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method and show that the computations can be performed
in time which is linear in the number of points for a denseThis paper presents and analyzes a new constraint (the Col-

linear Point Constraint) for use in computing egomotion and flow field, thus satisfying the need for a fast solution. The
detecting independently moving objects from image motion. detection of independently moving regions is based on a
The constraint provides an elegant means of cancelling the theorem which we derive giving the minimal number of
rotation of the observer while simultaneously providing evi- points needed for the detection of such regions. The theory
dence for the location of the Translational Focus of Expansion. is compared to that of previous methods; experimental
It also provides the minimal computation necessary for de-

verification of its performance using synthetic input is pre-tecting independent motion.  1996 Academic Press, Inc.
sented.

These two computations provide important inputs for
an attention system (such as that described in [45, 5]) in1. INTRODUCTION
that two separate representations of attentional cues are
developed in a highly efficient manner, direction of egomo-Where are you going? This is a question normally-
tion (a cue for gaze maintenance) and locations of indepen-sighted humans have no difficulty in answering regardless
dently moving regions (cues for shifts of attention andof whether we are actually moving or if the environment
perhaps gaze). Thus, the importance of this algorithm foris moving around us. Whatever computations we perform
agents who behave in the real world based on visual inputin reaching an answer to this question seem effortless and
is clear.vary fast. This observation implies that an algorithm that

In subsequent sections, we first present a review of thepurports to solve this problem must also be fast and inex-
models used for computing rigid motion and a review ofpensive computationally.
previous work. Then, we introduce and discuss the newHow do we use the answer to such a question? Most
solution to computing egomotion using collinear points.often, we direct our gaze into the direction of the motion
After that, we examine the problem of independently mov-(imagine driving a car and not focusing on the road directly
ing objects and their detection. We then present a reviewin front of you!). The importance of focusing our gaze on
of previous efforts to solve this problem and introducenew territory as we move seems self-evident. Any changes
our solution.in gaze must be computed in an equally fast and ef-

fortless manner.
2. MODELS FOR COMPUTING RIGID MOTION

This paper presents a new method for the computation
of egomotion that uses a simple constraint, the Collinear Models for computing rigid 3-D motion relate image
Point Constraint. If there is sufficient depth variation in measurables, such as the image motion of a point or the
the world through which an agent moves, simple computa- positions of a point in several images, to the depth in the
tions on collinear point structures in the image lead to scene and the 3-D motion. Image motion is commonly
an elegant solution to computing the translation of the modeled in two ways, infinitesimally in time and over dis-
observer by simultaneously canceling out rotation. Further, crete time intervals. In the first case, it is termed the 2-D
the constraint is extended to solve the problem of detecting instantaneous motion field or optical flow, and in the latter
and localizing independently moving regions. the displacement map.

We present an empirical and theoretical analysis of this
2.1. The 2-D Instantaneous Motion Field

A left-handed observer-centered 3-D Cartesian coordi-* The first author can now be contacted at the Department of Computer
Science, University of Central Florida, Orlando, FL 32816. nate system is used which has its origin at the focal point
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of the observer’s imaging device. The Z-axis coincides with ture. Hence, the displacement formulation can be argued
to be the more practical of the two models. However,the optical axis, and the imaging surface (for convenience,

chosen to be a plane) is modeled at Z 5 1. The 2-D approximations to instantaneous flow fields are obtainable
by employing higher temporal sampling and averaging thecoordinate system on the imaging surface originates where

the optical axis intersects the image. Scene parameters are image motion over the course of several views.
While instantaneous flow is not computable currentlydenoted by capital letters, while the projected parameters

are symbolized by lower-case letters. Thus a point P at (and, where there is insufficient texture, instantaneous
flow may be impossible to compute), its property of(X, Y, Z) in the scene projects to point p at (x 5 X/Z,

y 5 Y/Z) in the image plane. separability of the translational and rotational compo-
nents make it an attractive model of interpretation. InRelative motion between the observer and the scene

can be modeled as motion of the observer. Thus, when addition, computing instantaneous flow is, at least in
theory, less susceptible to the problem of significantthe observer moves with instantaneous motion parameters

