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Abstract. Automatic event detection in a large collection of uncon-
strained videos is a challenging and important task. The key issue is to
describe long complex video with high level semantic descriptors, which
should find the regularity of events in the same category while distinguish
those from different categories. This paper proposes a novel unsupervised
approach to discover data-driven concepts from multi-modality signals
(audio, scene and motion) to describe high level semantics of videos. Our
methods consists of three main components: we first learn the low-level
features separately from three modalities. Secondly we discover the data-
driven concepts based on the statistics of learned features mapped to a
low dimensional space using deep belief nets (DBNs). Finally, a compact
and robust sparse representation is learned to jointly model the concepts
from all three modalities. Extensive experimental results on large in-the-
wild dataset show that our proposed method significantly outperforms
state-of-the-art methods.

1 Introduction

User uploaded videos on the internet have been growing explosively in recent
years. Automatic event detection in videos is an interesting and important task
with great potential for many applications, such as on-line video search and
indexing, consumer content management, etc. However, it is a very challeng-
ing task to deal with large corpora of unconstrained videos with huge content
variations and uncontrolled capturing conditions.(as illustrated in Fig.1).

Common approaches in event recognition rely on hand-crafted low level fea-
tures such as SIFT [1], STIP [2], MFCC [3], and human-defined high level con-
cepts [4]. The use of high level semantic concepts have been proven effective in
representing complex events[5]. However, how to discover a powerful set of se-
mantic concepts is still unclear and has not been investigated in previous works.
The drawbacks of human defined concepts include: (1) it’s hard to extend these
concepts to a larger scale, (2) they can not handle multiple modalities, and (3)
the concepts don’t generalize well to new datasets.

In this paper, we propose a novel unsupervised approach to discover event
concepts directly from training data in three modalities (audio, image frames
and video).
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Fig. 1: Randomly selected example videos from our dataset. Each row shows
frames of four videos from two categories.

We first learn low level features for each modality using Topography Inde-
pendent Component Analysis (TICA), which has shown superior performance
over popular hand-designed features in [6]. Then we map our low level features
to more compact representations using deep belief networks (DBN)[7]. After
that, our data-driven concepts are learned by clustering the training data in a
low-dimensional space using vector quantization (VQ). This dimension reduc-
tion step is crucial to produce reasonable clustering results. Finally, we merge
the concepts from three different modalities by learning compact sparse repre-
sentations. The whole framework is shown in Fig.2.

We argue that unsupervised learning of concepts is appropriate due to two
reasons. First, the disconnection between limited linguistic words and complexity
of real world events makes human definition of visual concepts very hard if not
impossible. We will later show that large number of learned concepts help to im-
prove recognition accuracy significantly. Second, most of the time, insufficiency
of annotated data prevents us from learning concepts in supervised manner. We
present extensive evaluation of our method. The results show that our proposed
approach significantly outperforms popular baselines.

The rest of the paper is organized as follows. We first review the related
literature in section 2. The proposed method is presented in section 3-5 in the
following order: Low-level Feature Learning, Data-driven Concept Discovery, and
Event Representation Learning. Extensive experiment results, comparisons and
analysis are reported in section 6. Finally, we conclude in section 7.

2 Related Work

Most of the existing works[8, 5, 9] investigate different hand-crafted features such
as SIFT [1], STIP [2], Dollar [10] and MFCC [3]. Recently, there has been a
growing interest in learning visual features using biologically-inspired networks,
such as, Independent Component Analysis (ICA) [11] and Independent Subspace
Analysis [12]. In [13], Le shows that using their learned 3D (Spatiotemporal)
filters by ISA, the action recognition performance is comparable to other hand-



Complex Events Detection using Data-driven Concepts 3

Fig. 2: Framework of the proposed method. Each video is divided into short clips.
We first learn low level features for each modality using Topography Indepen-
dent Component Analysis (TICA). Then we map our low level features to more
compact representations using deep belief networks (DBN). After that, our data-
driven concepts are learned by clustering the training data in a low-dimensional
space using vector quantization (VQ). Finally, we merge the concepts from three
different modalities by learning compact sparse representations.

designed features. In [6], TICA, another extension of ICA, was proposed for
static images that achieves state-of-the-art performance on object recognition.

