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Abstract. With multiple crowd gatherings of millions of people every year in
events ranging from pilgrimages to protests, concerts to marathons, and festivals
to funerals; visual crowd analysis is emerging as a new frontier in computer vi-
sion. In particular, counting in highly dense crowds is a challenging problem with
far-reaching applicability in crowd safety and management, as well as gauging
political significance of protests and demonstrations. In this paper, we propose
a novel approach that simultaneously solves the problems of counting, density
map estimation and localization of people in a given dense crowd image. Our
formulation is based on an important observation that the three problems are in-
herently related to each other making the loss function for optimizing a deep CNN
decomposable. Since localization requires high-quality images and annotations,
we introduce UCF-QNRF dataset that overcomes the shortcomings of previous
datasets, and contains 1.25 million humans manually marked with dot annota-
tions. Finally, we present evaluation measures and comparison with recent deep
CNN networks, including those developed specifically for crowd counting. Our
approach significantly outperforms state-of-the-art on the new dataset, which is
the most challenging dataset with the largest number of crowd annotations in the
most diverse set of scenes.

Keywords: Crowd Counting · Localization · Convolution Neural Networks ·
Composition Loss

1 Introduction

Counting dense crowds is significant both from socio-political and safety perspective.
At one end of the spectrum, there are large ritual gatherings such as during pilgrim-
ages that typically have large crowds occurring in known and pre-defined locations.
Although they generally have passive crowds coming together for peaceful purposes,
disasters have known to occur, for instance, during Love Parade [9] and Hajj [1]. For
active crowds, such as expressive mobs in demonstrations and protests, counting is im-
portant both from political and safety standpoint. It is very common for different sides
to claim divergent numbers for crowd gathering, inclined towards their political stand-
ing on the concerned issue. Beyond subjectivity and preference for certain political or
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Fig. 1: This figure highlights the problems due to low resolution images from two exist-
ing dense crowd datasets: (a) shows a case where the annotations were not done on parts
of the images as it is virtually impossible to distinguish heads of neighboring people,
while (b) shows a case where some of the locations / counts are erroneous and therefore
not suitable for localization. The UCF-QNRF dataset proposed in this paper overcomes
such issues.

social outcomes, the disparate counting estimates from opposing parties have a basis in
numerical cognition as well. In humans, the results on subitizing [21] suggest that once
the number of observed objects increases beyond four, the brain switches from the exact
Parallel Individuation System (PIS) to the inaccurate but scalable Approximate Num-
ber System (ANS) to count objects [11]. Thus, computer vision based crowd counting
offers alternative fast and objective estimation of the number of people in such events.
Furthermore, crowd counting is extendable to other domains, for instance, counting
cells or bacteria from microscopic images [17, 27], animal crowd estimates in wildlife
sanctuaries [2], or estimating the number of vehicles at transportation hubs or traffic
jams [19].

In this paper, we propose a novel approach to crowd counting, density map estima-
tion and localization of people in a given crowd image. Our approach stems from the
observation that these three problems are very interrelated - in fact, they can be decom-
posed with respect to each other. Counting provides an estimate of the number of peo-
ple / objects without any information about their location. Density maps, which can be
computed at multiple levels, provide weak information about location of each person.
Localization does provide accurate location information, nevertheless, it is extremely
difficult to estimate directly due to its very sparse nature. Therefore, we propose to es-
timate all three tasks simultaneously, while employing the fact that each is special case
of another one. Density maps can be ‘sharpened’ till they approximate the localization
map, whose integral should equal to the true count.