(U, V, W, A, B, C) a point in space moves relative to an changes between views: these changes make correspon-
dence difficult when attempting to compute the displace-observer. Then the image velocity (u, v) for a point at

(x, y) is derived as follows (for the derivation, see [24] ment map. In [1], [21], and [53], the relationship between
the instantaneous and the displacement model has beenor [4]):
derived using slightly different assumptions. The ability
to acquire motion data under these assumptions is im-

u 5
2U 1 xW

Z
2 Axy 1 B(x2 1 1) 2 Cy,

(1)
proving, making the instantaneous model increasingly
realistic. For this research, the instantaneous model using
perspective projection is adopted.v 5

2V 1 yW
Z

2 A(y2 1 1) 1 Bxy 1 Cx.

2.3. The Focus of ExpansionThese equations have already been in use in photogramme-
try (see [10]). In the instantaneous model using perspective projection,

an important invariant (invariant relative to the flow field)2.2. The 2-D Displacement Map
is the Focus of Expansion (FOE), defined here to be where

Another way to model motion is as the discrete transfor- the imaging surface (which could be planar, hemispherical,
mation that points in the scene undergo between two views. etc.) is intersected by the direction of instantaneous ob-
Then, due to observer motion, a point P at (X, Y, Z) is server translation. This defines the FOE to be independent
displaced to (X9, Y9, Z9) and in the image plane from (x, of the viewer’s instantaneous rotation.
y) to (x9, y9). The 3-D transformation can be expressed as For an image plane at Z 5 1, let the FOE be at (xf , yf).
a rotation around the three axes followed by a translation. The 3-D translation vector (U, V, W) can be expressed as
The 2-D image displacement is related to 3-D parameters (Wxf , Wyf , W), for some W (the translation component
as follows: along Z), and using U 5 Wxf and V 5 Wyf . When there

is no observer translation, the FOE does not exist. When
u 5 x9 2 x the translation has no component in depth, the FOE lies

at infinity (in the direction of (U, V)) for the case of a
5

x cos B cos C 2 y cos B sin C 1 sin B 2 (U/Z)
x(2cos A sin B cos C 1 sin A sin C) 1 y(cos A
sin B sin C 1 sin A cos C) 1 cos A cos B 2 W/Z

2 x

(2)

planar imaging surface; however, for a hemispherical im-
aging surface, the FOE lies at the rim of the hemisphere.
There is a one-to-one mapping between the direction of
translation (up to a sign factor) and the FOE. Figure 1v 5 y9 2 y
helps to explain how rotation is completely irrelevant to
the position of the FOE as defined above.

5

x(sin A sin B cos C 1 cos A sin C) 1 y(2sin A
sin B sin C 1 cos A cos C) 2 sin A cos B 2 V/Z
x(2cos A sin B cos C 1 sin A sin C) 1 y(cos A
sin B sin C 1 sin A cos C) 1 cos A cos B 2 W/Z

2 y.

(3)
3. PREVIOUS WORK

In this section, representative examples of previous work
in solving the motion equations presented in the previousCurrent technology for measuring image information

discretely in time makes it impossible to obtain 2-D instan- section are reviewed. Reviewing the perspective case first,
work with the instantaneous equations is described fol-taneous motion (velocity) information, while, at least in

principle, displacement maps are computable for situations lowed by work using the displacement equations. Then,
past research conducted under the assumption of orthogra-where the spatial intensity structure provides dense tex-
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FIG. 1. This figure shows flow fields generated when observer (a) only translates (translation parameters [U, V, W ] 5 [2.2, 2.2, 10.1]), (b) only
rotates (rotation parameters [A, B, C ] 5 [20.04, 20.04, 0.04]), and (c) moves with both rotation and translation, the most typical situation. In the
second case there is no FOE because there is no observer translation, while in the first and third cases the FOE is in the same position for both
cases, just above and to the right of the image center; i.e., this definition of FOE renders its position in the image completely independent of
observer rotation for the case of instantaneous motion projected in perspective. The image motion data here is synthesized according to the
description in Section 4.9.1 from depth data shown in Fig. 4a.