Concept detectors provide high-level semantic representation for videos with
complicated content, which can be very useful for developing powerful retrieval
or filtering systems for consumer media. Lots of effort [4, 14] have been devoted
to building huge datasets for training concept detectors. However most of them
are recorded in a well constrained conditions [15, 16], which are not suitable for
detecting actions in complex events.[4] provides a benchmark dataset with 25
selected concepts over a set of 1,338 consumer videos. But its concept collections
are based on static images only. Audio or motion concepts are not used. Due to
the large diversity of the data and insufficient training samples, concept detec-
tors perform far below expectation. In this paper, we propose an unsupervised
approach to discover concepts from three modalities using DBN, which has been
proposed to solve digit recognition and achieved promising results [7]. Besides, it
has been shown in [17] that DBN performs better than PCA and LLE (Locally
Linear Embedding) in terms of dimension reduction.

Multiple data sources can be combined using either early fusion or late fu-
sion strategies [18, 4, 5, 8]. Traditional fusion methods treat each source inde-
pendently[5]. We argue that it is desirable to exploit the relationships between
multiple sources to achieve robust classification. In this paper, we propose sparse
coding [19] to perform late fusion and empirically show the benefits of such ap-
proach.
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3 Learning Low-level Features

We use the TICA feature learning networks [6] to learn the invariant audio,
scene and motion features from 1D audio signal, 2D image patches and 3D video
cuboids respectively. To make the paper self-contained we briefly descbribe TICA
in the context of event recognition. For more details, please refer to [6] and [20]

We write x(p) ∈ Rn as the pth whitened local raw signal extracted from
one modality of the video clips. For 2D image patches and 3D video cuboids,
we flatten them into 1D vectors. Learning features can be viewed as learning
a set of filters that map the raw signal into feature space by calculating the
filter responses. TICA is a two-layered network. The first layer learns m filters
S ∈ Rm×n from input x(p) by minimizing Eqn.3. The filter responses are the
activations of the first hidden layer units H. The second layer’s filters V are
manually fixed to pool over a small neighborhood of adjacent first layer units
H, representing the subspace structure of the neurons in the first layer. More
specifically, in a 2D topography, the hk units lie on a 2D grid, with each activation
of the second layer ri pooling over a connected 3 × 3 block of H units through
V .

In more detail, the activation of units k in the first layer is:

hk
(
x(p);S

)
= Sk · x(p), (1)

where Sk is the kth row of S.
The activation of unit i in the second layer is:

ri
(
hk;V

)
=

√√√√ m∑
k=1

Vikh2k, (2)

where V ∈ Rm×m is a fixed matrix that encodes the topography of the hidden
units H. m is the number of hidden units in the first layer.

In the filter learning process, the optimal S is learned by minimizing function:

S∗ = arg min
S

T∑
p=1

m∑
i=1

ri
(
x(p);S;V

)
. (3)

s.t. SST = I

where T is the total number of training samples. The orthogonality constraint
SST = I provides competitiveness and ensures that the learned features are
diverse. In the feature extraction process, given S∗ and the new whitened local
raw signal x, the activation in the second layer R will be served as the feature
of x.

Considering the data we have are quite diverse and huge amount, we argue
that learning good features directly from the data is very efficient. We choose
TICA as our low-level building block because of its two advantages: feature
robustness and less computational complexity. The pooling architecture of TICA
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ensures the learned features are invariant to slight location and orientation shifts,
and selective to frequency, rotation and motion velocity. The filter learning is
much faster than other methods such as GRBM [21] since the gradient of the
objective function Eqn.3 is tractable. The feature extraction is also fast compared
with sparse coding as the feature is simply computed through the matrix vector
products.