Furthermore, we introduce a new and the largest dataset to-date for training and
evaluating dense crowd counting, density map estimation and localization methods,
particularly suitable for training very deep Convolutional Neural Networks (CNNs).
Though counting has traditionally been considered the primary focus of research, den-
sity map estimation and localization have significance and utility beyond counting. In
particular, two applications are noteworthy: initialization / detection of people for track-
ing in dense crowds [13]; and rectifying counting errors from an automated computer
vision algorithm. That is, a real user or analyst who desires to estimate the exact count
for a real image without any error, the results of counting alone are insufficient. The
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Dataset Number
Images

Number
Annotations

Average
Count

Maximum
Count

Average
Resolution

Average
Density

UCF CC 50 [12] 50 63,974 1279 4633 2101 × 2888 2.02 ×10−4

WorldExpo’10 [29] 3980 225,216 56 334 576 × 720 1.36 ×10−4

ShanghaiTech A [30] 482 241,677 501 3139 589 × 868 9.33 ×10−4

UCF-QNRF 1535 1,251,642 815 12865 2013 × 2902 1.12 ×10−4

Table 1: Summary of statistics of different datasets. UCF CC 50 (44MB); World-
Expo’10 (325MB); ShanghaiTech A (67MB); and the proposed UCF-QNRF Dataset
(4.33GB).

single number for an entire image makes it difficult to assess the error or the source of
the error. However, the localization can provide an initial set of dot locations of the in-
dividuals, the user then can quickly go through the image and remove the false positives
and add the false negatives. The count using such an approach will be much more ac-
curate and the user can get 100% precise count for the query image. This is particularly
important when the number of image samples are few, and reliable counts are desired.

Prior to 2013, much of the work in crowd counting focused on low-density scenar-
ios. For instance, UCSD dataset [4] contains 2, 000 video frames with 49, 885 anno-
tated persons. The dataset is low density and low resolution compared to many recent
datasets, where train and test splits belong to a single scene. WorldExpo’10 dataset
[29], contains 108 low-to-medium density scenes and overcomes the issue of diversity
to some extent. UCF dataset [12] contains 50 different images with counts ranging be-
tween 96 and 4, 633 per image. Each image has a different resolution, camera angle, and
crowd density. Although it was the first dataset for dense crowd images, it has problems
with annotations (Figure 1) due to limited availability of high-resolution crowd images
at the time. The ShanghaiTech crowd dataset [30] contains 1, 198 annotated images with
a total of 330, 165 annotations. This dataset is divided into two parts: Part A contains
482 images and Part B with 716 images. The number of training images are 300 and
400 in both parts, respectively. Only the images in Part A contain high-density crowds,
with 482 images and 250K annotations.

Table 1 summarizes the statistics of the multi-scene datasets for dense crowd count-
ing. The proposed UCF-QNRF dataset has the most number of high-count crowd im-
ages and annotations, and a wider variety of scenes containing the most diverse set
of viewpoints, densities and lighting variations. The resolution is large compared to
WorldExpo’10 [29] and ShanghaiTech [30], as can be seen in Fig. 2(b). The average
density, i.e., the number of people per pixel over all images is also the lowest, signi-
fying high-quality large images. Lower per-pixel density is partly due to inclusion of
background regions, where there are many high-density regions as well as zero-density
regions. Part A of Shanghai dataset has high-count crowd images as well, however, they
are severely cropped to contain crowds only. On the other hand, the new UCF-QNRF
dataset contains buildings, vegetation, sky and roads as they are present in realistic sce-
narios captured in the wild. This makes this dataset more realistic as well as difficult.
Similarly, Figure 2(a) shows the diversity in counts among the datasets. The distribution
of proposed dataset is similar to UCF CC 50 [12], however, the new dataset is 30 and
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Fig. 2: (a) This graph shows the relative distribution of image counts among the four
datasets. The proposed UCF-QNRF dataset has a fair number of images from all five
count ranges. (b) This graph shows a 2D histogram of image resolution for all the
images in the new dataset. The x-axis shows the number of rows, while y-axis is the
number of columns. Each bin (500 × 500 pixels) is color-coded with the number of
images that have the corresponding resolution.

20 times larger in terms of number of images and annotations, respectively, compared to
UCF CC 50 [12]. We hope the new dataset will significantly increase research activity
in visual crowd analysis and will pave way for building deployable practical counting
and localization systems for dense crowds.

The rest of the paper is organized as follows. In Sec. 2 we review related work,
and present the proposed approach for simultaneous crowd counting, density map es-
timation and localization in Sec. 3. The process for collection and annotation of the
UCF-QNRF dataset is covered in Sec. 4, while the three tasks and evaluation measures
are motivated in Sec. 5. The experimental evaluation and comparison are presented in
Sec. 6. We conclude with suggestions for future work in Sec. 7.

