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Abstract. This paper addresses the problem of human re-identification in videos
of dense crowds. Re-identification in crowded scenes is a challenging problem
due to large number of people and frequent occlusions, coupled with changes in
their appearance due to different properties and exposure of cameras. To solve
this problem, we model multiple Personal, Social and Environmental (PSE) con-
straints on human motion across cameras in crowded scenes. The personal con-
straints include appearance and preferred speed of each individual, while the so-
cial influences are modeled by grouping and collision avoidance. Finally, the
environmental constraints model the transition probabilities between gates (en-
trances / exits). We incorporate these constraints into an energy minimization for
solving human re-identification. Assigning 1 − 1 correspondence while model-
ing PSE constraints is NP-hard. We optimize using a greedy local neighborhood
search algorithm to restrict the search space of hypotheses. We evaluated the pro-
posed approach on several thousand frames of PRID and Grand Central datasets,
and obtained significantly better results compared to existing methods.

Keywords: Video Surveillance, Re-identification, Dense Crowds, Social Con-
straints, Multiple Cameras, Human Tracking

1 Introduction

Human re-identification is a fundamental and crucial problem for multi-camera surveil-
lance systems [49, 17]. It involves re-identifying individuals after they leave field-of-
view (FOV) of one camera and appear in FOV of another camera (see Fig 1(a)). The
investigation process of the Boston Marathon bombing serves to highlight the impor-
tance of re-identification in crowded scenes. Authorities had to sift through a mountain
of footage from government surveillance cameras, private security cameras and im-
agery shot by bystanders on smart phones [22]. Therefore, automatic re-identification
in dense crowds will allow successful monitoring and analysis of crowded events.

Dense crowds are the most challenging scenario for human re-identification. For
large number of people, appearance alone provides a weak cue. Often, people in crowds
wear similar clothes that makes re-identification even harder (Fig. 1c). Unlike regular
surveillance scenarios previously tackled in literature, we address this problem for thou-
sands of people where at any 30 second interval, hundreds of people concurrently enter
a single camera.
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Fig. 1. (a) Our goal is to re-identify people leaving camera a at time t (top row) to when they
appear in camera b at some time t + 1, t + 2, ... in the future. The invisible region between
the cameras is not closed, which means people can leave one camera and never appear in the
other camera. (b) We construct a graph between individuals in the two cameras, as shown with
black lines. Some of the constraints are linear in nature (appearance, speed, destination) while
others are quadratic (spatial and social grouping, collision avoidance). The quadratic constraints
are shown in red and capture relationships between matches. In (c), the people in black boxes
are from camera a, while the other two rows shows people with similar appearance from camera
b. The red boxes indicate the best matches (using appearance) which are incorrect, and green
boxes show the low-scoring correct matches. This highlights that crowded scenes make human
re-identification across cameras significantly difficult.

Traditionally, re-identification has been primarily concerned with matching static
snapshots of people from multiple cameras. Although there have been few works that
modeled social effects for re-identification such as grouping behavior [58, 5, 4], they
mostly deal with static images. In this paper, we study the use of time and video infor-
mation for this task, and propose to consider the dynamic spatio-temporal context of in-
dividuals and the environment to improve the performance of human re-identification.
We complement appearance with multiple personal, social and environmental (PSE)
constraints, many of which are applicable without knowledge of camera topology. The
PSE constraints include preferred speed and destination, as well as social grouping and
collision avoidance. The environmental constraints are modeled by learning the repet-
itive patterns that occur in surveillance networks, as individuals exiting camera from a
particular location (gate) are likely to enter another camera from another specific lo-
cation. These happen both as soft (spatial grouping) and hard constraints (transition
probabilities). The PSE constraints that are linear in nature, i.e. occur between objects,
are shown with black lines in Fig. 1(b), while quadratic ones occur between matching
hypotheses, i.e., pairs of objects, are shown with red lines in Fig. 1(b). Thus, if there
are Na and Nb number of people in two cameras, then the total number of possible
matching hypotheses is NaNb, and there are (NaNb)

2 possible quadratic hypotheses.
The time limits naturally reduce some of the hypotheses, nonetheless for large number
of people these can be overwhelming. Since the proposed PSE constraints are both lin-
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ear and quadratic in nature, we employ a greedy local neighborhood search algorithm
to optimize the resulting objective function simultaneously for all people. Thus, in ad-
dition to producing rankings for different queries, our method also outputs the more
useful 1− 1 correspondences for individuals.