phy is recounted. Since this paper pursues instantaneous In [24], the instantaneous motion equations (1) are used,
analysis, the review of these approaches receives greater along with the idea that a pair of points at the same (or
attention than those using the displacement model. very close) retinal location but at different depths (termed

motion parallax, as might occur with transparent surfaces)
3.1. Instantaneous Approaches can have their flow values subtracted to yield a vector

pointing to the FOE. Thus, several separate differenceIn [27], spherical projection was used to show that
computations, taken together, localize the FOE. Then, theyapplying a center-surround symmetric operator to the im-
calculated the rotation parameters from the spatially linearage velocity field cancels out the 3-D rotational component
variation of the flow component that is orthogonal to theof motion. In spherical projection, observer rotation is
coordinate axes centered at the FOE. Subsequent subtrac-constant along lines of latitude with respect to the axis of
tion of the rotation from the original flow field permitsrotation and is locally uniform. Their ‘‘convexity’’ operator
simple extraction of relative depth. To consider caseswas relegated to finding discontinuities in depth.
where motion parallax cues are not readily available orIn [22], a decomposition of the motion parallax field
where parts of the scene are in relative motion, they em-caused by an observer purely translating relative to a planar
ployed first and second derivatives of the flow field at asurface has been considered. The components of the de-
single point and again made use of the linear variation ofcomposition, deformation, curl, and divergence were found
rotation in the special case along a reoriented vertical axisto encode information useful to the observer; for example,
that passes through the FOE. Subsequently, [31] pursuedfor known translation, the deformation specifies the slant

of the surface uniquely. an approach that conducted a three-parameter search
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through all possible candidate rotations. For each hypothe- ity equations are combined with the brightness constancy
assumption to get a brightness change constraint equation.sized rotation, the rotational field was subtracted from the

input field and the resulting field was tested for how well While earlier work with this framework was restricted to
special cases of motions or shapes, recent work in [40] usesit approximated a pure translational field.

Dense flow is assumed in [4], using minimization to ac- fixation to address the general problem.
The authors of [11] cancelled rotation for points in gen-commodate input noise. For pure translation, they pro-

posed to minimize the integral (across the field) of the eral configurations, and their work complements that re-
ported here. Starting with five flow vectors they show thatcomponent of flow orthogonal to a radial line through the

hypothesized FOE. They derived the closed form solution the resulting system of equations can be written as a trans-
formation that is linear in the inverse depths and rotations,to this, and a similar solution has recently been proposed

for the case of translation with minute rotations [39]. Pure where the linear transformation itself is a function of the
unknown translation. Thus, a least-squares estimate forrotation was handled by a simple linear least-squares solu-

tion. For combined motion, the minimized expression led translation can be formulated which minimizes the expres-
sion due to the transformation, over all candidate transla-to seven expressions, three of which were linear in the

rotation parameters; as such, rotation could be expressed tions, rotations, and depth values. An equivalent expres-
sion is obtained by elimination of the rotation components,in terms of translation while the other four would yield

the translation parameters by an unspecified numerical depth, and the magnitude of translation; it is minimized
over the direction of translation alone. The residual func-method.

To compensate for the noise in flow around depth tion they used resembles Adiv’s in concept but is exact
and is efficiently computed. In a subsequent paper [18],boundaries for motion parallax, [34] first computed flow

differences between each local image velocity measure- they thoroughly analyze their method, proving several
mathematical results on the uniqueness and robustness ofment and others measured within a small neighbourhood,

then computing the dominant orientation of the resulting the approach. More recently, in [19], they have continued
their investigations producing an efficient linear approachset of difference vectors. Strongly consistent directions

were saved for each region and used to compute the FOE. to the problem of estimating the motion parameters. This
novel technique has a natural bias in its output, which isHowever, the assumption that rotation is cancelled out by

simple differencing is generally incorrect because the er- compensated for by a computation that, as the authors
report, needs further development before it can be appliedrors in the direction vectors of differences grow with the

distance between the separate points. to computed optical flow fields.
In [14], two operators are defined, one that finds theIn [1], the problem of motion segmentation for flow

fields generated by several moving objects in the scene is rotational parameters and another that, like the work pre-
sented in this paper, is an FOE locator. The first, calledattempted. Subdividing the image into regions and comput-

ing the 3-D motions independently for each region, an the flow circulation algorithm, computes the curl of the
flow field which under many conditions is shown to beapproximating residual function for all possible candidate

directions of translation was minimized. Regions with com- approximately a linear function. Circulation values are
computed for various centroids in the image and the rota-mon translation estimates were then grouped.