2 Related Work

Crowd counting is active an area of research with works tackling the three aspects of
the problem: counting-by-regression [23], [17], [12], [4], [28], density map estimation
[17], [7], [29], [20], [30] and localization [18], [22].

Earlier regression-based approaches mapped global image features or a combination
of local patch features to obtain counts [15], [5], [12], [6]. Since these methods only
produce counts, they cannot be used for density map estimation or localization. The
features were hand-crafted and in some cases multiple features were used [4], [12] to
handle low resolution, perspective distortion and severe occlusion. On the other hand,
CNNs inherently learn multiple feature maps automatically, and therefore are now being
extensively used for crowd counting and density map estimation.

CNN based approaches for crowd counting include [16], [29], [30], [19], [2]. Zhang
et al. [29] train a CNN alternatively to predict density map and count in a patch, and
then average the density map for all the overlapping patches to obtain density map
for the entire image. Lebanoff and Idrees [16] introduce a normalized variant of the
Euclidean loss function in a deep network to achieve consistent counting performance
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across all densities. The authors in [30] use three column CNN, each with different
filter sizes to capture responses at different scales. The count for the image is obtained
by summing over the predicted density map. Sindagi and Patel [26] presented a CNN-
based approach that incorporates global and local contextual information in an image
to generate density maps. The global and local contexts are obtained by learning to
classify the input image patches into various density levels, later fused with the output
of a multi-column CNN to obtain the final density map. Similarly, in the approach by
Sam et al. [24], image patches are relayed to the appropriate CNN using a switching
mechanism learnt during training. The independent CNN regressors are designed to
have different receptive fields while the switch classifier is trained to relay the crowd
scene patch to the best CNN regressor.

For localization in crowded scenes, Rodriguez et al. [22] use density map as a
regularizer during the detection. They optimize an objective function that prefers den-
sity map generated on detected locations to be similar to predicted density map [17].
This results in both better precision and recall. The density map is generated by plac-
ing a Gaussian kernel at the location of each detection. Zheng et al. [18] first obtain
density map using sliding window over the image through [17], and then use integer
programming to localize objects on the density maps. Similarly, in the domain of med-
ical imaging, Sirinukunwattana et al. [27] introduced spatially-constrained CNNs for
detection and classification of cancer nuclei. In this paper, we present results and anal-
ysis for simultaneous crowd counting, density map estimation, and localization using
Composition Loss on the proposed UCF-QNRF dataset.

3 Deep CNN with Composition Loss

In this section, we present the motivation for decomposing the loss of three interre-
lated problems of counting, density map estimation and localization, followed by details
about the deep Convolutional Neural Network which can enable training and estimation
of the three tasks simultaneously.

3.1 Composition Loss

Let x = [x, y] denote a pixel location in a given image, and N be the number of people
annotated with {xi : i = 1, 2, . . . N} as their respective locations. Dense crowds typi-
cally depict heads of people as they are the only parts least occluded and mostly visible.
In localization maps, only a single pixel is activated, i.e., set to 1 per head, while all
other pixels are set to 0. This makes localization maps extremely sparse and therefore
difficult to train and estimate. We observe that successive computation of ‘sharper’ den-
sity maps which are relatively easier to train can aid in localization as well. Moreover,
all three tasks should influence count, which is the integral over density or localization
map. We use the Gaussian Kernel and adapt it for our problem of simultaneous solution
for the three tasks.