To the best of our knowledge, this is the first paper to address human re-identification
using personal, social and environmental constraints in dense crowds. The evaluation is
performed on two datasets, PRID [19] and the challenging Grand Central dataset [53]
which depicts dense crowds 1. The rest of the paper is organized as follows. We discuss
related work in Sec. 2, and present the proposed approach in Sec. 3. The results of our
experiments are reported in Sec. 4, and we conclude with some directions for future
research in Sec. 5.

2 Related Work

Our approach is at the crossroads of human re-identification in videos, dense crowd
analysis and social force models. Next, we provide a brief literature review of each of
these areas.
Person Re-identification is an active area of research in computer vision, with some of
the recent works including [27, 28, 37, 7, 57, 54, 55, 1, 29] applicable to static images. In
videos, several methods have been developed for handing over objects across cameras
[49, 20, 45, 6, 10]. Most of them focus on non-crowd surveillance scenarios with em-
phasis on modeling color distortion and learning brightness transfer functions that re-
late different cameras [39, 40, 21, 16], others relate objects by developing illumination-
tolerant representations [31] or comparing possible matches to a reference set [9]. Sim-
ilarly, Kuo et al. [24] used Multiple Instance Learning to combine complementary ap-
pearance descriptors.

The spatio-temporal relationships across cameras [32, 46, 47] or prior knowledge
about topology has been used for human re-identification. Chen et al. [8] make use
of prior knowledge about camera topology to adaptively learn appearance and spatio-
temporal relationships between cameras, while Mazzon et al. [34] use prior knowledge
about relative locations of cameras to limit potential paths people can follow. Javed
et al. [20] presented a two-phase approach where transition times and exit/entrance re-
lationships are learned first, which are later used to improve object correspondences.
Fleuret [14] predicted occlusions with a generative model and a probabilistic occupancy
map. Dick and Brooks [11] used a stochastic transition matrix to model patterns of mo-
tion within and across cameras. These methods have been evaluated on non-crowd sce-
narios, where observations are sparse and appearance is distinctive. In crowded scenes,
hundreds of people enter a camera simultaneously within a small window of few sec-
onds, which makes learning transition times during an unsupervised training period
virtually impossible. Furthermore, our approach is applicable whether or not the infor-
mation about camera topology is available.
Dense Crowds studies [3, 59, 60] have shown that walking behavior of individuals in
crowds is influenced by several constraints such as entrances, exits, boundaries, ob-
stacles; as well as preferred speed and destination, along with interactions with other

1 Data and ground truth available at: http://crcv.ucf.edu/projects/Crowd-Reidentification
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pedestrians whether moving [35, 15] or stationary [53]. Wu et al. [51] proposed a two-
stage network-flow framework for linking tracks interrupted by occlusions. Alahi et al. [2]
identify origin-destination (OD) pairs using trajectory data of commuters which is simi-
lar to grouping. In contrast, we employ several PSE constraints besides social grouping.
Social Force Models have been used for improving tracking performance [25, 38, 52].
Pellegrini et al. [38] were the first to use social force models for tracking. They mod-
eled collision avoidance, desired speed and destination and showed its application for
tracking. Yamaguchi et al. [52] proposed a similar approach using a more sophisticated
model that tries to predict destinations and groups based on features and classifiers
trained on annotated sequences. Both methods use agent-based models and predict fu-
ture locations using techniques similar to crowd simulations. They are not applicable to
re-identification, as our goal is not to predict but to associate hypotheses. Therefore, we
use social and contextual constraints for re-identification in an offline manner. Further-
more, both these methods require observations to be in metric coordinates, which for
many real scenarios might be impractical.

For re-identification in static images, group context was used by Zheng et al. [58,
17], who proposed ratio-occurrence descriptors to capture groups. Cai et al. [5] use co-
variance descriptor to match groups of people, as it is invariant to illumination changes
and rotations to a certain degree. For re-identifying players in group sports, Bialkowski
et al. [4] aid appearance with group context where each person is assigned a role or
position within the group structure of a team. In videos, Qin et al. [41] use grouping
in non-crowded scenes to perform hand over of objects across cameras. They optimize
track assignment and group detection in an alternative fashion. On the other hand, we
refrain from optimizing over group detection, and use multiple PSE constraints (speed,
destination, social grouping etc.) for hand over. We additionally use group context in
space, i.e., objects that take the same amount of time between two gates are assigned a
cost similar to grouping, when in reality they may not be traveling together in time.
Mazzon and Cavallaro [33] presented a modified social force multi-camera tracker
where individuals are attracted towards their goals, and repulsed by walls and barri-
ers. They require a surveillance site model beforehand and do not use appearance. In
contrast, our formulation avoids such assumptions and restrictions.

