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Abstract. Egocentric cameras are becoming increasingly popular and
provide us with large amounts of videos, captured from the first per-
son perspective. At the same time, surveillance cameras and drones offer
an abundance of visual information, often captured from top-view. Al-
though these two sources of information have been separately studied
in the past, they have not been collectively studied and related. Hav-
ing a set of egocentric cameras and a top-view camera capturing the
same area, we propose a framework to identify the egocentric viewers in
the top-view video. We utilize two types of features for our assignment
procedure. Unary features encode what a viewer (seen from top-view or
recording an egocentric video) visually experiences over time. Pairwise
features encode the relationship between the visual content of a pair of
viewers. Modeling each view (egocentric or top) by a graph, the assign-
ment process is formulated as spectral graph matching. Evaluating our
method over a dataset of 50 top-view and 188 egocentric videos taken in
different scenarios demonstrates the efficiency of the proposed approach
in assigning egocentric viewers to identities present in top-view camera.
We also study the effect of different parameters such as the number of
egocentric viewers and visual features.

Keywords: Egocentric Vision, Surveillance, Spectral Graph Matching,
Gist, Video Understanding

1 Introduction

The availability of large amounts of egocentric videos captured by cellphones and
wearable devices such as GoPro cameras and Google Glass has opened the door
to a lot of interesting research in computer vision [1–3]. At the same time, videos
captured with top-down static cameras such as surveillance cameras in airports
and subways, unmanned aerial vehicles (UAVs) and drones, provide us with a
lot of invaluable information about activities and events taking place at different
locations and environments. Relating these two complementary, but drastically
different sources of visual information can provide us with rich analytical power,
and help us explore what can not be inferred from each of these sources taken
separately. Establishing such a relationship can have several applications. For
example, athletes can be equipped with body-worn cameras, and their egocentric
videos together with the top-view videos can offer new data useful for better
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Fig. 1: Left shows a set of 5 egocentric videos. Right shows a top-view video
capturing the whole scene. The viewers are highlighted using red circles in the
top-view video. We aim to answer the two following questions: 1) Does this
set of egocentric videos belong to the viewers visible in the top-view video? 2)
Assuming they do, which viewer is capturing which egocentric video?

technical and tactical sport analysis. Moreover, due to the use of wearable devices
and cameras by law enforcement officers, finding the person behind an egocentric
camera in a surveillance network could be a useful application. Furthermore,
fusing these two types of information can result in better 3D reconstruction of
an environment by combining the top-view information with first person views.

The first necessary step to utilize information from these two sources, is to
establish correspondences between the two views. In other words, a matching
between egocentric cameras and the people present in the top-view camera is
needed. In this effort, we attempt to address this problem. More specifically,
our goal is to localize people recording egocentric videos, in a top-view reference
camera. To the best of our knowledge, such an effort has not been done so far.
In order to evaluate our method, we designed the following setup. A dataset
containing several test cases is collected. In each test case, multiple people were
asked to move freely in a certain environment and record egocentric videos.
We refer to these people as ego-centric viewers. At the same time, a top-view
camera was recording the entire scene/area including all the egocentric viewers
and possibly other intruders. An example case is illustrated in Figure 1.

Given a set of egocentric videos and a top-view surveillance video, we try
to answer the following two questions: 1) Does this set of egocentric videos
belong to the viewers visible in the top-view camera? 2) If yes, then which
viewer is capturing which egocentric video? To answer these questions, we need
to compare a set of egocentric videos to a set of viewers visible in a single top-
view video. To find a matching, each set is represented by a graph and the two
graphs are compared using a spectral graph matching technique [4]. In general,
this problem can be very challenging due to the nature of egocentric cameras.
Since the camera-holder is not visible in his own egocentric video leaving us with
no cues about his visual appearance.

In what follows we briefly mention some challenges concerning this problem
and sketch the layout of our approach.