Due to perspective effect and possibly variable density of the crowd, a single value
of bandwidth, σ, cannot be used for the Gaussian kernel, as it might lead to well-defined
separation between people close to the camera or in regions of low density, while excess
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Fig. 3: The figure shows the proposed architecture for estimating count, density and lo-
calization maps simultaneously for a given patch in an image. At the top is the base
DenseNet which regresses only the counts. The proposed Composition Loss is imple-
mented through multiple dense blocks after branching off the base network. We also
test the effect of additional constraint on the density and localization maps (shown with
amber and orange blocks) such that the count after integral in each should also be con-
sistent with the groundtruth count.

blurring in other regions. Many images of dense crowds depict crowds in their entirety,
making automatic perspective rectification difficult. Thus, we propose to define σi for
each person i as the minimum of the `2 distance to its nearest neighbor in spatial domain
of the image or some maximum threshold, τ . This ensures that the location information
of each person is preserved precisely irrespective of default kernel bandwidth, τ . Thus,
the adaptive Gaussian kernel is given by,

D(x, f(·)) =

N∑
i=1

1√
2πf(σi)

exp

(
− (x− xi)2 + (y − yi)2

2f(σi)2

)
, (1)

where the function f is used to produce a successive set of ‘sharper’ density maps. We
define fk(σ) = σ1/k. Thus, Dk = D(x, fk(·)). As can be seen when k = 1, Dk is
a very smoothed-out density map using nearest-neighbor dependent bandwidth and τ ,
whereas as k −→ ∞, Dk approaches the binary localization map with a Dirac Delta
function placed at each annotated pixel. Since each pixel has a unit area, the localization
map assumes a unit value at the annotated location. For our experiments we used three
density levels with last one being the localization map. It is also interesting to note that
the various connections between density levels and base CNN also serve to provide
intermediate supervision which aid in training the filters of base CNN towards counting
and density estimation early on in the network.
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Hypothetically, since integral over each estimated D̂k yields a count for that density
level, the final count can be obtained by taking the mean of counts from the density
and localization maps as well as regression output from base CNN. This has two po-
tential advantages: 1) the final count relies on multiple sources - each capturing count
at a different scale. 2) During training the mean of four counts should equal the true
count, which implicitly enforces an additional constraint that D̂k should not only cap-
ture the density and localization information, but that each of their counts should also
sum to the groundtruth count. For training, the loss function of density and localiza-
tion maps is the mean square error between the predicted and ground truth maps, i.e.
Lk = MSE(D̂k, Dk), where k = 1, 2, and ∞, and regression loss, Lc, is Euclidean
loss between predicted and groundtruth counts, while the final loss is defined as the
weighted mean all four losses.

3.2 DenseNet with Composition Loss

Layer Output Size Filters

512 × 28 × 28
Density Level 1 1 × 28 × 28 1 × 1 conv

Density Level 2
641 × 28 × 28

[
1× 1 conv
3× 3 conv

]
× 4

1 × 28 × 28 1 × 1 conv

Density Level∞ 771 × 28 × 28
[

1× 1 conv
3× 3 conv

]
× 4

1 × 28 × 28 1 × 1 conv

Table 2: This table shows the filter dimensions and
output of the three density layer blocks appended
to the network in Fig. 3.

We use DenseNet [10] as our base
network. It consists of 4 Dense
blocks where each block has a
number of consecutive 1 × 1 and
3 × 3 convolutional layers. Each
dense block (except for the last
one) is followed by a Transition
layer, which reduces the num-
ber of feature-maps by applying
1 × 1 convolutions followed by
2 × 2 average pooling with stride
2. In our experiments we used
DenseNet-201 architecture. It has
{6, 12, 48, 32} sets of 1 × 1 and
3 × 3 convolutional layers in the
four dense blocks, respectively.

For density map estimation and localization, we branch out from DenseBlock2 and
feed it to our Density Network (see Table 2). The density network introduces 2 new
dense blocks and three 1× 1 convolutional layers. Each dense block has features com-
puted at the previous step, concatenated with all the density levels predicted thus far
as input, and learns features aimed at computing the current density / localization map.
We used 1× 1 convolutions to get the output density map from these features. Density
Level 1 is computed directly from DenseBlock2 features.

We used Adam solver with a step learning rate in all our experiments. We used
0.001 as initial learning rate and reduce the learning rate by a factor of 2 after every 20
epochs. We trained the entire network for 70 epoch with a batch size of 16.