4 Data-driven Concept Discovery

Previous works[15, 16] use human defined concepts for action recognition. How-
ever, this is not suitable to event recognition due to two reasons: first, defining
concepts that describe the huge diversity of human actions using limited lin-
guistic words is not practical. Second, current event datasets [22] do not have
detailed annotation of action concepts for each video clip, which make it hard to
train concept detectors. These two problems originally motivate us to propose
data-driven concept discovery.

We assume there is only one type concept from each of the three modalities
appears in a single shot clip. The idea is that we want to find a representation
Y ∈ Rd, which can map each clip of different modalities from raw signal space
to a semantic space, where clips with similar concepts are near with each other.
Considering the high diversity of our data, instead of pooling the low-level TICA
features spatial-temporally, we use bag of word (BoW) histogram Q ∈ RD by
adopting vector quantization (VQ) technique using K-means soft assignment
[23].

One problem is, the BoW histogram is usually long (corresponding to large
cookbook) in order to capture variations of data. And k-means is well-known
to be sensitive to noise in a high dimensional space especially when we apply
Euclidean distance as similarity measurement. To address this, we propose to
use deep belief nets (DBN) [17] to learn a lower dimensional representation for
the clips from each modality. A DBN is a two-layered network, which is a stack
of restricted Boltzmann machines (RBMs). The activations of the lower RBM
serve as the input of the upper RBM. In each RBM, the hidden layer captures
strong correlations of the units’ activities in the layer below. For our highly
complex event data, stacking several RBMs is an efficient way to progressively
expose low-dimensional, non-linear structure. We begin by describing RBM in
the case of real value input following the description in paper [17]and [24], and
then we show how we use the learned clip representation to discover data-driven
concepts from each modality.

DBN learning: We start with the visible units Q in the bottom layer, which
are essentially the BoW representation of each clip. A set of hidden units l are
built through symmetric connection weights represented by weight matrix W .
We can view the RBM as an undirected graphical model and the energy of any
state in it is given by the following function:
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E(q, l) = − logP (q, l) (4)

=
1

wσ2

∑
i

q2i −
1

σ2
(
∑
i

ciqi +
∑
j

bj lj +
∑
i,j

wijqilj).

Here, σ is the standard deviation of the Gaussian density, lj are hidden unit
variables, qi are visible unit variables, wij is the weight connected with qi and
lj , ci and bj are the bias term of visible and hidden units respectively. The
learning process is to estimate wij , ci and bj through minimizing the energy of
states drawn from the data q distribution, and raise the energy of states that are
improbable given the data. We follow [24] to use contrastive divergence learning
which gives an efficient approximation to the gradient of the energy function.
Further, in each iteration, we apply contrastive divergence update rule, followed
by one step of gradient descent using the gradient of the regularization term.

Once finish training a layer of the network, we feed the output values of this
layer as inputs of the next higher layer. Finally, after finishing training all the
layers, we obtain the clip representation as the outputs of the last layer, denoted
as Y ∈ Rd. By doing so, We map the original features to much lower dimensional
space since D � d.

Building Concepts: The low dimensional representations Y from similar
clips are then grouped into concepts with a semantic meaning. In our framework,
concepts are obtained from three modalities separately and each event video is
represented as the occurrence frequency of each concepts from three modalities,
denoted as Z.

5 Event Representation Learning

It is common that concepts of different modalities are highly correlated with each
other. For example, in a birthday party event, action concept ‘people dancing’
is almost always co-occur with concept ‘happy music’ or scene concept ‘crowd
people’, instead of ‘horrible music’ nor ‘traffic scene’. By modeling the interac-
tion context and inter-modality occurrence of concepts, we can removing noisy
concepts and further improve the event representation. The idea is that we want
to learn a set of bases which capture the co-occurrence information of concepts
and the event can be represented as a linear combination of the bases. Further
by imposing the sparsity on the coefficients, the noisy occurrence of irrelevant
concepts will be removed.