In order to have an understanding of the behavior of each individual in the
top-view video, we use a multiple object tracking method [5] to extract the
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Fig. 2: The input to our framework is a set of egocentric videos (in this case 5
videos), and one top-view video. The goal is defined as assigning the egocentric
videos to the people recording them. A graph is formed on the set of egocentric
videos (each node being one of the egocentric videos), and the other graph is
formed on the top-view video (each node being one of the targets present in
the video). Using spectral graph matching, a soft assignment is found between
the two graphs, and using a soft-to-hard assignment, each egocentric video is
assigned to one of the viewers in the top-view video. This assignment is our
answer to the second question in 1.

viewer’s trajectory in the top-view video. Note that an egocentric video captures
a person’s field of view rather than his spatial location. Therefore, the content
of a viewer’s egocentric video, a 2D scene, corresponds to the content of the
viewer’s field of view in the top-view camera. For the sake of brevity, we refer to
a viewer’s top-view field of view as Top-FOV in what follows. Since trajectories
computed by multiple object tracking do not provide us with the orientation of
the egocentric cameras in the top-view video, we employ the assumption that
for the most part humans tend to look straight ahead and therefore shoot videos
from the visual content in front of them. Note that this is not a restrictive
assumption as most ego-centric cameras are body worn (Please see Figure 4).
Having an estimate of a viewer’s orientation and Top-FOV, we then encode the
changes in his Top-FOV over time and use it as a descriptor. We show that this
feature correlates with the change in the global visual content (or Gist) of the
scene observed in his corresponding egocentric video.

We also define pairwise features to capture the relationship between two ego-
centric videos, and also the relationship between two viewers in the top-view
camera. Intuitively, if an egocentric viewer observes a certain scene and another
egocentric viewer comes across the same scene later, this could hint as a rela-
tionship between the two cameras. If we match a top-view viewer to one of the
two egocentric videos, we are likely to be able to find the other viewer using
the mentioned relationship. As we experimentally show, this pairwise relation-
ship significantly improves our assignment accuracy. This assignment will lead
to defining a score measuring the similarity between the two graphs. Our exper-
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Fig. 3: Adapting our method for evaluating top-view videos. We form a graph
on the set of egocentric videos and compare this graph to other graphs built on
different top-view videos. The top-view videos are ranked based on how similar
their graph is to the egocentric graph. The performance of this ranking helps us
answer our first question.

iments demonstrate that the graph matching score could be used for verifying if
the top-view video is in fact, capturing the egocentric viewers (See the diagram
shown in Figure 7a).

The rest of this work is as follows. In section 2, we mention related works
to our study. In section 3, we describe the details of our framework. Section
4 presents our experimental results followed by discussions and conclusions in
Section 5.

2 Related Work

Visual analysis of egocentric videos has recently became a hot topic in computer
vision [6, 7], from recognizing daily activities [2, 1] to object detection [8], video
summarization [9], and predicting gaze behavior [10–12]. In the following, we
review some previous work related to ours spanning Relating static and egocen-
tric, Social interactions among egocentric viewers, and Person identification and
localization.

Relating Static and Egocentric Cameras: Some studies have addressed re-
lationships between moving and static cameras. Interesting works reported in
[13, 14] have studied the relationship between mobile and static cameras for the
purpose of improving object detection accuracy. [15] fuses information from ego-
centric and exocentric vision (other cameras in the environment) and laser depth
range data to improve depth perception in 3D reconstruction. [16] predicts gaze
behavior in social scenes using first-person and third-person cameras.

Social Interactions among Egocentric Viewers: To explore the relation-
ship among multiple egocentric viewers, [17] combines several egocentric videos
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to achieve a more complete video with less quality degradation by estimating
the importance of different scene regions and incorporating the consensus among
several egocentric videos. Fathi et al., [18] detect and recognize the type of so-
cial interactions such as dialogue, monologue, and discussion by detecting human
faces and estimating their body and head orientations. [19] proposes a multi-task
clustering framework, which searches for coherent clusters of daily actions using
the notion that people tend to perform similar actions in certain environments
such as workplace or kitchen. [20] proposes a framework that discovers static
and movable objects used by a set of egocentric users.

Person Identification and Localization: Perhaps, the most similar computer
vision task to ours is person re-identification [21–23]. The objective here is to
find the person present in one static camera, in another overlapping or non-
overlapping static camera. However, the main cue in human re-identification is
visual appearance of humans, which is absent in egocentric videos. Tasks such as
human-identification and localization in egocentric cameras have been studied
in the past. [24] uses the head motion of an egocentric viewer as a biometric
signature for determine which videos have been captured by the same person.
[25] identifies egocentric observers in other egocentric videos, using their head
motion. Relating geo-spatial location to user shared visual content has also been
explored. [3] localizes the field of view of an egocentric camera by matching
it against a reference dataset of videos or images (such as Google street view),
and [26] refines the geo-location of images by matching them against user shared
images. Landmarks and map symbols are used in [27] to perform self localization
on the map. [28] use semantic cues for spatial localization, and [29] uses location
information to infer semantic information.