In summary, our approach does not require any prior knowledge about the scene
nor any training phase to learn patterns of motion. Ours is the first work to incorporate
multiple personal, social and environmental constraints simultaneously for the task of
human re-identification in crowd videos.

3 Framework for Human Re-identification in Crowds

In this section, we present our approach to re-identify people using PSE constraints.
Since transition probabilities between gates are not known a priori, we estimate corre-
spondences and transition probabilities in an alternative fashion.

Let Oia represent an observation of an object i in camera a. Its trajectory is given
by a set of points [pia(t

η
ia
), . . . ,pia(t

χ
ia
)], where tηia and tχia represent the time it en-

tered and exited the camera a, respectively. Given another observation of an object j in
camera b, Ojb , a possible match between the two is denoted by M jb

ia
= 〈Oia , Ojb〉. To
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simplify notation, we drop the symbol for time t and use it only when necessary, thus,
pχia ≡ pia(t

χ
ia
) and pηjb ≡ pjb(t

η
jb
).

The entrances and exits in each camera are divided into multiple gates. For the
case of two cameras a and b, the gates (locations) are given by G1a , . . . ,GUa and
G1b , . . . ,GUb , where Ua and Ub are the total number of gates in both cameras, respec-
tively. Furthermore, we define a function g(p(t)), which returns the nearest gate when
given a point in the camera. For instance, for a person ia, g(pχia) returns the gate from
which the person i exited camera a, by computing the distance of pχia to each gate.
Mathematically, this is given by:

g(pχia) = argmin
Gua

‖Gua − pχia‖
2, ∀ua = 1, . . . , Ua. (1)

To compute appearance similarity, φapp(Oia , Ojb), between observations Oia and
Ojb , we use features from Convolutional Neural Networks [44]. In particular, we extract
features from Relu6 and Fc7 layers, followed by homogenous kernel mapping [48] and
linear kernel as the the similarity metric. Next, we describe the costs for different PSE
constraints, φ(.), employed in our framework for re-identification. Since all costs have
their respective ranges, we use a sigmoid function, φ̂(.) = (1 + exp(−βφ(.))−1, to
balance them. Most of the constraints do not require knowledge about camera topology,
and are described below.

3.1 PSE Constraints without Camera Topology

Preferred Speed: The walking speed of individuals has been estimated to be around
1.3 m/s [42]. Since, we do not assume the availability of metric rectification informa-
tion, we cannot use this fact directly in our formulation. However, a consequence of
this observation is that we can assume the walking speed of individuals, on average,
in different cameras is constant. We assume a Normal distribution, N (.), on observed
speeds in each camera. The variation in walking speeds of different individuals is cap-
tured by the variance of the Normal distribution. Let N (µa, σa) and N (µb, σb) denote
the distribution modeled in the two cameras. Since a particular person is being assumed
to walk with the same speed in different cameras, the cost for preferred speed using the
exit speed of person ia, ṗχia , and the entrance speed of person jb, ṗ

η
jb

is given by:

ṗχia = σ−1
a (‖pχia − pχ−1

ia
‖ − µa), ṗηjb = σ−1

b (‖pη+1
jb
− pηjb‖ − µb), (2)

φspd(Oia , Ojb) = |ṗ
χ
ia
− ṗηjb |. (3)

Destination: For re-identification in multiple cameras, the knowledge about destination
gives a prior for an individual’s location in another camera. Since individuals cannot be
observed between cameras, we capture the common and frequent patterns of movement
between gates in different cameras by modeling the transition probabilities between
gates in those cameras. Assuming we have a set of putative matches {M jb

ia
}, we estimate

the probability of transition between exit gate Gua and entrance gate Gub as:

p(Gua , Gub) =
|g(pχia) = Gua ∧ g(p

η
jb
) = Gub |

|g(pχia) = Gua ∧
∑
u′
b,j

′
b
g(pηj′b

) = Gu′
b
|
. (4)
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Thus, the cost for transition between gates for the match 〈Oia , Ojb〉 is given by:

φtr(Oia , Ojb) = 1− p
(
g(pχia), g(p

η
jb
)
)
. (5)

Spatial Grouping: The distance traveled by different individuals between two points
(or gates) across cameras should be the same. Since the camera topology is not available
in this case, the distance can be implicitly computed as a product of velocity and time.
This is a quadratic cost computed between every two possible matches, M jb

ia
and M j′b

i′a
,

given by:

ϕspt(M
jb
ia
,M

j′b
i′a
) = exp(−|pχia − pχi′a |) · exp(−|p

η
jb
− pηj′b

|)