More precisely, given N events represented in terms of concatenated con-
cepts from three modalities, {Z(1), · · · , Z(i), · · · , Z(N)}. We learn the basis by
modeling it as a sparse coding problem [19]:

φ∗ = arg min
a,φ

∑
i

∥∥Z(i) −
∑
j

a
(i)
j φj

∥∥2
2

+ β‖a(i)‖1

s.t. ‖φj‖2 ≤ 1, ∀j ∈ {1, 2, · · · , s}. (5)
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where φj is the basis vector, a
(i)
j is the coefficient of ith event associated with

jth basis. The first term in Eqn.5 is reconstruction error, while the second term
enforces sparsity of coefficients. β is the relative weight to balance the two terms.
We use sparse coding algorithm in [19] to solve this minimization problem.

After learning a set of bases φ, we can encode an input event Z(t) as sparse
linear combination of the bases. The combination coefficients a(t) will serve as
the final representation of this event, and can be obtain by solving Eqn.6.

arg min
a(t)

∥∥Z(t) −
∑
j

a
(t)
j φj

∥∥2
2

+ β‖a(t)‖1. (6)

SVM with χ2 kernel is used for classification [25].

6 Experiments

In this section, we will describe the dataset sand discuss several interesting ob-
servations that we had.

6.1 Datasets and experimental settings

We tested our approach on TRECVID 2011 event collection [22], which has 15
categories: “Boarding trick”, “Flash mob”, “Feeding animal”, “Landing fish”,
“Wedding”, “Woodworking project”, “Birthday party”, “Changing tire”, “Ve-
hicle unstuck”, “Grooming animal”, “Making sandwich”, “Parade”, “Parkour”,
“Repairing appliance”, “Sewing project”. As shown in Fig.1, it is a new set of
videos characterized by a high degree of diversity in content, style, production
qualities, collection devices, language, etc. The frame rate ranges from 12 to 30
fps, resolution ranges from 320 × 640 to 1280 × 2000, the time duration ranges
from 30 seconds to 5 minutes.

We manually defined and annotated an action concept data set based on
TRECVID event collection, which has 62 action concepts(e.g. open box, per-
son cheering, animal approaching, wheel rotating, etc.) for approximately 9,000
videos. To the best of our knowledge, this is the largest action concepts dataset
in related literatures.

In the experiment, we first resize all the videos to 480× 640, and then divide
each video into 4 and 10 seconds clips with 2 seconds overlap, based on our
observation that the motion concepts duration varies from 2 to 10 seconds. There
are approximately 300,000 clips in total. Performance was evaluated in terms of
Mean Average Precision (MAP) on 15 events.

Also, we compare our low-level features with other hand-designed features
on UCF YouTube action dataset, which has 11 action categories. 25-fold cross-
validation is used. It is important to note that although the YouTube dataset is
one of the most extensive realistic action datasets in the vision community, it is
still less noisy and much simpler then the TRECVID data in terms of inner-class
diversity.



8 Y. Yang and M. Shah

6.2 Low-level feature extraction

We use TICA to learn three modalities of feature representation: audio, image
and video. For each modality, approximately 200,000 sampled signal/patches/video-
blocks are used to train the filters and 600 filters from each modality are fi-
nally chosen as the bases for feature construction. The audio signal is extracted
with sampling rate of 16 KHz. The inputs of the visual layer are 800, 20 × 20,
20 × 20 × 10, respectively, in the three modalities. Fig. 3,4,5 shows randomly
selected learned filters on 1D, 2D and 3D training examples respectively.

Fig. 3: 24 out of 600 audio filters learned from TRECVID event collection.

Fig. 4: 48 out of 600 image (2D) filters learned from TRECVID event collection.
Since the training patches have 3 channels (RGB), the learned filters are also
with 3 channels. The color information of the filters mainly captures the scene
concepts, such as indoor, outdoor.