In exactly reducing the dimension of the search space, tion parameters are estimated. The FOE operator consists
of the computation of several concentric circular compo-[2] showed that tracking a point (and knowing the rotation

needed to do the tracking) reduced the dimension of the nents via contour integrals around candidate FOEs, which
are then fit to a polynomial to account for the rotationnonlinear search space by one. In [26], it is shown that

assuming rigidity permits the elimination of two of the component. Alternatively, during the computation of the
concentric integrals a center-surround kernel is appliedunknowns in the nonlinear system of equations.

Assuming smooth surfaces, [48, 47] showed that curved concentrically so that the rotation component is cancelled.
Their approach does not address the detection of indepen-patches in rigid motion generated flow fields that were

smooth within ‘‘boundaries of analyticity.’’ They showed dently moving objects.
In [52], a representation, which is a first-order approxi-that the motion and shape parameters were computable

in closed form from certain observables (combinations of mation to the image motion field, is defined. It is based
on the observation that for a very small field of view, thederivatives) of the flow field. In addition to the fact that

computing derivatives is extremely noise-sensitive, since quadratic terms in the instantaneous velocity equations
disappear. The algorithm first computes local parametersmuch of the real world is not smooth, the smooth-surface

assumption is not realistic. for smooth regions while exploiting the local straightness of
iso-depth contours. Their method has not been empiricallyA direct method for the computation of motion and

shape which avoids the stage of computing optical flow and analytically examined for sensitivity arising from their
approximation.explicitly has been proposed [28]. The instantaneous veloc-
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3.2. Displacement Map Solutions 3.3. Orthographic Solutions

In early attempts to solve the displacement equations, [46] proposed that orthographic projection was a far
[36] and [13] formulated solutions to systems of these equa- more suitable model for human perception of structure
tions that first eliminated depth and were transcendental from motion, for a number of reasons. It was shown that
in terms of the Euler angles of rotation and linear and four point correspondences over three views yield a unique
homogeneous in terms of the translation parameters. With solution to the motion and structure up to a reflection
five point correspondences there are five equations in five about the image plane. A nonlinear algorithm was also
unknowns (after setting a scale factor). These equations provided to accomplish the task.
could be solved by iterative techniques but they are not [46] also pointed out that from two views with orthogra-
amenable to proofs of uniqueness or the number of solu- phy there are an uncountably infinite number of solutions
tions. independent of how many point correspondences are

In [20], the second-degree polynomial of [36] was em- given. The coefficient matrix has rank 3. The authors of
ployed, using quarternions to represent rotations. This [43] have recently shown that this rank principle can be
technique was found to be very unstable. exploited. The overdetermined system can be solved when

[44] pursued an approach introduced in [23] for ob- more views than two are specified using a singular value
taining a linear method to solve the system of equations

decomposition to obtain a matrix describing scene struc-
if more than eight displacement values are given. This is

ture and another describing the motion of the camera be-achieved by the formulation of an intermediate matrix E
tween frames. This approach needs many views (at leastof nine parameters called the essential parameters. It was
50) of the same points.found that the computation was so sensitive that even 1%