· |(ṗχia + ṗηjb)(t
η
jb
− tχia)− (ṗχi′a + ṗηj′b

)(tηj′b
− tχi′a)|. (6)

Effectively, if the exit and entrance locations are nearby (the first two terms in Eq.
6), then we compute the distance traveled by each match in the pair using the product
of mean velocity and time required to travel between those locations (the third term).
It is evident from Eq. 6 that the exponentiation in first two terms will allow this cost to
take effect only when the entrance and exit locations are both proximal. If so, the third
term will then measure the difference in distance traveled by the two possible matches
(tracks), and penalize using that difference. If the distance is similar, the cost will be
low suggesting both matches (tracks) should be included in the final solution. If the
difference is distance is high, then at least one or both of the matches are incorrect.
Social Grouping: People tend to walk in groups. In our formulation, we reward indi-
viduals in a social group that exit and enter together from the same locations at the same
times,

ϕgrp(M
jb
ia
,M

j′b
i′a
) = exp(−|pχia −pχi′a | − |p

η
jb
−pηj′b

| − |tηjb − t
η
j′b
| − |tχia − t

χ
i′a
|). (7)

Here, the first two terms capture the difference in exit and entrance locations, re-
spectively, and the third and fourth terms capture the difference in exit and entrance
times, respectively.

3.2 Optimization with PSE Constraints

In this subsection, we present the optimization technique which uses the aforemen-
tioned constraints. Let zjbia be the variable corresponding to a possible match M jb

ia
. Our

goal is to optimize the following loss function over all possible matches, which is the
weighted sum of linear and quadratic terms:

L =
∑
ia,jb

zjbia
(
φ̂app(M

jb
ia
) + αspdφ̂spd(M

jb
ia
) + αtrφ̂tr(M

jb
ia
)
)︸ ︷︷ ︸

Linear Terms

+
∑
ia,jb
i′a,j

′
b

zjbiaz
j′b
i′a

(
αsptϕ̂spt(M

jb
ia
,M

j′b
i′a
) + αgrpϕ̂grp(M

jb
ia
,M

j′b
i′a
)
)

︸ ︷︷ ︸
Quadratic Terms

, (8)
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Algorithm 1 : Algorithm to find 1 − 1 correspondence between persons observed in
different cameras using both linear and quadratic constraints.
Input: Oia , Ojb ∀ia, jb, R (# steps)
Output: L∗, z∗; 0 ≤ |tηjb − t

χ
ia
| ≤ τ, ∀zjbia

1: procedure RE-IDENTIFY()
2: Initialize [L∗, z∗] for Linear Constraints with MUNKRES [36] . Initial solution
3: while L∗ improves do
4: for r = 0 to R do
5: [L−, z−] = REMOVEMAT(L∗, z∗, r) . Probabilistically remove r matches
6: L′ = L−, z′ = z− . Consider it the new solution
7: for s = r + 1 to 1 do
8: [L+, z+] = ADDMAT(L′, z′, s) . Add s new matches to the solution
9: if L′ > L+ then . Is the solution after adding new matches better?

10: L′ = L+, z′ = z+ . If so, update it as the new solution
11: end if
12: end for
13: if L∗ > L′ then . Is the new solution better the best solution so far?
14: L∗ = L′, z∗ = z′ . If so, update it as the best solution
15: end if
16: end for
17: end while
18: end procedure

subject to the following conditions:∑
ia

zjbia ≤ 1,∀jb,
∑
jb

zjbia ≤ 1,∀ia, zjbia ∈ {0, 1}. (9)

Since the transition probabilities in Eq. 4 are not known in advance, we propose to
use an EM-like approach that iterates between solving 1− 1 correspondences using the
linear and quadratic constraints, and estimating transition information using those cor-
respondences. Furthermore, due to the binary nature of variables, the problem of finding
1− 1 correspondences using PSE constraints is NP-hard. We use a local neighborhood
search algorithm presented in Alg. 1 which optimizes Eq. 8 subject to the conditions
in Eq. 9. The solution is initialized for linear constraints with Munkres [36]. The sub-
procedure REMOVEMAT(L, z, r) removes r hypotheses from the solution as well as
their respective linear and quadratic costs by assigning probabilities (using respective
costs) for each node in the current z. In contrast, the sub-procedure ADDMAT(L, z, s)
adds new hypotheses to the solution using the following steps:

– Populate a list of matches for which zjbia can be 1 such that Eq. 9 is satisfied.
– Make combinations of s-lets using the list.
– Remove combinations which dissatisfy Eq. 9.
– Compute new L in Eq. 8 for each combination. This is efficiently done by adding
|z| ∗ s quadratic values and s linear values.

