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Abstract. This paper focuses on the unexplored problem of inferring motion of
objects that are invisible to all cameras in a multiple camera setup. As opposed to
methods for learning relationships between disjoint cameras, we take the next
step to actually infer the exact spatiotemporal behavior of objects while they
are invisible. Given object trajectories within disjoint cameras’ FOVs (field-of-
view), we introduce constraints on the behavior of objects as they travel through
the unobservable areas that lie in between. These constraints include vehicle fol-
lowing (the trajectories of vehicles adjacent to each other at entry and exit are
time-shifted relative to each other), collision avoidance (no two trajectories pass
through the same location at the same time) and temporal smoothness (restricts
the allowable movements of vehicles based on physical limits). The constraints
are embedded in a generalized, global cost function for the entire scene, incor-
porating influences of all objects, followed by a bounded minimization using an
interior point algorithm, to obtain trajectory representations of objects that define
their exact dynamics and behavior while invisible. Finally, a statistical represen-
tation of motion in the entire scene is estimated to obtain a probabilistic distri-
bution representing individual behaviors, such as turns, constant velocity motion,
deceleration to a stop, and acceleration from rest for evaluation and visualization.
Experiments are reported on real world videos from multiple disjoint cameras
in NGSIM data set, and qualitative as well as quantitative analysis confirms the
validity of our approach.

1 Introduction

The proliferation of large camera networks in recent past has ushered research in multi-
ple camera analysis, and several methods have been proposed to address the problems of
calibration, tracking and activity analysis with some degree of reliability [1,2,3,4,5,6,7].
However, despite significant efforts in this area, the majority of literature has been con-
fined to solution of problems like object correspondence and activity correlation be-
tween visible objects, while estimation and inference of object behaviors in unobserv-
able regions between disjoint cameras has mainly remained unexplored. Such invisible
regions between disjoint cameras are always present as visual sensor networks have an
inherent inability to provide exhaustive coverage of all areas of interest, while failure
of a sensor is always a possibility which can result in loss of coverage of a particular
area that was previously being observed. Besides the issue of coverage, there are sev-
eral other applications that justify research into such inference: improving object cor-
respondences across cameras; estimating patterns of motion and scene structure; aiding
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Fig. 1: The first image depicts the input to our method - correspondences across multiple
disjoint cameras. In this case, there are five cameras, the FOV of cameras are shown
with different colors whereas invisible region is represented by black. Given the input,
we reconstruct individual trajectories using constraints introduced in this paper. Next,
reconstructed trajectories are used to infer expected behavior at each location in the
scene, shown as thick color regions, where the direction of motion is shown by HSV
color wheel. We also infer different behaviors such as stopping and turning from the
reconstructed trajectories.

expensive operations for PTZ camera focusing by precise localization of unobservable
objects; and generalized scene understanding, etc.

In this paper, we pose the question of what information can be inferred about objects
while they are not observable in any camera, given tracking and object correspondence
information in a multiple camera setup? This is an under-constrained problem, for in-
stance, the correspondence provides two sets of constraints (position, velocity), but if
the object is invisible for a hundred time steps, then we have to solve for a hundred
variables. For instance, in the scenario shown in Fig. 1, the knowledge that an object
exits a camera’s FOV on the top, and enters another’s on the right is of little use in
guessing what its behavior was while invisible. The best we can do it to assume that ob-
ject moved with the constant velocity through the invisible region. But, this is a rather
strong assumption, since the object may have stopped at some unknown locations for
unknown amounts of time, or may have taken an indirect path between exit and re-entry
into the camera network. Such behavior is influenced by scene structure (such as allow-
able paths), obstacle avoidance, collision avoidance with other objects, and if the object
is a vehicle, it may further be influenced by dynamic aspects of the invisible scene such
as traffic signals. Besides being an assumption that is not always true, constant velocity
does not provide with any useful information about motion of object or the invisible
region itself. The question then becomes, can we do better than constant velocity? If we
assume absolutely no information about the invisible region and treat objects indepen-
dently, the answer is no. But, if we have correspondences for multiple objects available,
then the fact that motion of an object is dependent on proximal objects can be used to
constrain its movement to a certain degree. The idea of using object-specific contextual
constraints has been used as social force models for tracking [8] and simulation, and
for describing vehicular motion in transportation theory [9,10,11]. But, these models
differ in application from the problem addressed in his paper, in that they assume object
positions are known with certainty, we on the other hand, use these constraints as costs
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which we minimize to obtain positions at each time instant. This is further complicated
by the fact that, each object affects motion of its nearby objects and thus, circular inter-
dependencies exist between objects. This requires some form of precedence mechanism
where some objects receive priority in the solution over others.