In order to demonstrate that our learned features outperform other classical
hand designed features. We use the same bag of word framework as [26] where the
code book is generated using K-means and the histogram is classified using SVM
with χ2 kernel. The code book size is set to 4,000. We compare our results on
manually annotated 62 action concepts, EC and UCF 11 dataset, using MFCC
[3], MBH [27], SIFT [1] and STIP [2].

Table 1 summarizes the results. Our learned features work 10% better on av-
erage in terms of recognition accuracy than all the other hand designed features,
on EC and 62 concepts dataset. The performance of our 3D TICA feature is 20%
higher than STIP (30.9%) motion feature on 62 action concepts dataset. The
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Fig. 5: 12 out of 600 spatiotemporal (3D) filters learned from TRECVID event
collection. Filter size is 20× 20× 10. Each row shows two 3D filters.

results also show that combining features from different modalities improves the
overall accuracy. This suggests that features from different modalities capture
complementary information and using features from different sources is neces-
sary.

Interestingly, we notice that the learned features are not better than Motion
Boundary Histogram (MBH) on UCF-11 dataset. The reason is presumably that
MBH tends to overfit itself to relatively easy dataset, such as UCF-11, which con-
tains only well-defined action with relatively simple and clean background. How-
ever, its performance plunges by a half to 44% on difficult dataset TRECVID,
where our method yields the highest accuracy of 63.2%. This demonstrates the
robustness of learned local features and suggests that feature discovery is im-
portant and necessary especially under uncontrolled in-the-wild condition.

UCF TRECVID TRECVID
11 62 concepts 15 Events

MFCC [3] × 31.1 34.8

SIFT [1] 58.1 40.3 30.1

STIP [2] 57.5 30.9 41.0

MFCC+SIFT+Dollar × × 51.1

MBH [27] 83.9 36.0 44.0

ISA[13] 75.8 51.3 53.5

TICA 1D × 31.7 39.7

TICA 2D 56.4 43.3 45.2

TICA 3D 74.3 53.5 55.2

TICA 2+3D 79.1 57.9 59.5

TICA 1+2+3D × 58.1 63.2

Table 1: A comparison of performance using different features and modality com-
binations. Our learned features outperform all the other hand designed features
on the difficult TRECVID dataset; Combining features from different modalities
improves the overall accuracy.
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6.3 Data-driven concept discovery

We trained a five-layer deep belief net using RBM at each layer. The RBMs were
initialized with small random weights and zero biases, and trained for 60 epochs
using mini-batches size of 100. For the linear-binary RBM we used a learning
rate of 0.001. We reduced the learning rate at the beginning of learning when
the gradient can be large, and also at the end of learning in order to minimize
fluctuations in the final weights. We also used a momentum of 0.8 to speed up
the learning.

Fig. 6: A comparison event detection performance as a function of number of
hidden units (dimensionality) of RBM, PCA, LLE and EigenMaps. The accuracy
of directly using K-means clustering on 4000 dimension without any dimension
reduction is 39%. We compare different dimension reduction techniques. RBMs
achieve the best performance of 66% when the number of hidden units is 1,000.
Note that the accuracy generally increases, for all techniques, while we reduce
the dimension of clip representation, which suggests the necessity of dimension
reduction in concept learning.

Fig.6 shows the detection results, which evaluates the performance of the clip
representation of each layer: after being trained in each layer, clips are grouped
into concepts based on the new representation. Then, SVM is used for classifica-
tion. We first attempt to use K-means directly on the initial clip representation
without any dimension reduction on the data. The event detection MAP is 39%
based on concept representation. Then we adopt RBM recursively to reduce the
data dimension from 4,000 to 100. Fig.6 shows that when the dimension of the
clip representation reduces from 4,000 to 1000, the event detection MAP in-
creases from 39% to 66% and it reaches the highest point at 1,000 dimension.
This supports our assumption that the initial representation of the clip lies in
a high dimensional space where Euclidean distance can not measure the true
similarity and DBN learns the regularity between the clips correctly. If we keep
decreasing the dimension of the clip representation, the accuracy goes down. It
means that the high dimensional data is compressed into a too concise space,
some useful information maybe lost there. Further, we repeat the same exper-
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iments using other manifold learning methods such as PCA, EighenMap and
LLE. Figure 5 shows the detection results. It is clear that DBN performs signif-
icantly better.