– Pick the combination with lowest loss L. Add s-let to z and return.
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Fig. 2. The graph shows the perfor-
mance of Algorithm 1 using both lin-
ear and quadratic constraints, compared
against Hungarian Algorithm [36] us-
ing only the linear costs shown with or-
ange dotted line. The loss function in
Eq. 8 is shown in blue, whereas the ac-
curacy is shown in red. Quadratic PSE
constraints in conjunction with Alg. 1
yield an improvement of∼ 8% over lin-
ear constraints.

Algorithm 1 updates the solution when there is a decrease in the loss function in
Eq. 8, as can be seen from Line 13. Once the change in loss is negligible, the algorithm
stops and returns the best solution obtained. Fig. 2 shows the results quantified for our
approach using Alg. 1. The x-axis is the step number, whereas the left y-axis shows the
value of loss function in Eq. 8 (blue curve), and the right y-axis shows the F-Score in
terms of correct matches (orange curve). We also show results of Hungarian Algorithm
(Munkres) [36] in dotted orange line using linear constraints, which include appearance
and speed similarity. These curves show that Alg. 1 simultaneously improves the loss
function in Eq. 8 and the accuracy of the matches as the number of steps increases.

3.3 PSE Constraints with Camera Topology

The PSE constraints presented in the previous section are applicable when the spatial
relations between the cameras are not known. However, if the inter-camera topology is
available, then it can be used to infer the motion of people as they travel in the invisible
or unobserved regions between the cameras. The quality of paths in the invisible region
can be subject to constraints such as preferred speed or direction of movement, which
can be quantified and introduced into the framework. Furthermore, collision avoidance
is another social constraint that can only be applied when inter-camera topology is
known.

Given two objects in cameras a and b, Oia and Oib , in the same reference of time,
we predict the possible path between the objects. This is obtained by fitting a spline,
given by γjbia , in both x and y directions using cubic interpolation between the points
pia and pjb parameterized with their respective time stamps.

Collision Avoidance: Let the point of closest approach between two paths be given by:

d(γjbia ,γ
j′b
i′a
) = min

max(tχia ,t
χ

i′a
),...,min(tηjb

,tη
j′
b
)
‖γjbia (t)− γ

j′b
i′a
(t)‖, (10)

we quantify the collision avoidance as a quadratic cost between pairs of possible matches:

φinvColl(M
jb
ia
,M

j′b
i′a
) =

(
1− ϕgrp(M

jb
ia
,M

j′b
i′a
)
)
. exp

(
− d(γjbia ,γ

j′b
i′a
)
)
. (11)
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Since people avoid collisions with others and change their paths, this is only applicable
to trajectories of people who are not traveling in a group, i.e., the cost will be high if two
people not walking in a group come very close to each other when traveling through the
invisible region between the cameras.

Speed in Invisible Region: The second constraint we compute is an improved version
of the preferred speed - a linear constraint which now also takes into account the di-
rection is addition to speed of the person in the invisible region. If the velocity of a
person within visible region in cameras and while traveling through the invisible region
is similar, this cost would be low. However, for an incorrect match, the difference be-
tween speed in visible and invisible regions will be high. Let γ̇ denote the velocity at
respective points in the path, both in the visible and invisible regions. Then, the differ-
ence of maximum and minimum speeds in the entire trajectory quantifies the quality of
a match, given by,

φinvSpd(Oia , Ojb) = | max
tηia ...t

χ
jb

γ̇jbia (t)− min
tηia ...t

χ
jb

γ̇jbia (t)|. (12)

When the inter-camera topology is available, these constraints are added to the Eq.
8 and the method described in the Sec. 3.2 is used to re-identify people across cameras.

4 Experiments

Since PSE constraints depend on time and motion information in the videos, many
commonly evaluated datasets such as VIPeR [18] and ETHZ [12] cannot be used for
computing PSE constraints. We evaluate the proposed approach on the PRID dataset
[19] and the challenging Grand Central Dataset [53]. First, we introduce the datasets
and the ground truth that was generated for evaluation, followed by detailed analysis
of our approach as well as contribution of different personal, social and environmental
(PSE) constraints to the overall performance.