4 The UCF-QNRF Dataset

Dataset Collection. The images for the dataset were collected from three sources:
Flickr, Web Search and the Hajj footage. The Hajj images were carefully selected so
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that there are multiple images that capture different locations, viewpoints, perspective
effects and times of the day. For Flickr and Web Search, we manually generated the fol-
lowing queries: CROWD, HAJJ, SPECTATOR CROWD, PILGRIMAGE, PROTEST CROWD
and CONCERT CROWD. These queries were then passed onto the Flickr and Google
Image Search APIs. We selected desired number of images for each query to be 2000
for Flickr and 200 for Google Image Search. The search sorted all the results by RELE-
VANCE incorporating both titles and tags, and for Flickr we also ensured that only those
images were downloaded for which original resolutions were permitted to be down-
loaded (through the URL O specifier). The static links to all the images were extracted
and saved for all the query terms, which were then downloaded using the respective
APIs. The images were also checked for duplicates by computing image similarities
followed by manual verification and discarding of duplicates.

Initial Pruning. The initial set of images were then manually checked for desirability.
Many of the images were pruned due to one or more of the following reasons:

– Scenes that did not depict crowds at all or low-density crowds
– Objects or visualizations of objects other than humans
– Motion blur or low resolution
– Very high perspective effect that is camera height is similar to average human height
– Images with watermarks or those where text occupied more than 10% of the image

In high-density crowd images, it is mostly the heads that are visible. However, peo-
ple who appear far away from the camera become indistinguishable beyond a certain
distance, which depends on crowd density, lighting as well as resolution of the camera
sensor. During pruning, we kept those images where the heads were separable visually.
Such images were annotated with the others, however, they were cropped afterwards
to ensure that regions with problematic annotations or those with none at all due to
difficulty in recognizing human heads were discarded.

We performed the entire annotation process in two stages. In the first stage, un-
annotated images were given to the annotators, while in the second stage, the images
were given to verifiers who corrected any mistakes or errors in annotations. There were
14 annotators and 4 verifiers, who clocked 1, 300 and 200 hours respectively. In total,
the entire procedure involved 2, 000 human-hours spent through to its completion.

Statistics. The dataset has 1, 535 jpeg images with 1, 251, 642 annotations. The train
and test sets were created by sorting the images with respect to absolute counts, and
selecting every 5th image into the test set. Thus, the training and test set consist of 1201
and 334 images, respectively. The distribution of images from [Flickr, Web, Hajj] for
the train and test are [1078, 84, 39] and [306, 21, 7], respectively. In the dataset, the
minimum and maximum counts are 49 and 12, 865, respectively, whereas the median
and mean counts are 425 and 815.4, respectively.

5 Definition and Quantification of Tasks

In this section, we define the three tasks and the associated quantification measures.
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Counting: The first task involves estimation of count for a crowd image i, given by
ci. Although this measure does not give any information about location or distribution
of people in the image, this is still very useful for many applications, for instance,
estimating size of an entire crowd spanning several square kilometers or miles. For
the application of counting large crowds, Jacob’s Method [14] due to Herbert Jacob is
typically employed which involves dividing the area A into smaller sections, finding the
average number of people or density d in each section, computing the mean density d̄
and extrapolating the results to entire region. However, with automated crowd counting,
it is now possible to obtain counts and density for multiple images at different locations,
thereby, permitting the more accurate integration of density over entire area covered by
crowd. Moreover, counting through multiple aerial images requires cartographic tools
to map the images onto the earth to compute ground areas. The density here is defined
as the number of people in the image divided by ground area covered by the image.
We propose to use the same evaluation measures as used in literature for this task: the
Mean Absolute Error (C-MAE), Mean Squared Error (C-MSE) with the addition of
Normalized Absolute Error (C-NAE).
Density Map Estimation amounts to computing per-pixel density at each location in
the image, thus preserving spatial information about distribution of people. This is par-
ticularly relevant for safety and surveillance, since very high density at a particular
location in the scene can be catastrophic [1]. This is different from counting since an
image can have counts within safe limits, while containing regions that have very high
density. This can happen due to the presence of empty regions in the image, such as
walls and sky for mounted cameras; and roads, vehicles, buildings and forestation in
aerial cameras. The metrics for evaluating density map estimation are similar to count-
ing, except that they are per-pixel, i.e., the per-pixel Mean Absolute Error (DM-MAE)
and Mean Squared Error (DM-MSE). Finally, we also propose to compute the 2D His-
togram Intersection (DM-HI) distance after normalizing both the groundtruth and es-
timated density maps. This discards the effect of absolute counts and emphasizes the
error in distribution of density compared to the groundtruth.
Localization: The ideal approach to crowd counting would be to detect all the people in
an image and then count the number of detections. But since dense crowd images con-
tain severe occlusions among individuals and fewer pixels per person for those away
from the camera, this is not a feasible solution. This is why, most approaches to crowd
counting bypass explicit detection and perform direct regression on input images. How-
ever, for many applications, the precise location of individuals is needed, for instance,
to initialize a tracking algorithm in very high-density crowd videos.