In general, recently there has been a resurgence of workerror in the displacements could lead to over 50% error
in 3-D motion related to parameter elimination and thein the recovered relative depth. The authors of [50] have
discovery that solutions can be found in fewer dimensionssince proposed nonlinear methods for solving these equa-
than the original space of the problem. Our paper presentstions in order to cope with noise.
and analyzes a novel framework of this character. TheIn [38] it was shown that there was a linear algorithm
central idea pursued here is that for the instantaneousfor estimating structure and motion using line correspon-
model under perspective projection, collinear point struc-dences. [51] proposed a similar algorithm.
tures can be employed to cancel scene rotation in an effi-[49] used collinear points to classify the normal curvature
cient, robust, and intuitive manner. The cancellation ofof the surface into convex, concave, and 3D-collinear la-
rotation permits the FOE to be detected, after which inde-bels; then, whole regions were classified with more complex
pendent motion can be detected, rotation can be computedlabels such as hyperbolic, parabolic, and cylindrical. Rotat-

ing a 2D-collinear point finder in the image about a center robustly, and relative depth becomes available.
point, it was shown that different surfaces produced differ- A description of previous work in detecting indepen-
ent radial signatures in response to sequences of calcula- dently moving objects will be presented in the section on
tions (similar to those employed in our work) on sets of that topic, as it is more appropriate to present this after
three points. The signatures for any of the nonplanar our framework is clear.
patches have specific points where the signature indicated
the direction of the FOE. Thus, with a few such signatures,
the FOE could be located from the intersection of direc-

4. COMPUTING THE DIRECTION OF TRANSLATIONtions. This work suffers from several problems. It requires
the explicit search for particular types of patches; also,

This section presents a theory for computing the instan-these have to have sufficient depth variation to indicate
taneous direction of translation for an observer movingthe direction of the FOE. It relies on local information
with unrestricted motion. The theory is based on cancellingand is susceptible to the problem that any noise in the flow
linear variation of the flow field, as this eliminates rotation,field is amplified when second derivatives are computed
and allows the FOE to be located in an exact manner. Inlocally. Additionally, shape computation is inherently a
principle, once translation is known, the computation oflocal computation and cannot exploit global information
observer rotation is a computation that simply involvesto overcome noise. The presence of independently moving
inverting a linear system, hence this topic is not addressedobjects can cause distorted signatures so that the FOE
here. In the next section, the work of this section is ex-computation would be contaminated. Lastly, the collinear
tended to include an indication of the regions within whichpoint constraint presented in our paper is for the instanta-
there is independent motion. In this section, in additionneous motion model and does not hold for the case of
to theory, an implementation is presented and studied ana-image motion from displacement. Thus, the derivation in

[49] using displacement maps was inexact. lytically and empirically.
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4.1. Assumptions about the Input appears as (u, v), given by Eq. (1). For the three image
points pi , the x-components of the image velocities will be

The input is assumed to be a 2-D instantaneous motion
field. The field is dense in that at many points in the interior

u1 5
2U
Z1

1 B 2 jCof the field there should be many (a theoretical minimum
of two) line directions (in the image) through the point,
with the additional requirement that there be sufficiently

u2 5
2U
Z2

1 Bmany (a theoretical minimum of three) optical flow mea-
surements along each of these lines. The theoretical min-
ima mentioned here will often be insufficient for certain u3 5

2U
Z3

1 B 1 jC.
patterns of scene depth variation, even in the case of a
noise-free motion field. For now, the assumption is made

Now taking the weighted sum (the finite difference approx-that the entire motion field corresponds to a rigid scene.
imation to the second derivative), Sum def

2u1 1 2u2 2Another assumption made is that the relative motion is
u3 , it can be seen to besuch that if there is translation, its FOE is retinotopically

within the field of view represented by the motion field.
Sum 5

U
Z1

2
2U
Z2

1
U
Z3

4.2. FOE from Collinear Measurements

Three image points are referred to as a triplet. It is first 5 S 1
Z1

2
2

Z2
1

1
Z3
D (U),

shown how a computation involving three collinear image
velocity measurements relates 3-D translation to depth, by

i.e., Sum 5 aU where a 5 ((1/Z1) 2 (2/Z2) 1 (1/Z3)).cancelling rotation. Then it is shown how this computation
Now examine the sign of Sum. If Sum is zero, then ifcan be used to find the FOE. The computation is a general-

one assumes that U is not zero, a must be zero, that is,ization of an approximation to the second derivative of
the velocity component that is normal to the line through
the collinear triplet, the ‘‘derivative’’ being taken in the 1