4.1 Datasets and Experimental Setup

PRID 2011 is a camera network re-identification dataset containing 385 pedestrians
in camera ‘a’ and 749 pedestrians in camera ‘b’. The first 200 pedestrians from each
camera form the ground truth pairs while the rest appear in one camera only. The most
common evaluation method on this dataset is to match people from cam ‘a’ to the
ones in cam ‘b’. We used the video sequences and the bounding boxes provided by the
authors of [19] so we can use the PSE constraints in our evaluation. Since the topology
of the scene is unknown, we have used the constraints which do not need any prior
knowledge about the camera locations. We evaluated on the entire one hour sequences
and extract visual features in addition to various PSE constraints. In accordance with
previous methods, we evaluate our approach by matching the 200 people in cam ‘a’ to
749 people in cam ‘b’ and quantify the ranking quality of matchings.
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Fig. 3. This figure illustrates the
CMC evaluation procedure with
quadratic constraints. Given ob-
ject tracks in the two cameras
O1a , O2a , O3a and O1b , O2b , O3b ,
(a) the linear constraints are com-
puted between objects, and (b)
quadratic constraints between each
possible pair of matches. Adding a
new match (shown with amber) re-
quires adding one linear value and
number of quadratic values equal to
the size of current solution.

Grand Central is a dense crowd dataset that is particularly challenging for the task
of human re-identification. The dataset contains 120, 000 frames, with a resolution of
1920 × 1080 pixels. Recently, Yi et al. [53] used a portion of the dataset for detecting
stationary crowd groups. They released annotations for trajectories of 12, 684 individu-
als for 6, 000 frames at 1.5 fps. We rectified the perspective distortion from the camera
and put bounding boxes at correct scales using the trajectories provided by [53]. How-
ever, location of annotated points were not consistent for any single person, or across
different people. Consequently, we manually adjusted the bounding boxes for 1, 500
frames at 1.5 fps, resulting in ground truth for 17 minutes of video data.

We divide the scene into three horizontal sections, where two of them become sep-
arate cameras and the middle section is treated as invisible or unobserved region. The
locations of people in each camera are in independent coordinate systems. The choice
of dividing the scene in this way is meaningful, as both cameras have different illumi-
nations due to external lighting effects, and the size of individuals is different due to
perspective effects. Furthermore, due to the wide field of view in the scene, there are
multiple entrances and exits in each camera, so that a person exiting the first camera at
a particular location has the choice of entering from multiple different locations. Fig-
ure 1(c) shows real examples of individuals from the two cameras and elucidates the
fact that due to the low resolution, change in brightness and scale, the incorrect near-
est neighbors matches using the appearance features often rank much better than the
correct ones for this dataset.

Parameters: Since there are multiple points / zones of entrances and exits, we divide
the boundaries in each camera into Ua = Ub = 11 gates. The weights used in Eq. 8
are approximated using grid search on a separate set and then used for both datasets.
They are αspt = αinvColl = .2, αtr = 1, and αspd = αinvSpd = −αgrp = 5. Note that,
social grouping is rewarded in our formulation, i.e. people who enter and exit together
in space and time are more likely to be correct matches when re-identifying people
across cameras.
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Table 1. This table presents the quantitative results of the proposed approach and other methods
on the Grand Central Dataset.

Method CMC F-Score
Rank-1 Rank-5 Rank-10 Rank-20 Rank-50 AUC (1:100) (1-1)

Random 1.83% 5.48% 11.36% 21.91% 54.36% 51.00% 6.90%
LOMO-XQDA [28] 4.06% 12.37% 21.91% 39.76% 71.40% 63.81% 11.16%
SDALF [13] 6.09% 16.23% 23.12% 40.16% 68.56% 63.01% 20.69%
SAM [2] 6.09% 27.18% 42.60% 51.72% 74.44% 69.60% 26.98%
eSDC-knn [56] 11.36% 27.38% 38.34% 50.71% 74.44% 69.49% 30.43%
Manifold Learning (Ln) [30] 7.71% 24.54% 36.71% 54.97% 78.09% 72.11% 30.83%
Manifold Learning (Lu) [30] 10.55% 34.08% 48.68% 66.53% 87.83% 80.50% 32.66%
CNN Features [44] 12.98% 32.45% 44.62% 62.07% 83.77% 77.79% 41.99%
CrowdPSE (w/o topology) 25.56% 81.54% 93.31% 97.57% 98.38% 95.80% 67.94%
CrowdPSE (w/ topology) 49.29% 95.13% 98.17% 98.17% 98.17% 97.31% 84.19%

4.2 Evaluation Measures

Cumulative Matching Characteristic (CMC) curves are typically used evaluating per-
formance of re-identification methods. For each person, all the putative matches are
ranked according to similarity scores, i.e. for each person Oia , the cost of assignment
M jb
ia

= 〈Oia , Ojb〉 is calculated for every possible match to Ojb . Then, the accuracy
over all the queries is computed for each rank. Area Under the Curve (AUC) for CMC
gives a single quantified value over different ranks and an evaluation for overall perfor-
mance. The advantage of CMC is that it does not require 1−1 correspondence between
matches, and is the optimal choice for evaluating different cost functions or similarity
measures.