3 Framework

The block diagram in Figure 2 illustrates different steps of our approach. First,
each view (ego-centric or top-down) is represented by a graph which defines
the relationship among the viewers present in the scene. These two graphs may
not have the same number of nodes as some the egocentric videos might not
be available, or some individuals present in the top-view video might not be
capturing videos. Each graph consists of a set of nodes, each of which represents
one viewer (egocentric or top-view), and the edges of the graph encode pairwise
relationships between pairs of viewers.

We represent each viewer in top-view by describing his expected Top-FOV,
and in egocentric view by the visual content of his video over time. This descrip-
tion is encoded in the nodes of the graphs. We also define pairwise relationships
between pairs of viewers, which is encoded as the edge features of the graph (i.e.,
how two viewers’ visual experience relate to each other).

Second, we use spectral graph matching to compute a score measuring the
similarity between the two graphs, alongside with an assignment from the nodes
of the egocentric graph to the nodes of the top-view graph.
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Our experiments show that the graph matching score can be used as a mea-
sure of similarity between the egocentric graph and the top-view graph. There-
fore, it can be used as a measure for verifying if a set of egocentric videos have
been shot in the same environment captured by the top-view camera. In other
words, we can evaluate the capability of our method in terms of answering our
first question. In addition, the assignment obtained by the graph matching sug-
gests an answer to our second question. We organize this section by going over
the graph formation process for each of the views, and then describing the details
of the matching procedure.

3.1 Graph Representation

Each view (egocentric or top-view) is described using a single graph. The set of
egocentric videos is represented using a graph in which each node represents one
of the egocentric videos, and an edge captures the pairwise relationship between
the content of the two videos.

In the top-view graph, each node represents the visual experience of a viewer
being tracked (in the top-view camera), and an edge captures the pairwise re-
lationship between the two. By visual experience we mean what a viewer is
expected to observe during the course of his recording seen from the top view.

3.1.1 Modeling the Top-View Graph: In order to model the visual ex-
perience of a viewer in a top-view camera, we need to have knowledge about
his spatial location (trajectory) throughout the video. We employ the multiple
object tracking method presented in [5] and extract a set of trajectories, each
corresponding to one of the viewers in the scene. Similar to [5], we use anno-
tated bounding boxes, and provide their centers as an input to the multiple
object tracker. Our tracking results are nearly perfect due to several reasons:
the high quality of videos, high video frame rate, and lack of challenges such as
occlusion in the top-view videos.

Each node represents one of the individuals being tracked. Employing the
general assumption that people often tend to look straight ahead, we use a
person’s speed vector as the direction of his camera at time t (denoted as θt).
We pre-process the speed vectors using a Gaussian filter to temporally smooth
them and exclude outliers. This also fixes the orientation for a short standing
interval between two movements. Further, assuming a fixed angle (θd), we expect
the content of the person’s egocentric video to be consistent with the content
included in a 2D cone formed by the two rays emanating from the viewer’s
location and with angles θ − θd and θ + θd. Figure 4 illustrates the expected
Top-FOV for three different individuals present in a frame. In our experiments,
we set θd to 30 degrees. In theory, angle θd can be estimated more accurately
by knowing intrinsic camera parameters such as focal length and sensor size
of the corresponding egocentric camera. However, since we do not know the
corresponding egocentric camera, we set it to a default value.

Top-FOVs are not directly comparable to viewers’ egocentric views. The area
in the Top-FOV in a top-view video mostly contains the ground floor which is
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(a) (b) (c)

Fig. 4: Expected field of view for three different viewers in the top-view video
alongside with their corresponding egocentric frames. The short dark blue line
shows the estimated orientation of the camera. The Top-FOV shown in (b) and
(c) have a high overlap, therefore we expect their egocentric videos to have
relatively similar visual content compared to the pairs (a,b) or (a,c) at this
specific time.

not what an ego-centric viewer usually observes in front of him. However, what
can be used to compare the two views is the relative change in the Top-FOV of
a viewer over time. This change should correlate with the change in the content
of the egocentric video. Intuitively, if a viewer is looking straight ahead while
walking on a straight line, his Top-FOV is not going to have drastic changes.
Therefore, we expect the viewer’s egocentric view to have a stable visual content.