To quantify the localization error, estimated locations are associated with the ground
truth locations through 1-1 matching using greedy association, followed by computa-
tion of Precision and Recall at various distance thresholds (1, 2, 3, . . . , 100 pixels). The
overall performance of the localization task is then computed through area under the
Precision-Recall curve, L-AUC.

6 Experiments

Next, we present the results of experiments for the three tasks defined in Section 5.
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DensityLevel 2 Count DensityLevel 1 Count

Fig. 4: This figure shows pairs of images where the left image in the pair has the lowest
counting error while the right image has the highest counting error with respect to the
four components of the Composition Loss.

6.1 Counting

Method C-MAE C-NAE C-MSE

Idrees et al. [12]* 315 0.63 508
MCNN [30] 277 0.55 426

Encoder-Decoder [3] 270 0.56 478
CMTL [25] 252 0.54 514

SwitchCNN [24] 228 0.44 445
Resnet101 [8]* 190 0.50 277

Densenet201 [10]* 163 0.40 226
Proposed 132 0.26 191

Table 3: We show counting results obtained us-
ing state-of-the-art methods in comparison with
the proposed approach. Methods with ‘*’ regress
counts without computing density maps.

For counting, we evaluated the
new UCF-QNRF dataset using the
proposed method which estimates
counts, density maps and locations
of people simultaneously with sev-
eral state-of-the-art deep neural
networks [3], [8], [10] as well
as those specifically developed for
crowd counting [30], [25], [24].
To train the networks, we ex-
tracted patches of sizes 448, 224
and 112 pixels at random loca-
tions from each training image.
While deciding on image locations
to extract patch from, we assigned
higher probability of selection to
image regions with higher count.
We used mean square error of counts as the loss function. At test time, we divide the
image into a grid of 224× 224 pixel cells - zero-padding the image for dimensions not
divisible by 224 - and evaluate each cell using the trained network. Final image count is
given by aggregating the counts in all cells. Table 3 summarizes the results which shows
the proposed network significantly outperforms the competing deep CNNs and crowd
counting approaches. In Figure 4, we show the images with the lowest and highest error
in the test set, for counts obtained through different components of the Composition
Loss.
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6.2 Density Map Estimation

Method DM-MAE DM-MSE DM-HI
MCNN [30] 0.006670 0.0223 0.5354

SwitchCNN [24] 0.005673 0.0263 0.5301
CMTL [25] 0.005932 0.0244 0.5024
Proposed 0.00044 0.0017 0.9131

Table 4: Results for Density map estimation:
We show results on Histogram intersection (HI),
obtained using existing state-of-the-art methods
compared to the proposed approach.

For density map estimation, we
describe and compare the pro-
posed approach with several meth-
ods that directly regress crowd
density during training. Among
the deep learning methods, MCNN
[30] consists of three columns of
convolution networks with differ-
ent filter sizes to capture different
head sizes and combines the out-
put of all the columns to make a
final density estimate. SwitchCNN
[24] uses a similar three column
network; however, it also employs a switching network that decides which column
should exclusively handle the input patch. CMTL [25] employs a multi-task network
that computes a high level prior over the image patch (crowd count classification) and
density estimation. These networks are specifically designed for crowd density estima-
tion and their results are reported in first three rows of Table 4. The results of proposed
approach are shown in the bottom row of Table 4. The proposed approach outperforms
existing approaches by an order of magnitude.