Z1
1

1
Z3

5
2

Z2
,

direction of the triplet line. The measurements from the
collinear image triplet are assumed to be associated with

which means that the points must lie along a line in 3-three scene points on the same rigid structure, although
space. If the calculated Sum is not zero, and if the sign ofnot necessarily on the same surface nor on physically con-
U is known, then one can infer the sign of a. But the signnected surfaces. For points subscripted by i, (i 5 1, 2, 3),
of a indicates whether point P2 lies in front of or behindlet the image coordinates of the points be (xi , yi), their
the line-segment joining P1 and P3 ; that is, this tells usimage velocities be (ui , vi), and the depth values of their
whether the points are in a convex relationship or a con-counterparts in the scene be Zi . cave one.This result is first derived for the simplified case where

The elimination of rotation is possible in this mannerthe three measurements are chosen at locations such that
because rotation’s contribution to the orthogonal compo-one point is at the origin of the image plane and the other
nent of instantaneous image motion, orthogonal to an im-two are at equal distances on either side of it on the y-
age line, varies linearly along the line. Thus, taking theaxis of the image plane. Once the basic idea of cancellation
second derivative along the line cancels the rotation.of linear variation (and hence of rotation) is clear, the

generalization to any triplet of collinear points in the image 4.4. The Collinear Point Constraint (CPC)
plane is shown.

The general constraint can be stated in a theorem. See
Fig. 2b for intuition about this constraint.4.3. The Simple Case along the y-Axis

THEOREM. For a collinear image triplet consisting of
Consider Fig. 2a, which depicts the projection of three

points p1 , p2 , and p3 in sequence, where m is the distance
scene points such that one lies at the image origin and the

between the first and second image points and n the distance
other two lie along the y-axis equidistant from the origin.

between the second and third, the weighted sum computation
Let these points have image coordinates at (0, j), (0, 0),

below produces a quantity from which the rotation terms
and (0, 2j). Then their respective 3-D coordinates must

have been eliminated,
be (0, jZ1 , Z1), (0, 0, Z2), and (0, 2jZ3 , Z3) for some
positive Z1 , Z2 , Z3 . Label the scene points as P1 , P2 , and Sum def (2sin u)(nu1 2 (m 1 n)u2 1 mu3)

(4)P3 and their image counterparts as p1 , p2 , and p3 . Then
the projected velocity in the image plane at position (x, y) 1 (cos u)(nv1 2 (m 1 n)v2 1 mv3),
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FIG. 2. (a) Points p1, p2, and p3 at (0, j), (0, 0), and (0, 2j) in the image are projections of some scene points P1, P2, and P3 that must have
scene coordinates (0, jZ1, Z1), (0, 0, Z2), and (0, 2jZ3, Z3), respectively, for some positive Z1, Z2, Z3. For this example, ky, defined later as the
difference between the gradients in Y of the two limbs, according to (Z1 2 Z2/Y1 2 Y2) 2 (Z2 2 Z3/Y2 2 Y3), is (Z1 2 Z2/jZ1) 2 (Z2 2 Z3/jZ3).
(b) For any three collinear image flow measurements (the three solid arrows), their projections in the direction orthogonal to the line of collinearity
(the three dotted arrows) must satisfy the following. If the three flow vectors were from a purely rotational field, then the tips of the projections
would lie on a line. That is, the orthogonal projections of pure rotation vary linearly along any straight line. That is, the orthogonal projections can
be cancelled by taking the discrete approximation to the second derivative. In the particular example here, then, it is clear that the three flow
vectors are not due to a purely rigid rotational motion.

where u is the angle that the line through the three image i.e., Sum is the product of a translation factor and a
depth factor. npoints makes with the image x-axis, going from the x-axis

to the line (i.e., the components of flow used are those
that are orthogonal to the line.) When the collinear points 4.5. Properties of the Depth Factor
are equispaced, the weights are (1, 22, 1), which is an