Fig.7 shows the classification results based on a different number of concepts
using three modalities and their combination. The results show that motion
concepts play an important role in the event detection problem. And a large
number of concepts helps the recognition mainly because that larger pool of
concepts captures finer level variations of actions, e.g., running action from dif-
ferent viewpoints. However, when the number of concepts increases further, the
accuracy drops presumably due to the insufficiency of training video samples,
and SVM runs into overfitting.

Fig. 7: A comparison of event detection performance using proposed approach
employing audio, image and video features individually and jointly as a function
of number of discovered concepts. We also show performance using standard
STIP features. Finally, we show the importance of discovered concepts compared
to manually annotated 62 action concepts. The results show that a larger number
of data-driven concepts improves the detection rate and is better than human
annotated concepts.

We observe that, the curve of audio signal (TICA 1D) peaks at 500 con-
cepts, while that of scene (TICA 2D) and motion (TICA 3D) reach their highest
performance much later. This implies that the underlying variation of audio sig-
nal is less than that of motion and 2D scene signals, which is consistent with
common sense. Combined concepts (TICA 1D+2D+3D) achieve the best results
since audio, scene and motion concepts capture complementary information in
the videos. We also use STIP feature to run the same experiments. The perfor-
mance is significantly worse than using TICA feature. This shows that low-level
features are important for discovering meaningful data-driven concepts.

Interestingly, the model using 62 human-defined concepts trained in super-
vised manner, outperforms its counterpart using the same number of concepts
but discovered in unsupervised way. This suggests more supervision helps when
only a small number of concepts are used. However, when the number of concepts
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increase, data-driven concepts perform better. This shows that a large number
of concepts improves the event detection.

We also compare the performance of discovered concepts using early feature
fusion of three modalities to the concepts learned from three modalities sepa-
rately. Fig.8a shows that discovering concepts separately is always better.

(a) (b)

Fig. 8: (a)A comparison of event detection using different number of concepts
discovered using three modalities jointly and separately. The former fuse the low
level features from three modalities first as the initial clip representation, then
learns concepts jointly. The later discovers the audio, scene and motion concepts
separately. The results show that using concepts based on the modalities sepa-
rately outperform the early fusion one. (b)A comparison of event detection using
sparse representation and bag of concept representation. Sparse representation
works consistently better than bag of concept representation.

6.4 Sparse video representation

After concepts are discovered, each long event video can be represented in terms
of concepts. Fig.8b shows the comparison of the sparse representation and the
bag of concept representation, in terms of detection rate. In addition, based
on the best results, the detection rate of each category compared with baseline
(SIFT + MFCC + STIP) is shown in Fig.9. The MAP of our method over 15
events is 68.2%. In comparison, the MAP of SIFT+STIP+MFCC is 51.1%.

7 Conclusion and Future Work

In this paper, we present a three step approach which learns the sparse video rep-
resentation based on data-driven concepts from three modalities (audio, image
and video) in an unsupervised manner. Through learning the low-level features
and clip representation, high-level semantic concepts are discovered. Extensive
experiments show that our method significantly outperforms the baselines using
human designed features on complex in-the-wild event recognition dataset.
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Fig. 9: Comparison of our proposed method with the combination of MFCC,
SIFT and STIP features in terms of detection accuracy on each event category.
Our mean average precision is 68.2%. The MAP of combination method is 51.1%.
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