6.3 Localization

For the localization task, we adopt the same network configurations used for density
map estimation to perform localization. To get the accurate head locations, we post-
process the outputs by finding the local peaks / maximums based on a threshold, also
known as non-maximal suppression. Once the peaks are found, we match the predicted
location with the ground truth location using 1-1 matching, and compute precision and
recall. We use different distance thresholds as the pixel distance, i.e., if the detection
is within the a particular distance threshold of the groundtruth, it is treated as True
Positive, otherwise it is a False Positive. Similarly, if there is no detection within a
groundtruth location, it becomes a False Negative.

The results of localization are reported in Table 5. This table shows that DenseNet
[10] and Encoder-Decoder [3] outperform ResNet [8] and MCNN [30], while the pro-
posed approach is superior to all the compared methods. The performance on the local-
ization task is dependent on post-processing, which can alter results. Therefore, find-
ing optimal strategy for localization from neural network output or incorporating the
post-processing into the network is an important direction for future research. We also
show some qualitative results of localization in Figure 5. The red dots represent the
groundtruth while yellow circles are the locations estimated by the our approach.

6.4 Ablation Study

We performed an ablation study to validate the efficacy of composition loss introduced
in this paper, as well as various choices in designing the network. These results are
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Method Av. Precision Av. Recall L-AUC
MCNN [30] 59.93% 63.50% 0.591
ResNet74 [8] 61.60% 66.90% 0.612

DenseNet63 [10] 70.19% 58.10% 0.637
Encoder-Decoder [3] 71.80% 62.98% 0.670

Proposed 75.8% 59.75% 0.714

Table 5: This table shows the localization results averaged over four distance thresholds
for different methods. We show Average Precision, Average Recall and AUC metrics.

Fig. 5: Two examples of localization using the proposed approach. Ground truth is de-
picted in red and predicted locations after threshold are shown in yellow.

shown in Table 6. Next, we describe and provide details for the experiment correspond-
ing to each row in the table.

BaseNetwork: This row shows the results with base network of our choice, which
is DenseNet201. A fully-connected layer is appended to the last layer of the network
followed by a single neuron which outputs the count. The input patch size is 224× 224.

DenseBlock4: This experiment studies the effect of connecting the Density Network
(Table 2) containing the different density levels with DenseBlock4 of the base DenseNet
instead of DenseBlock2. Since DenseBlock4 outputs feature maps of size 7 × 7, we
therefore used deconvolution layer with stride 4 to upsample the features before feeding
in to our Density Network.

DenseBlock3: This experiment is similar to DenseBlock4, except that we connect our
Density Network to Denseblock3 of the base network. DenseBlock3 outputs feature
maps which are 14 × 14 in spatial dimensions, whereas we intend to predict density
maps of spatial dimension 28 × 28, so we upsample the feature maps by using decon-
volution layer before feeding them to the proposed Density Network.

D1 only: This row represents the results if we use Density Level 1 only in the Density
Network along with regression of counts in the base network. The results are much
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Experiment Count D∞ D2 D1

MAE MSE NAE MAE MSE NAE MAE MSE NAE MAE MSE NAE
BaseNetwork 163 227 0.395 - - - - - - - - -
DenseBlock4 148 265 0.385 382 765 0.956 879 1235 3.892 2015 4529 4.295
DenseBlock3 144 236 0.363 295 687 0.721 805 1159 3.256 1273 2936 3.982
D1 only 141 233 0.261 - - - - - - 1706 2496 5.677
D1 & D2 only 137 208 0.251 - - - 691 1058 2.459 1887 3541 6.850
Concatenate 139 223 0.264 258 508 0.634 718 1096 3.570 1910 4983 6.574
Mean 150 341 0.271 405 710 1.135 1015 2099 2.916 1151 3170 3.283
Proposed 132 191 0.258 236 408 0.506 682 922 2.027 1629 3600 4.396

Table 6: This table shows the results of ablation study. D∞ corresponds to the results
of counting using localization map estimation, while D2 and D1 represent results from
the two density maps, respectively.

worse compared to the proposed method which uses multiple levels in the Composition
Loss.