In the proposed approach, given object trajectories within disjoint cameras’ FOVs,
we introduce constraints on the behavior of objects as they travel through the unobserv-
able areas that lie in between. The first of these constraints is vehicle following, which
is based on the observation that trajectories of proximal vehicles that exit a camera and
enter another camera are time-shifted versions of each other. The second constraint is
collision avoidance, which ensures that vehicles do not collide with each other. The next
constraint temporal smoothness restricts the allowable movements of vehicles based on
physical limits. The last constraint behavior localization bounds the cost introduced by
collision avoidance ensuring that solution is non-trivial. The constraints are embedded
in a generalized, global cost function for the entire scene, incorporating influences of
all objects, followed by a minimization to obtain trajectory representations of objects
that define their exact dynamics and behavior while invisible. Finally, a statistical repre-
sentation of motion in the entire scene is estimated to obtain a probabilistic distribution
representing individual behaviors, such as turns, constant velocity motion, deceleration
to a stop, and acceleration from rest, for evaluation and visualization.

To the best of our knowledge, there are currently no methods in literature that at-
tempt to infer any salient properties for unobservable areas (trajectories, motion pat-
terns, static and dynamic behavior of objects). In addition to the applications listed
earlier, such inference will allow economically viable deployment of large sensor net-
works without the need to cover all possible regions of interest, and learning of patterns
of activity for an invisible region will allow detection of anomalous behavior without
directly observing it. To summarize our contributions, the proposed framework has the
ability to infer the following about an invisible scene without any observations:
• Estimation of object trajectories in (x, y, t) as they travel through the unobservable
area,
• Inference of static and dynamic aspects of the scene such as positions where objects
generally stop and traffic lights without direct observation, and
• Completely unsupervised discovery and statistical representation of salient object
patterns of motion for the entire scene including large invisible regions.

The organization of the rest of the paper follows. We briefly review relevant liter-
ature in §2, followed by detailed problem formulation and solution in §3, inference of
static and dynamic scene structure in §4 and presentation of experimental evaluation in
§5.

2 Related Work

The literature involving multi-camera scenarios contains techniques proposed for ob-
ject tracking as well as scene and activity modeling and understanding [12,13,14]. In
particular, many methods have been proposed specifically for analysis of disjoint, or
non-overlapping multiple cameras [4,6,5,15]. The objective of modeling camera rela-
tionships is to use these models to solve for hand-off between cameras, but the pat-
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terns are modeled only for motion within the field of views of cameras. Dockstader
and Tekalp [16] use Bayesian networks for tracking and occlusion reasoning across
calibrated overlapping cameras while in a series of papers [17,18,19], authors employ
Kalman Consensus Filter for tracking in multiple camera networks.

In terms of inference of topological relationships between multiple disjoint cameras,
Makris et al. [3] determined the topology of a camera network by linking entry and exit
zones using co-occurrence relationships between them, while Tieu et al. [20] avoid ex-
plicit feature matching by computing the statistical dependence between observations in
different cameras to infer network topology. Stauffer [21] proposed an improved linking
method to handle cases where exit-entry events may be correlated, but the correlation
is not due to valid object transitions. Another interesting area of research is the focus of
work by Loy et al. [7], where instead of assuming feature correspondences across cam-
eras, or availability of any tracking data, regions of locally homogenous motion are first
discovered in all camera views using correlation of object dynamics. A canonical cross
correlation analysis is then performed to discover and quantify the time delayed corre-
lations of regional activities observed within and across multiple cameras in a common
reference space.