Node Features: We extract two unary features for each node, one captures
the changes in the content covered by his FOV, and the other is the number of
visible people in the content of the Top-FOV.

To encode the relative change in the visual content of viewer i visible in the
top-view camera, we form the T × T matrix (T denotes the number of frames
in the top-view video) U IOUi whose elements U IOUi (fp, fq) indicate the IOU
(intersection over union) of the Top-FOV of person i in frames fp and fq. For
example, if the viewer’s Top-FOV in frame 10 has high overlap with his FOV in
frame 30 (thus U IOUi (10, 30) has a high value), we expect to see a high visual
similarity between frames 10 and 30 in the egocentric video. Two examples of
such features are illustrated in the middle column of Figure 5 (a).

Having the Top-FOV of viewer i estimated, we then count the number of
people within his Top-FOV at each time frame and store it in a 1× T vector
Uni . To count the number of people, we used annotated bounding boxes. Figure 4
illustrates three viewers who have one human in their Top-FOV. A few examples
of this feature are visualized in the top row of figure 6.

Edge Features: Pairwise features are designed to capture the relationship
among two different individuals. In the top-view videos, similar to the unary
matrix U IOUi , we can form a T × T matrix BIOUij to describe the relationship

between a pair of viewers (viewers/nodes i and j), in which BIOUij (fp, fq) is de-
fined as the intersection over union of the Top-FOVs of person i in frame fp
and person j in frame fq. Intuitively, if there is a high similarity between the
Top-FOVs of person i in frame 10 and person j in frame 30, we would expect
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the 30th frame of viewer j’s egocentric video to be similar to the 10th frame of
viewer i’s egocentric video. Two examples of such features are illustrated in the
middle column of Figure 5 (b).

3.1.2 Modeling the Egocentric View Graph: As in the top-view graph,
we also construct a graph on the set of egocentric videos. Each node of this graph
represents one egocentric video. Edges between the nodes capture the relation-
ship between two egocentric videos.

Node Features: Similar to the top-view graph, each node is represented using
two features. First, we compute pairwise similarity between GIST features [30] of
all video frames (for one viewer) and store the pairwise similarities in the matrix
UGISTEi

, in which the element UGISTEi
(fp, fq) is the GIST similarity between frame

fp and fq of egocentric video i. Two examples of such features are illustrated in
the left column of Figure 5 (a). The GIST similarity is a function of the euclidean
distance of the GIST feature vectors.

UGISTEi
(f1, f2) = e

−γ|gEi
fp
−gEi

fq
|
. (1)

In which gEi

fp
and gEi

fq
are the GIST descriptors of frame fp and fq of egocentric

video i, and γ is a constant which we empirically set to 0.5.
The second feature is a time series counting the number of seen people in

each frame. In order to have an estimate of the number of people, we run a
pre-trained human detector using deformable part model [31] on each egocentric
frame. In order to make sure that our method is not including humans in far dis-
tances (which are not likely to be present in the top-view camera), we exclude
bounding boxes whose sizes are smaller than a certain threshold (determined
considering an average human height of 1.7m and distance of the radius of the
area being covered in the top view video.). Each of the remaining bouding boxes,
has a detection score (rescaled into the interval [0 1]) which has the notion of the
probability of that bounding box containing a person. Scores of all detections
in a frame are added and used as a count of people in that frame. Therefore,
similar to the top-view feature, we can represent the node Ei of egocentric video
i with a 1× TEi

vector UnEi
. A few examples of this feature are visualized in the

bottom row of figure 6.

Edge Features: To capture the pairwise relationship between egocentric camera
i (containing TEi

frames) and egocentric camera j (containing TEj
frames), we

extract GIST features from all of the frames of both videos and form a TEi
×TEj

matrix BGISTij in which BGISTij (fp, fq) represents the GIST similarity between
frame fp of video i and frame fq of video j.

BGISTij (fp, fq) = e
−γ|gEi

fp
−g

Ej
fq
|
. (2)

Two examples of such features are illustrated in the left column of Figure 5
(b).
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3.2 Graph Matching

Our goal in this section is to find a binary assignment matrix xNe×Nt , in which
Ne is the number of egocentric videos and N t is the number of people in the top-
view video. x(i, j) equal to 1 means that egocentric video i has been matched to
viewer j in the top-view camera. To capture the similarities between the elements
of the two graphs, we define the affinity matrix ANeNt×NeNt in which aik,jl is
the affinity of edge ij in the egocentric graph with edge kl in the top-view graph.
Reshaping matrix x as a vector xNeNt×1 ∈ {0, 1}N

eNt

, the assignment problem
is defined as maximizing the following objective function:

argmax
x

xTAx. (3)

We compute aik,jl based on the similarity between the feature descriptor of edge
ij in the egocentric graph BGISTij and the feature descriptor for edge kl in the

top-view graph BIOUkl .
As described in the previous section, each of these features is a 2D matrix.