Consider the general collinear triplet. Then the imageapproximation to the second derivative [35]. Other approx-
points p1 at (x1 , y1), p2 at (x2 , y2), p3 at (x3 , y3) are associatedimations to the second derivative, involving more points,
with scene points labelled P1 , P2 , P3 , lying at (x1Z1 , y1Z1 ,are possible.
Z1), (x2Z2 , y2Z2 , Z2), (x3Z3 , y3Z3 , Z3) for some positive

Proof. The pi lie on a line with slope sin u/cos u (in Z1 , Z2 , Z3 . So, if the distance between p1 and p2 is m, and
this proof, the case where cos u 5 0 is ignored, as in the distance between p2 and p3 is n, then x1 5 x2 1 m cos
that case the verification is trivial). So, one can use the u, y1 5 y2 1 m sin u, and x3 5 x2 2 n cos u, y3 5 y2 2 n
substitutions y1 5 (sin u/cos u) (x1 2 x3) 1 y3 and y2 5 sin u, and so the 3-D points lie at ((x2 1 m cos u)Z1 ,
(sin u/cos u) (x2 2 x3) 1 y3 . Also, assume without loss of (y2 1 m sin u)Z1, Z1), (x2 , y2Z2 , Z2), and ((x2 2 n cos
generality that the ordering of the points is such that x1 , u)Z3 , (y2 2 n sin u)Z3 , Z3). Consider the gradient of the
x2 , x3 . Then, one can use x3 5 x2 2 n cos u and x2 5 line-segment P1P2 and of the line-segment P2P3, where
x1 2 m cos u to obtain the result that the generalized Sum is gradient is defined as (DZ/DX, DZ/DY). Then, the follow-

ing theorem provides an interpretation for the depth factor,
relating it to the difference in gradients of the two limbs,Sum 5 (U sin u 2 V cos u 1 Wy3 cos u 2 Wx3 sin u)

(5) to the depths of the three points, and to the distances
between the scene points. This theorem will provide the3 S n

Z1
2

(n 1 m)
Z2

1
m
Z3
D,

tools necessary for obtaining a qualitative interpretation
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of the depth factor and the analytical power needed to following. Z2 5 (m 1 n)Z1Z3/(mZ1 1 nZ3) is equivalent
to n/Z1 2 (m 1 n)/Z2 1 m/Z3 5 0, which has just beendescribe the robustness of computations presented later.
shown, implies that P2 lies on the line segment P1P3. Hence

THEOREM. Assuming that u is neither zero nor f/2, let
Z2 , (m 1 n)Z1Z3/(mZ1 1 nZ3) must mean that P2 is in

the difference between the gradients in Y of the two limbs front of the line-segment P1P3 (from the point of view of
be ky . Then, the following is true: the observer at the origin.) That is, when n/Z1 2 (m 1 n/

Z2 1 m/Z3 , 0, the points are in a convex relationship.
Similarly, Z2 . (m 1 n)Z1Z3/(mZ1 1 nZ3) (i.e., n/Z1 22

n
Z1

1
m 1 n

Z2
2

m
Z3 (m 1 n)/Z2 1 m/Z3 . 0) must imply that P2 is behind the

line-segment P1P3, i.e., that the points are in a concave rela-
5 ky

(y2Z2 2 (y2 2 n sin u)Z3)((y2 1 m sin u)Z1 2 y2Z2)
sin uZ1Z2Z3

tionship.
In addition, for a nonzero difference in slopes (in Y) of

ky , the measured quantity’s contribution from the depthAlternatively, this can be written as
factor is ky (y2Z2 2 (y2 2 n sin u)Z3)((y2 1 m sin u)
Z1 2 y2Z2)/sin uZ1Z2Z3, and this gives an expression for
analyzing the effects of noise.2

n
Z1

1
m 1 n

Z2
2

m
Z3

5 ky
(Y2 2 Y3)(Y1 2 Y2)

sin uZ1Z2Z3
. (6)

4.6. Collinear Triplets and FOE
Proof. From the definition of ky ,

The following Lemma provides the result needed for
detecting the FOE.Z1 2 Z2

(y2 1 m sin u)Z1 2 y2Z2
2

Z2 2 Z3

y2Z2 2 (y2 2 n sin u)Z3
5 ky . LEMMA. The zero conditions of Sum are the following:

the points in the scene are collinear, or there is no translation
component, or the triplet line intersects the FOE.Thus