For our purpose of behavior inference in unobservable regions, avoidance of object
collision in structured scenes is one of the most important cues. In this respect, research
in transportation theory has attempted to perform collision prediction and detection in
the visual domain. Atev et al. [22] propose a collision prediction algorithm using object
trajectories, and van den Berg et al. [23] solve the problem of collision avoidance for
independently moving robots that can observe each other. In our proposed framework,
however, it is essentially assumed that no collisions took place in the unobservable
region, and the goal is to infer unobserved object behavior given this assumption. Notice
that although some of the proposed constraints bear similarity to ‘motion planning’
algorithms in robotics [24], some of the significant differences include the fact that for
path planning the obstacles are directly observable and the length of time taken to reach
the destination is unconstrained. Our method essentially deals with the reverse problem
of path planning, i.e., inferring the path that has already been traversed. We therefore
propose a solution to a previously unexplored problem. In the following, we formally
define the problem and discuss our approach to solve it.

3 Problem Formulation and Solution

Given a set of trajectories (for only observable areas) that have been transformed to a
global frame-of-reference, we focus on the difficult and interesting scenario when the
unobservable region contains traffic intersections even though the solution we propose
in this paper can handle simpler situations such as straight roads as well. The input
variables of the problem are the correspondences, i.e., a vehicle’s position, velocity,
and time when it enters and exits the invisible region (or equivalently exits a camera’s
field of view and enters another’s).

Let pti, v
t
i , and ati denote the position, velocity and acceleration respectively, of the

ith vehicle at time t while traveling through the invisible region and ηi and χi be the
time instants it enters and exits the invisible region. Thus, given the pair of triplets for
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Fig. 2: Depiction of constraints using vehicle trajectories in (x, y, t): (a) The point of
collision between green and black trajectories shown with a red sphere, whereas col-
lision is avoided in (b). (c) shows an example of vehicle-following behavior where
vehicle in yellow trajectory follows the one in red. In (d) the orange trajectory does not
violate smoothness constraint but the one in black does (abrupt deceleration).

entry (pη, vη, η) and exit (pχ, vχ, χ), our goal is to find pti for all t ∈ [ηi, χi], for each
vehicle which correspondingly determines vti and ati.

A path Pi is a set of 2d locations traversed by a vehicle i and is obtained by con-
necting pη with pχ such that derivative of Pi is computable at all points i.e. there are
no sudden turns or bends. The path so obtained does not contain any information about
time. Associating each location in Pi with time gives us the trajectory {pti}. Two vehi-
cles i and j have the same path i.e., Pi ≡ Pj , if ‖pηii − p

ηj
j ‖ and ‖pχi

i − p
χj

j ‖ are less
than threshold T , and they have temporal overlap O(i, j) = 1, if ηi < χj ∧ ηj < χi.
Moreover, their paths intersect, i.e., i ⊥ j, ifPi obtained by joining pηii to pχi

i , intersects
with Pj .

Since inference of motion in invisible regions in a severely under-constrained prob-
lem, we impose some priors over the motion of vehicles as they travel through the
region. These priors in §3.1-3.4 below, are used as constraints that will later allow us to
reconstruct complete trajectories in the invisible region. The first two constraints (col-
lision avoidance and vehicle following) essentially capture the context of spatially and
temporally proximal vehicles while third constraint (smoothness of trajectories) estab-
lishes physical limits on the mobility of vehicles as they travel through the region. Using
these constraints, we propose an algorithm to reconstruct trajectories in §3.6.

3.1 Collision Avoidance

The first prior we exploit is the fact that vehicles are driven by intelligent drivers who
tend to avoid collisions with each other. The probability that a vehicle will occupy a
location at particular time becomes low if the same location is occupied by another
vehicle at that same time. This effectively reduces the possible space of the solution,
leaving only those solutions that have low probability of collisions. Consider the two
vehicle trajectories shown in Fig. 2(a) where black trajectory shows a vehicle making
a left-turn while vehicle with green trajectory moves straight. The corresponding 2d
paths, P intersect at the point marked with a red sphere. A collision implies that a
single point in (x, y, t) is occupied by more than one object. Collision avoidance, thus,
enforces that no two trajectories pass though the same (x, y, t) point. In Fig. 2(b), the
collision is avoided by a change in shape of the green trajectory. Note that, collision
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avoidance doesn’t necessarily mean that vehicles change paths in space, but that they
don’t occupy the same spatial location at the same time. Formally, let τ be the time when
vehicles with intersecting paths are closest to each other in (x, y, t), then the collision
cost for vehicle i given by:

Cαi =
∑
j

exp

(
ωα ·

vτi .v
τ
j

‖pτi − pτj ‖

)
, where τ = argmin

t

∥∥pti − ptj∥∥, (1)

∀j|i ⊥ j ∧ O(i, j) = 1, ωα being the weight. The above equation captures the cost
due to motion at the point of closest approach from all vehicles with respect to the ve-
hicle under consideration. The exponentiation softens the impact of collision to nearby
points in (x, y, t), thus forcing vehicles to not only avoid the same point but avoid close
proximity as well. Two proximal vehicles both moving with a high velocity will have a
high cost, however, if at least one vehicle is stationary, this cost will be low.

3.2 Vehicle Following

Like collision avoidance, this constraint reduces the solution space by making sure that
relative positions of adjacent and nearby vehicles remain consistent throughout their
travel in the invisible region. It is inspired from transportation theory, where vehicle
following models describe the relationship between vehicles as they move on the road-
way [9,10,11]. Many of them are sophisticated functions of distance, relative velocity
and acceleration of vehicles and have several parameters such as desired velocity based
on speed limit, desired spacing between vehicles and comfortable braking distance.

We, on the other hand, use vehicle following to define a spatial constraint between
leading and following vehicles. The leader l and follower f are given by the pair:

(l, f) =
{
(i, j)|Pi = Pj ,O(i, j) = 1 ∧ ηi < ηj ,

χi < χj ∧ @k|ηi < ηk < ηj ∨ χi < χk < χj
}
. (2)

We use the relationship between leader and follower to constrain the possible move-
ment of follower by forcing it to remain behind its leader throughout its travel through
the invisible region. This also caters for the correct stopping position of follower since
it must stop behind the leader and not occupy the same spot, an event which is highly
likely if we only take into account cost from collision. The vehicle-following cost for
follower given the leader is written as:

Cβi = exp

(
ωβ
∑
t

‖ptj − pti‖+

)
, (3)

where ‖ptj − pti‖+ = ‖ptj − pti‖, if ‖ptj − p
χj

j ‖ < ‖pti − p
χj

j ‖ and 0 otherwise; ωβ is the
weight associated to this cost.

Vehicle-following constraint enforces the condition that trajectories of vehicles ad-
jacent to each other following the same path are time-shifted versions of each other,
as can be seen in Fig. 2(c) where red and yellow trajectories belong to the leading and
following vehicles respectively.
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3.3 Smoothness Of Trajectory

The smoothness constraint restricts the allowable movements of vehicles based on phys-
ical limits as it happens in real life. It prevents the solution from having abrupt acceler-
ation or deceleration as well as sudden stops. This is an object-centric constraint and is
computed as:

Cγi = exp

(
ωγ
∑
t

(
1−

√
π

2
N (

vti
vt−1
i

; 1, σγ)

))
, (4)

where ωγ is the weight, and N is the normal distribution with σγ = 0.25 variance.
The above equation ensures that distance in space-time volume between any two

adjacent points in a single trajectory is a small multiple of the other. In Fig. 2(d), the
orange trajectory is has low smoothness cost whereas black trajectory has higher cost
due to abrupt deceleration in the beginning.

3.4 Stopping Behavior Localization

The above three constraints do not completely specify the solution because trivial solu-
tions with high values of acceleration and deceleration can exist. This is possible when
a vehicle is made to stop with high deceleration i.e. near pηii , stays there as long as
possible before leaving the invisible region with high acceleration while satisfying the
smoothness constraint. This afraid-of-collision solution for a vehicle is not only incor-
rect, it also will result in wrong results for all of the following vehicles. The following
additional cost will rectify this problem avoiding such solution,

Cδi = exp
(
ωδ
∥∥∥xi,j − ptϕi ∥∥∥) , j|i⊥j ∧ O(i, j) = 1, (5)

where ωδ is the associated weight, xi,j is the spatial point where vehicle paths intersect
and tϕ is the time when vehicle stops. This constraint dictates that stopping point for
a vehicle cannot be arbitrarily away from the possible collision locations, essentially
localizing the move-stop-move events in space and time.