BGISTij is a TEi × TEj matrix, TEi and TEj being the number of frames in

egocentric videos i and j, respectively. On the other hand, BIOUkl is a Tt × Tt
matrix, Tt being the number of frames in the top-view video. However, expecting
BGISTij and BIOUkl to be comparable is not reasonable due to two reasons. First,
the two matrices are not of the same size (the videos do not necessarily have
the same length). Second, the absolute time in the videos do not correspond
to each other. Note that videos are not time-synchronized. For example, the
relationship between viewers i and j in the 100th frame of the top-view video
does not correspond to frame number 100 of the egocentric videos. Instead, we
expect to see a correlation between the GIST similarity of frame 100 + di of
egocentric video i and frame 100 + dj of egocentric video j, and the intersection
over union of in Top-FOVs of viewers k and l in frame 100. di and dj are the
time delays of egocentric videos i and j with respect to the top-view video.

As a result, we need to define an affinity score which is able to handle this
misalignment. To this end, we compute the affinity between the two 2D matrices
as the maximum value of their 2D cross correlation. Hence, if egocentric videos
i and j have di and dj delays with respect to the top-view video, the cross cor-
relation between BGISTij and BIOUkl should be maximum when BGISTij is shifted
di units in the first, and dj units in the second dimension.

Aikjl = max(BGISTij ∗BIOUkl ). (4)

where ∗ denotes cross correlation. For the elements of A for which i = j and
k = l, the affinity captures the compatibility of node i in the egocentric graph,
to node k in the top-view graph. The compatibility between the two nodes is
computed using 2D cross correlation between U IOUk and UGISTEi

and 1D cross
correlation between Unk and UnEi

. The overall compatibility of the two nodes is
a weighted linear combination of the two:

Aikik = αmax(UGISTEi
∗ U IOUk ) + (1− α)max(UnEi

∗ Unk ), (5)
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(a) (b)

Fig. 5: (a) shows two different examples of the 2D features extracted from the
nodes of the graphs, for which the values are color-coded. Left column shows
the 2D matrices extracted from the pairwise similarities of the GIST feature
descriptors UGIST , middle shows the 2D matrices computed by intersection over
union of the FOV in the top-view camera U IOU , and the rightmost column
shows the result of the 2D cross correlation between the two. (b) shows the same
concept, but between two edges. Again, the leftmost figure shows the pairwise
similarity between GIST descriptors of one egocentric camera to another BGIST .
Middle, shows the pairwise intersection over union of the FOVs of the pair of
viewers BIOU , and the rightmost column illustrates their 2D cross correlation.
The similarities between the GIST and FOV matrices in fact capture the affinity
of two nodes/edges in the two graphs.

where α is a constant between 0 and 1 specifying the contribution of each term.
In our experiments, we set α to 0.9. Figure 5 illustrates the features extracted
from some of the nodes and edges in the two graphs.

Soft Assignment We employ the spectral graph matching method introduced
in [4] to compute a soft assignment between the set of egocentric viewers and
top-view viewers. In [4], assuming that the affinity matrix is an empirical estima-
tion of the pairwise assignment probability, and the assignment probabilities are
statistically independent, A is represented using it’s rank one estimation which
is computed by argmin

p
|A − ppT |. In fact, the rank one estimation of A is no

different than it’s leading eigenvector. Therefore, p can be computed either using
eigen decompositon, or estimated iteratively using power iteration. Considering
vector p as the assignment probablities, we can reshape pNeNt×1 into a Ne×N t

soft assignment matrix P , for which after row normalization P (i, j) represents
the probability of matching egocentric viewer i to viewer j in the top-view video.