The CMC curves are meaningful only for linear constraints. Unlike linear con-
straints which penalize or reward matches (pair of objects), quadratic constraints pe-
nalize or reward pairs of matches. Figure 3 illustrates the idea of quantifying both lin-
ear and quadratic costs through CMC, since this measure quantifies quality of costs
independent of optimization. Given three objects O1a , O2a , O3a and O1b , O2b , O3b in
cameras a and b, respectively, the black lines in Fig. 3 (a) show linear constraints /
matchings. Let us assume we intend to evaluate quadratic constraints for the match be-
tween O1a and O2b . For this, we assume that all other matches are correct (red lines),
and proceed with adding relevant quadratic (Fig. 3) and linear costs. For evaluating
match between O1a and O2b , we add linear costs between them, as well as quadratic
costs between other matches (shown with red circles in Fig. 3(b)), and pair-wise costs of
the match under consideration with all other matches (shown with orange circles). This
is repeated for all possible matches. Later, the matches are sorted and evaluated similar
to standard CMC. Note that, this approach gives an optimization-independent method
of evaluating quadratic constraints. Nonetheless, the explicit use of ground truth dur-
ing evaluation of quadratic constraints makes them only comparable to other quadratic
constraints.

To evaluate 1−1 correspondence between matches, we use F-score which is defined
as 2×(precision×recall)/(precision+recall) on the output of optimization. We used
Hungarian Algorithm (Munkres) [36] for comparison as it provides a globally optimal
solution for linear costs. For the proposed PSE constraints, we use Alg. 1 since we use
both linear and quadratic costs.
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Table 2. This table presents the quantitative results of the proposed approach and other methods
on the PRID Dataset. We report accuracy (number of correct matches), values of Cumulative
Matching Characteristic curves at ranks 1, 5, 10, 20 and 50. As can be seen, the proposed ap-
proach outperforms existing methods.

Method CMC
Rank-1 Rank-5 Rank-10 Rank-20 Rank-50

KissME [23] + Reranking [26] 8.00% 19.00% 30.00% 41.00% 57.00%
LMNN [50] + Reranking [26] 10.00% 24.00% 34.00% 44.00% 61.00%
Mahalanobis [43] + Reranking [26] 11.00% 29.00% 37.00% 46.00% 60.00%
Non-linear ML [37] 17.90% 39.50% 50.00% 61.50% -
Desc+Disc [19] 19.18% 41.44% 52.10% 66.56% 84.51%
CrowdPSE (w/o topology) 21.11% 46.65% 59.98% 76.63% 98.81%

4.3 Results and Comparison

In Table 1, we present the results on Grand Central dataset of our approach using PSE
constraints and optimization in Alg. 1 with several baselines. We report accuracy (num-
ber of correct matches), values of Cumulative Matching Characteristic curves at ranks
1, 5, 10, 20 and 50, as well as Area Under the Curve (AUC) for CMC between ranks
1 and 100. The values of CMC are computed before any optimization. The last col-
umn shows the F-Score of 1 − 1 assignments post optimization. In Table 1, the first
row shows the results of random assignment, whereas next seven rows show results us-
ing several re-identification methods. These include LOMO-XQDA [28], SDALF [13],
SAM [2], eSDC-knn [56], Manifold Learning [30] - normalized (Ln) and unnormalized
(Lu), as well as CNN features [44] which use VGG-19 deep network. Finally, the last
two rows show the results of our approach both for the case when camera topology is
not known and when it is known. These results show that PSE constraints - both lin-
ear and quadratic - significantly improve the performance of human re-identification
especially in challenging scenarios such as dense crowds.

Next, we present results on PRID dataset in Table 2. The first three rows show
Reranking [26] on KissME [23], LMNN [50], and Mahalanobis distance learning [43]
for re-identification. Next two rows show the performance of non-linear Metric Learn-
ing [37] and Descriptive & Discriminative features [19]. The last row shows the perfor-
mance of our method which is better than existing unsupervised approaches for human
re-identification. For this dataset, the spatial grouping did not improve the results since
the dataset captures a straight sidewalk and does not involve decision makings and dif-
ferent travel times between different gates.