3.5 Trajectory Parametrization

As mentioned earlier, given entry and exit locations, each trajectory is represented by a
2D path, P by joining the two locations in a way that allows for bends as they happen
in the case of turns. Parameterizing the curve by placing χ− η equidistant points for a
vehicle gives us a trajectory that represents motion with constant velocity. Parameteriz-
ing in this way reduces the number of variables to one-half (from 2D to 1D). Our goal
then becomes to find the temporal parametrization of the trajectory that minimizes cost
from the constraints. But, given that we might be dealing with thousands of vehicles,
each invisible for hundreds of time units, the extremely large variable space (∼ 106)
makes the problem intractable.

In order to make the problem tractable, we reduce the parameters defining a trajec-
tory to three: deceleration (φ), duration of stopping time (ϕ) and acceleration (ψ). The
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321t=81 381 521 681

t=1101 14611301 16411361

Fig. 3: Each row is an example of trajectory reconstruction. Vehicle under consideration
is shown with squares, yellow depicts constant velocity, red is from proposed method
and green square marks the ground truth. Rest of the vehicles are shown in black. In first
row, reconstruction with constant velocity causes collisions at t = 381 and 521, and in
the second row, between t = 1200 and 1500. On the other hand, proposed method and
ground truth allow the vehicles to pass without any collision.

constant velocity case corresponds to φ = ϕ = ψ = 0. Thus, we can model all cases
between constant velocity to complete stopping by varying values of these variables.
However, since the exact duration of invisibility and end-point velocities are known,
we have only two-degrees of freedom making one of the variables dependent on the
other two. We choose φ and ϕ to represent the trajectory, while ψ is determined based
on time and velocity constraints. Thus, the parametrization results in constant or zero
acceleration and deceleration while satisfying entry and exit velocities.

3.6 Optimization for Motion Inference

Considering each vehicle individually, given the time it enters and exits the region, the
best estimate for its motion is constant velocity. However, since an invisible region (in
our case, an intersection) may involve vehicles traveling in from all directions, each
vehicle influences the motion of other vehicles. A constant velocity prediction for each
vehicle will result in collisions even though it may satisfy the constraints of vehicle-
following and smoothness.

Given entry and exit triplets of position, velocity and time for each vehicle, our goal
is to find the parameters φ and ϕ for all vehicles that pass though the invisible region.
Since each vehicle’s position at every time instant is conditionally dependent on all
other vehicles that also pass through the invisible region, this information is exploited
in the form of four constraints. The proposed solution iteratively minimizes the local
cost of each vehicle by making sure it satisfies the constraints, fixing its parameters and
then moving onto other vehicles.
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Algorithm 1 Algorithm to infer motion of vehicles given [pη, vη, η] and [pχ, vχ, χ] for
vehicles 1 : n
1: procedure INVISIBLEINFERENCE

2: Prioritize vehicles using Eq. 6
3: for all i← 1, n as per Θi do
4: Identify j|O(i, j) = 1 and i⊥j
5: φi, ϕi ← argmin

φ,ϕ
Cαi + Cβi + Cγi + Cδi

6: Parameterize trajectory i according to φi, ϕi
7: end for
8: end procedure

We impose a prioritizing function on the trajectories, which is a linear function of
entry and exit times:

Θi = ωχχi + ωηηi. (6)

If we set ωχ = 1 and ωη = −1, the criteria becomes shortest duration first, on the
other hand, if ωχ = 1 and ωη = 0, the criteria becomes earlier exit first. The former
biases the solution towards high priority vehicles putting very strong constraints on
vehicles that spend longer times in the invisible region. We used the latter which makes
more intuitive sense also since vehicles will yield way to the a vehicle that exits before
them.

The cost for each vehicle is the sum of costs due to collision, vehicle-following, and
smoothness including penalty for trivial solution. The parameters are bounded so that
−20 ft/s2 < φ < 0, and 0 < ϕ < χ− η, and the cost is minimized through an Interior
Point Algorithm with initialization provided by uniform grid search over the parameter
space. The summary for this simple algorithm is provided in Alg. 1 while Fig. 3 shows
the results on real examples.