D1 and D2 only: Similar to D1 only, this row represents the results if we use Density
Levels 1 and 2 and do not use theD∞ in the Density Network. Incorporation of another
density level improves results slightly in contrast to a single density level.

Concatenate: Here, we take the sum of the two density and one localization map to
obtain 3 counts. We then concatenate these counts to the output of fully-connected
layer of the base network to predict count from the single neuron. Thus, we leave to the
optimization algorithm to find appropriate weights for these 3 values along with the rest
of 1920 features of the fully-connected layer.

Mean: We also tested the effect of using equal weights for counts obtained from the
base network and three density levels. We take sum of each density / localization map
and take the mean of 4 values (2 density map sums, one localization sum, and one count
from base network). We treat this mean value as final count output - both during training
and testing. Thus, this imposes the constraint that not only the density and localization
map correctly predict the location of people, but also their counts should be consistent
with groundtruth counts irrespective of predicted locations.

Proposed: In this experiment, the Density Network is connected with the DenseBlock2
of base network, however, the Density Network simply outputs two density and one
localization maps, none of which are connected to count output (see Figure 3).

In summary, these results show that the Density Network contributes significantly
to performance on the three tasks. It is better to branch out from the middle layers of
the base network, nevertheless the idea of multiple connections back and forth from
the base network and Density Network is an interesting direction for further research.
Furthermore, enforcing counts from all sources to be equal to the groundtruth count
slightly worsens the counting performance. Nevertheless, it does help in estimating
better density and localization maps. Finally, the decrease in error rates from the right
to left in Table 6 highlights the positive influence of the proposed Composition Loss.
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7 Conclusion

This paper introduced a novel method to estimate counts, density maps and localization
in dense crowd images. We showed that these three problems are interrelated, and can
be decomposed with respect to each other through Composition Loss which can then
be used to train a neural network. We solved the three tasks simultaneously with the
counting performance benefiting from the density map estimation and localization as
well. We also proposed the large-scale UCF-QNRF dataset for dense crowds suitable
for the three tasks described in the paper. We provided details of the process of dataset
collection and annotation, where we ensured that only high-resolution images were cu-
rated for the dataset. Finally, we presented extensive set of experiments using several
recent deep architectures, and show how the proposed approach is able to achieve good
performance through detailed ablation study. We hope the new dataset will prove use-
ful for this type of research, with applications in safety and surveillance, design and
expansion of public infrastructures, and gauging political significance of various crowd
events.
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7. Fiaschi, L., Köthe, U., Nair, R., Hamprecht, F.A.: Learning to count with regression forest
and structured labels. In: Pattern Recognition (ICPR), 2012 21st International Conference
on. IEEE (2012)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778
(2016)

9. Helbing, D., Mukerji, P.: Crowd disasters as systemic failures: analysis of the love parade
disaster. EPJ Data Science 1(1), 1–40 (2012)

10. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional
networks. arXiv preprint arXiv:1608.06993 (2016)

11. Hyde, D.C.: Two systems of non-symbolic numerical cognition. Frontiers in human neuro-
science 5 (2011)



Composition Loss for Counting in Dense Crowds 15

12. Idrees, H., Saleemi, I., Seibert, C., Shah, M.: Multi-source multi-scale counting in extremely
dense crowd images. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (2013)

13. Idrees, H., Warner, N., Shah, M.: Tracking in dense crowds using prominence and neighbor-
hood motion concurrence. Image and Vision Computing 32(1), 14–26 (2014)

14. Jacobs, H.: To count a crowd. Columbia Journalism Review 6, 36–40 (1967)
15. Kong, D., Gray, D., Tao, H.: A viewpoint invariant approach for crowd counting. In: Pattern

Recognition, 2006. ICPR 2006. 18th International Conference on. vol. 3, pp. 1187–1190.
IEEE (2006)

16. Lebanoff, L., Idrees, H.: Counting in dense crowds using deep learning (2015)
17. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: NIPS (2010)
18. Ma, Z., Yu, L., Chan, A.B.: Small instance detection by integer programming on object

density maps. In: CVPR (2015)
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