Hard Assignment Any soft to hard assignment method can be used to convert
the soft assignment result (generated by spectral matching) to the hard binary
assignment between the nodes of the graphs. We used the well known Munkres
(also known as Hungarian) algorithm to obtain the final binary assignment.
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Fig. 6: Examples of the one dimensional features capturing the number of humans
in different frames of the videos. The top row shows the number of visible people
in each viewer’s Top-FOV over time. The second row shows the summation of the
detection scores at every frame from egocentric videos. The similarity between
the two patterns shows the discriminative power of this feature in some cases.
However, our experiments show that in most cases this feature by itself does not
results in a high assignment accuracy.

4 Experimental Results

In this section, we will mention details of our experimental setup and collected
dataset, the measures we used to evaluate the performance of our method, and
the performance of our proposed method alongside with some baselines.

4.1 Dataset

We collected a dataset containing 50 test cases of videos shot in different in-
door and outdoor conditions. Each test case, contains one top-view video and
several egocentric videos captured by the people visible in the top-view camera.
Depending on the subset of egocentric cameras that we include, we can gener-
ate up to 2,862 instances of our assignment problem (will be explained in more
detail in section 4.2.4). Overall, our dataset contains more than 225,000 frames.
Number of people visible in the top-view cameras varies from 3 to 10, number
of egocentric cameras varies from 1 to 6, and the ratio of number of available
egocentric cameras to the number of visible people in the top-view camera varies
from 0.16 to 1. Lengths of the videos vary from 320 frames (10.6 seconds) up to
3132 frames (110 seconds). Please see supplementary material for more details
on our data and sample sequences.

4.2 Evaluation

We evaluate our method in terms of answering the two questions we asked. First,
given a top-view video and a set of egocentric videos, can we verify if the top-
view video is capturing the egocentric viewers? We analyze the capability of our
method in answering this question in section 4.2.1.

Second, knowing that a top-view video contains the viewers recording a set
of egocentric videos, can we determine which viewer has recorded which video?
We answer this question in sections 4.2.2 and 4.2.3.

4.2.1. Ranking Top-view Videos: We design an experiment to evaluate if
our graph matching score is a good measure for the similarity between the set of
egocentric videos and a top-view video. Having a set of egocentric videos from
the same test case (recorded in the same environment), and 50 different top-
view videos (from different test cases), we compare the similarity of each of the
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top-view graphs to the egocentric graph. After computing the hard assignment
for each top view video(resulting in the assignment vector x), the score xTAx is
associated to that top-view video. This score is effectively the summation of all
the similarities between the corresponding nodes and edges of the two graphs.
Using this score rank all the top-view videos. The ranking accuracy is measured
by measuring the rank of the ground truth top-view video, and computing the
cumulative matching curves shown in figure 7(a). The blue curve shows the
ranking accuracy when we compute the scores only based on the unary features.
The red curve shows the ranking accuracy when we consider both the unary and
pairwise features for performing graph matching. The dashed black line shows
the accuracy of randomly ranking the top-view videos. It can be observed that
both the blue and red curves outperform the random ranking. This shows that
our graph matching score is a meaningful measure for estimating the similarity
between the two graphs. In addition, the red curve, outperforming the blue
curve shows the effectiveness of our pairwise features. In general, this experiment
answers the first question. We can in fact use the graph matching score as a cue
for narrowing down the search space among the top-view videos, for finding the
one corresponding to our set of the egocentric cameras.

4.2.2. Viewer Ranking Accuracy: We evaluate our soft assignment results,
in terms of ranking capability. In other words, we can look at our soft assignment
as a measure to sort the viewers in the top-view video based on their assignment
probability to each egocentric video. Computing the ranks of the correct matches,
we can plot the cumulative matching curves to illustrate their performance.

We compare our method with three baselines in figure 7 (b). First, random
ranking (dashed black line), in which for each egocentric video we randomly rank
the viewers present in the top-view video. Second, sorting the top-view viewers
based on the similarities of their 1D unary features to the 1D unary features of
each egocentric camera (i.e., number of visible humans illustrated by the blue
curve). Third, sorting the top-view viewers based on their 2D unary feature
(GIST vs. FOV, shown by the green curve). Note that here (the blue and green
curves), we are ignoring the pairwise relationships (edges) in the graphs. The
consistent improvement of our method (red curve) over the baselines, justifies
the effectiveness of our representation, and shows the contribution of each stage.

