b) Moving blob includes shadow, the centroid of blob is not on the person.
(c) Two moving blobs were merged by the tracker because of shadow overlap, centroid
is not on either person. By contrast our method correctly detected and localized the
human candidate (green). (d) and (e) compare geometry constrained human detection,
and full frame HOG detection. Human candidates that were discarded by the wavelet
classifier as clutter are shown in magenta, candidates that were classified as human are
shown in black. Unconstrained full frame detection (e) generates many false positives.
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