4.4 Contribution of Different PSE Constraints

We performed several experiments to gauge the performance of different PSE con-
straints and components of the proposed approach on Grand Central dataset. The com-
parison of different constraints using Cumulative Matching Characteristics (CMC) is
shown in Figure 4. In this figure, the x-axis is the rank, while y-axis is accuracy with
corresponding rank on x-axis. First, we show the results of randomly assigning objects
between cameras (blue curve). Then, we use appearance features (Convolutional Neu-
ral Network) for re-identification and do not use any personal, social or environmental



Human Re-identification in Crowd Videos 13

0 10 20 30 40 50

Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

c
c
u

ra
c
y

   Random (27.71)

   CNN + Time (62.62)

+ Speed (81.77)

+ Social Groups (87.31)

+ Spatial Groups (93.44)

+ Collision Avoidance (93.22)

+ Inv. Speed (96.15)

Fig. 4. This graph shows the CMC for different
PSE constraints proposed in this paper on Grand
Central Dataset. The results of random assign-
ment are shown with blue curve, while appear-
ance features with time limits yield the orange
curve. Incorporating personal constraint such as
preferred speed (amber), and social constraints
such as social and spatial grouping (purple and
green, respectively) further improve the perfor-
mance. Given the topology, we can additionally
incorporate collision avoidance (light blue) and
preferred speed in the invisible region (maroon),
which gives the best performance.

constraints (shown with orange curve), which we also use to compute the appearance
similarity for our method. The low performance highlights the difficult nature of this
problem in crowded scenes. Next, we introduce linear constraint of preferred speed
shown with amber curve which gives an improvement of ∼ 19% in terms of Area un-
der the Curve of CMC between ranks 1 and 50. Then, we add quadratic constraints
of grouping, both of which make an improvement to matching performance, with so-
cial grouping contributing about ∼ 6% while spatial grouping adding another ∼ 6%.
Remember that both these quadratic constraints are antipodal in the sense that former
rewards while latter penalizes the loss function. The last two curves show the perfor-
mance using constraints computable if camera topology is known. Given topology, we
employ collision avoidance shown in light blue, whereas the constraint capturing the
desire of people to walk with preferred speed between cameras is shown in maroon,
which gives the maximum AUC of 96.15% in conjunction with other PSE constraints.

This study shows that except for collision avoidance, all PSE constraints contribute
significantly to the performance of human re-identification. We provide real examples
of collision avoidance and social grouping in Fig. 5(a) and (b), respectively. In Fig. 5,
the bounding boxes are color-coded with time using colormap shown on left. White-to-
Yellow indicate earlier time stamps while Red-to-Black indicate later ones. The person
under consideration is shown with dashed white line, while the track of two other peo-
ple in each image are color-coded with costs using colormap on the right. Here, blue
indicates low cost whereas red means high cost.

Collision avoidance which has been shown to work for tracking in non-crowded
scenes [38] deteriorates the results slightly in crowded scenes. Fig. 5(a) shows a case
where collision avoidance constraint assigns a high cost to a pair of correct matches.
Due to limitation in space in dense crowds, people do not change their path significantly.
Furthermore, any slight change in path between cameras is unlikely to have any effect
on matching for re-identification. On the other hand, the grouping constraint yields a
strong increase in performance (∼ 12%) as also seen in Fig. 5(b) This is despite the
fact that the Grand Central dataset depicts dense crowd of commuters in a busy subway
station, many of whom walk alone.
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(a) (b)

Fig. 5. This figure shows two examples of quadratic constraints. The color of bounding boxes
indicates time using colorbar on the left, with white signifying start time and black representing
end time. The person under consideration is shown with white trajectory, while the other two
trajectories have the color of the cost for (a) collision avoidance and (b) grouping, color-coded
with bar on the right. That is, blue and red trajectories indicate low and high costs, respectively.
In (a), collision avoidance unnecessarily assigns high cost to a correct match, but not to a col-
liding person. On the other hand, grouping helps in re-identifying people who walk together by
assigning a low cost between them.

5 Conclusion

This paper addressed the problem of re-identifying people across non-overlapping cam-
eras in crowded scenes. Due to the difficult nature of the problem, the appearance simi-
larity alone gives poor performance. We employed several personal, social and environ-
mental constraints in the form of preferred speed, destination probability and spatial
and social grouping. These constraints do not require knowledge about camera topol-
ogy, however if available, it can be incorporated into our formulation. Since the problem
with PSE constraints is NP-hard, we used a greedy local neighborhood search algorithm
that can handle both quadratic and linear constraints. The crowd dataset used in the pa-
per brings to light the difficulty and challenges of re-identifying and associating people
across cameras in crowds. For future work, we plan to use discriminative appearance
models independently trained on individuals, and inference of topology in an unsuper-
vised manner for crowded scenes.
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