4.2.3. Assignment Accuracy: In order to answer the second question, we
need to evaluate the accuracy of our method in terms of node assignment ac-
curacy. Having a set of egocentric videos and a top-view video, which we know
contains the egocentric viewers, we evaluate the percentage of the egocentric
videos which were correctly matched to their corresponding viewer. We eval-
uate the hard-assignment accuracy for our method and compare it with three
baselines in figure 7(c). First, random assignment (Rnd), in which we randomly
assign each egocentric video to one of the visible viewers in the top-view video.
Second, performing Hungarian bipartite matching only on the 1D unary feature
which is the count of visible humans over times denoted as H. Third, performing
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(a) (b) (c)

Fig. 7: (a) shows the cumulative matching curve for ranking top-view videos.
The blue curve shows the accuracy if we only consider the node similarities. The
red curve shows the accuracy if we consider both node, and edge similarities in
the graph matching and therefore the ranking process. (b) shows the cumulative
matching curve for ranking the viewers in the top-view video. The red, green
and blue curves belong to ranking based on spectral graph matching scores,
cross correlation between the 2D, and cross correlation between the 1D unary
scores, respectively. The dashed black line shows random ranking accuracy (c)
shows the assignment accuracy based on randomly assigning, using the number
of humans, using unary features, and using spectral graph matching.

Hungarian bipartite matching only on the 2D unary feature (GIST vs. FOV,
denoted as G-F), ignoring the pairwise relationships (edges) in the graphs.

The consistent improvement of our method using both unary and pairwise
features in graph matching (denoted as GM) over the baselines shows the signif-
icant contribution of pairwise features in the assignment accuracy. As a result,
the promising accuracy acquired by graph matching answers the second ques-
tion. Knowing a top-view camera is capturing a set of egocentric viewers, we
can use visual cues in the egocentric videos and the top-view video, to decide
reliably which viewer is capturing which egocentric video.

4.2.4. Effect of Number of Egocentric Cameras: In sections 4.2.2 and
4.2.3, we evaluated the performance of our method given all the available ego-
centric videos present in each set as the input to our method. In this experiment,
we compare the accuracy of our assignment and ranking framework as a func-
tion of the completeness ratio (

nEgo

nTop
) of our egocentric set. Each of our sets

contain 3 < N t < 11 viewers in the top-view camera, and 2 < Ne < 8 egocen-
tric videos. We evaluated the accuracy of our method and baselines when using
different subsets of the egocentric videos. A total of 2N

e − 1 non-empty subsets
of egocentric videos is possible depending on which egocentric video out of Ne

are included (all possible non-empty subsets). We evaluate our method on each
subset separately.

Figure 8 illustrates the assignment and ranking accuracies versus the ratio of
the available egocentric videos to the number of visible people in the top-view
camera. It shows that as the completeness ratio increases, the assignment ac-
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curacy drastically improves. Intuitively, having more egocentric cameras gives
more information about the structure of the graph (by providing more pairwise
terms) which leads to improvement in the spectral graph matching and assign-
ment accuracy.

(a) (b) (c) (d)

Fig. 8: Effect of the relative number of egocentric cameras referred to as com-
pleteness ratio (

nEgo

nTop
). (a) shows the ranking accuracy vs

nEgo

nTop
, only using the

unary features. (b) shows the same evaluation using the graph matching output.
(c) shows the accuracy of the hard assignment computed based on Hungarian bi-
partite matching on top of the unary features, and (d) shows the hard-assignment
computed based on the spectral graph matching.

5 Conclusion and Discussion

In this work, we addressed two main questions regarding relating multiple ego-
centric videos to a single top-view video. First, can we tell if a set of egocentric
videos belong to a set of humans present in a top-view video? And second, If we
know they do, can we identify them? We proposed a framework to explore these
possibilities.

Our experiments suggest that capturing the pattern of change in the content
of the egocentric videos, along with capturing the relationships among them can
help to identify the viewers in top-view. To do so, we utilized a spectral graph
matching technique. We showed that the graph matching score, is a meaningful
criteria for narrowing down the search space in a set of top-view videos. Fur-
ther, the assignment found by our framework is capable of associating egocentric
videos to the viewers in the top-view camera. We conclude that meaningful fea-
tures can be extracted from single, and pairs of egocentric camera(s), simply
based on global scene gist of the content of the camera and incorporating the
temporal information of the video(s).

Our work helps relate two sources of information which so far have been
studied in isolation and infer new insights about the visual world from different
perspectives. For future, we will consider a more general case of this problem by
assigning multiple egocentric viewers to viewers in multiple top-view cameras.
We will also investigate more diverse scenarios and conditions.
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