4 Inference of Scene Structure

After obtaining trajectories using the method and constraints described in the previous
section, we now propose methods to statistically represent motion in the invisible re-
gion (§4.1), followed by extracting some key features of the scene such as locations of
stopping points (static) and timings of traffic signals (dynamic) in §4.2.

4.1 Statistical Representation of Motion

Given the inferred trajectory representations for objects in invisible region, we compute
the features, (xti, y

t
i , u

t
i, v

t
i , t), for each point on the ith trajectory derived from Pi, φi,

ϕi, and ψi, where ut = xt − xt−1, and vt = yt − yt−1. To obtain a probabilistic
distribution that represent individual behaviors, such as turns, constant velocity motion,
deceleration to a stop, and acceleration from rest, we first cluster feature points using the
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k-means algorithm, and then treat the clusters as components of a 4d Gaussian mixture
model, B for each leg of traffic. A feature point x induced by B is given as,

x ∼
NB∑
k=1

ωkN
(
·
∣∣∣µk,Σk

)
, (7)

where the mixture contains NB Gaussian components, each with parameters µ, Σ, and
mixing proportion ω. This representation serves as a generative model that summarizes
the spatiotemporal dynamics of objects induced by each behavior, and is potentially
useful for scene understanding, anomaly detection, tracking and data association, as
well as visualization of results of the proposed inference framework. For visualization,
we compute the per-pixel expected motion vectors conditioned on the pixel location
along each leg, i.e., EB

[√
u2 + v2, tan−1(v/u)|x, y

]
, to obtain expected magnitude

and orientation of motion at each pixel for each behavior, and depict them using the
HSV colormap as is done for motion patterns [25].

4.2 Scene Structure & Status Inference

Given the exact motion and behavior of objects in the invisible regions, we propose to
estimate some key aspects of the scene structure and status to, show the importance
and usefulness of our framework, and allow evaluation. We briefly explain our methods
for finding the locations where vehicles exhibit the stopping behavior (equivalent to
stopping positions), and the times at which such behaviors occur (equivalent to status
of traffic signals) for each path in the invisible region.

We use the locations, ptϕi , for i|vi < T , to vote for regions corresponding to stop
positions. Specifically, given n vehicles, we compute the following kernel density esti-
mate of the 2d surface, Γ , representing probability of a pixel, p, belonging to stopping
location:

Γ (p) =
1

n
|H|− 1

2

n∑
i=1

K
(

H− 1
2

(
p− ptϕi

))
, (8)

where K is a 2d Gaussian kernel with a symmetric, positive, diagonal bandwidth ma-
trix, H, of fixed horizontal and vertical variances, set to 10 pixels. Fig. 8(a,b) shows an
example of the distribution reflecting probabilities of pixels being stopping positions.
The proposed framework therefore estimates salient scene structure in a statistical man-
ner, without making a single observation within the scene.

Secondly, given the representation of behaviors learned earlier which divides the
scene into possibly overlapping segments corresponding to traffic intersection legs, by
thresholding

∫ ∫
PrBdudv, we can effectively estimate the signal status for each leg.

We use the following simple process: at a given time t, the inferred status (red, green)
of a traffic signal for a leg, l, is

∑
i ‖p

t+1
i − pti‖, if i belongs to l and t > tϕ. Therefore,

if any vehicle traveling on leg l has a non-negligible velocity at its stopping positions,
it votes for the green signal for that leg at that time. The results of signal status and
transitions for all legs of traffic (blue), compared to the results obtained by applying the
same process to ground truth trajectories (black), are shown in Fig.8(c).
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Fig. 4: All trajectories inferred for each dataset shown in 3D. Left and right images are
inferred trajectories from Lankershim and Peachtree datasets respectively.

(a) (b) (c) (d)

Fig. 5: Trajectories in (a) and (c) represent constant velocity while (b) and (d) show
output of proposed method. Collisions due to constant velocity prediction are marked
with red spheres in (a) and (c), but this does not occur in (b) and (d), which are the
results of proposed trajectory inference.

5 Experiments

We ran our experiments on two datasets from NGSIM (see [26] for details). The first
invisible region was from Lankershim 8:30am - 8:45am located at the intersection
of Lankershim/Universal Hollywood Dr. (LA) with a total of 1211 vehicles passing
through the region. The second invisible region was from Peachtree 4:00pm to 4:15pm
located at the intersection of Peachtree/10th Street NE (Atlanta) with 657 vehicles pass-
ing through the region. Both intersections were typical four-legged with three possible
paths that could be taken by a vehicle entering a particular leg, thus, resulting in 12 total
paths. Fig. 4 shows the trajectories that were output by Alg. 1 for both the datasets.

We next analyze the performance of motion inference employing the different con-
straints, followed by results for motion behaviors and scene structure. Figure 5 provides
qualitative results for motion inference where the (a,b) is from Peachtree and (c,d) from
Lankershim dataset. The black trajectory corresponds to the vehicle under considera-
tion while proximal vehicles which it could possibly collide with are shown in colors.
In both (a) and (c), the trajectories are drawn assuming constant velocity for each ve-
hicle. In (a), the vehicle collides with one of the vehicles whereas in (c), vehicle under
consideration collides with six different vehicles. The locations of collision are shown
with red spheres partially invisible due to other vehicles. Notice the change in shape in
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Fig. 6: (a,b) Error profile for our method (yellow) vs. constant velocity (black) for both
datasets. As can be seen, our method has lower error (it has smaller magnitude), thus
provides more accurate inference. (c) ROC curves for our method (solid) vs. constant
velocity (dashed) for the Lankershim (red) and Peachtree (green). The x-axis is the
distance threshold in feet while y-axis gives the percentage of points that lie within that
threshold distance of the ground-truth.

(b) and (d) after inferring motion for all trajectories with the outcome that none of the
trajectories collides with the black trajectory. Both vehicle-following and smoothness
constraints are also visibly in effect in both the examples.

Fig. 6(a,b) gives a per-trajectory comparison of error with and without motion infer-
ence. These graphs for Lankershim and Peachtree respectively were obtained by com-
puting total error (in feet) for each trajectory by computing Euclidean distance of each
point to the groundtruth. The yellow bars correspond to motion inference whereas black
bars represent the case of using constant velocity only. Fig. 6(c) gives the ROC curves
for the two datasets. On the x-axis is the threshold distance in feet, on y-axis are the
percentage of points in all invisible trajectories that lie within that threshold. Using in-
ference, we get an improvement of at least 20% over the baseline in both datasets. After
obtaining the inferred trajectories, we statistically represented the motion in the invisi-
ble region using the method described in §4.1. Fig. 7 shows MoG for three different legs
where three columns represent constant velocity, proposed method and ground truth.

Figures 8 give results for some of the salient features of the invisible region using
§4.2. Fig. 8(a) shows the probability map superimposed on the image of invisible region
for locations where vehicles stop using only the inferred trajectories from Lankershim
whereas Fig. 8(b) shows the same probability map for Peachtree. It can be seen that
all of the locations are correct, just before the intersection due to collision avoidance
and extend beyond due to vehicle following constraint when vehicles queue up at in-
tersection. Figure 8(c) gives the probability of which traffic light was green at each
time instant using the proposed method (blue) and the results are also compared against
groundtruth (black). In this figure, we show traffic light behavior over time for 8 of the
12 paths as right turns do not get subjected to signals. Below each blue graph which
is obtained using inferred trajectories, is the black graph showing probability of that
light being green using groundtruth. The results show little difference, validating the
performance and quality of inference.
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Constant Velocity Proposed Method Ground Truth

Fig. 7: Each row is the Mixture of Gaussians representation for a particular path using
constant velocity, proposed method and ground truth. The patterns in the second and
third column are similar and capture acceleration, deceleration, start and stop behaviors
whereas in first column, all Gaussians have the same variance due to constant velocity.

6 Conclusion and Future Work

We presented the novel idea of understanding motion behavior of objects while they
are in the invisible region of multiple proximal cameras. The solution used three con-
straints, two of which employ contextual information of neighboring objects to infer
correct motion of object under consideration. Though, an interesting proposal from the
perspective of scene and motion understanding, the idea has several potential applica-
tions in video surveillance. Possible extensions include handling situations where cor-
respondences are missing or incorrect in some cases and to humans where social force
models can be leveraged in addition to current constraints.
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