Proof. Sum can be seen to be zero when either the
(Z1 2 Z2)(y2Z2 2 (y2 2 n sin u)Z3) depth factor is zero (in which case the scene points are

collinear as shown above) or the translation factor is zero.2 (Z2 2 Z3)((y2 1 m sin u)Z1 2 y2Z2)
The translation factor is an inner product of (U, V, W)T

5 (y2Z2 2 (y2 2 n sin u)Z3)((y2 1 m sin u)Z1 2 y2Z2)ky , and (sin u, 2 cos u, y3 cos u 2 x3 sin u)T. Besides the case
when the translation (U, V, W) itself is zero, this translation

which on simplification gives factor is zero only when the line passing through the three
image points also passes through the FOE. To see this,

sin u(nZ1Z3 2 nZ2Z3 2 mZ1Z2 1 mZ1Z3) equate the translation factor to zero, then substitute into
the translation factor of Eq. (5) U 5 Wxf , V 5 Wyf (by5 (y2Z2 2 (y2 2 n sin u)Z3)((y2 1 m sin u)Z1 2 y2Z2)ky .
definition of FOE), and observe that y3 5 (sin u/cos u)
(x3 2 xf) 1 yf must follow, which implies that (xf , yf) liesDividing through by sin uZ1Z2Z3 (assuming that sin u is
on the triplet line. nnot zero), gives

Thus, in general, for a scene containing depth variation,
if many such collinear triplet sums across the complete

2
n

Z1
1

m 1 n
Z2

2
m
Z3 image are computed, the FOE will be in the position of

intersection of many triplet lines for which, in each case,
the triplet sum is zero. That is, the location that has the5 ky

(y2Z2 2 (y2 2 n sin u)Z3)((y2 1 m sin u)Z1 2 y2Z2)
sin uZ1Z2Z3 least counterevidence for being the location of the FOE

is being sought. Next an infinitesimal version of the result is
to complete the proof. n provided to improve insight, and subsequently an operator

and an algorithm to detect the FOE are described.Since u is neither zero nor f/2, the right-hand side of
Eq. (6) can only be zero if ky is zero, i.e., the gradients of 4.7. A Spatially Infinitesimal Interpretation
the two limbs have to be identical. Hence, the left-hand of the CPC
side is zero only if ky is zero. Since kx 5 ky(DY/DX), the
left-hand side is zero only if the three points are collinear In this section, a spatially continuous version of the CPC

for equispaced points is presented to aid intuition. Let vW(x,in the scene.
Similarly, the conditions for the three scene points lying y) 5 (u(x, y), v(x, y))T be the continuous image velocity

vector field. Then Sum is defined asin a convex or concave relationship can be verified by the
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which on rearranging can be written as
Sum 5

­2

­sW2
(vW ? nW),

Sum 5 ((2U 1 xW, 2V 1 yW)T ? nW)S=S=
1
Z

? sWD ? sWDwhere sW is the direction along which the second derivative
is taken and nW is the normal to sW. sW is given by (cos u, sin
u)T and nW is given by (2sin u, cos u)T. Then, using

5 ((2U 1 xW, 2V 1 yW)T ? nW)
­2

­sW2 S1
ZD,

­2 f

­sW2
5 =(=f ? sW) ? sW

which is the analogue of the discretized Eq. (5) for equi-
spaced points. Next, an operator and an algorithm to detect

gives
the FOE are described.

Sum 5 2uxx sin u cos2 u 1 vxx cos3 u
4.8. The FOE Operator

2 uyy sin3 uvyy sin2 u cos u
The FOE algorithm is implemented in the following

22uxy sin2 u cos u 1 2vxy sin u cos2 u. manner. Consider an operator (called the FOE operator)
with many lines passing through its center (centered at

Now, some (x, y) position in the image) in many directions in
the image (see Fig. 3a), such that each line passes through
several image points. For a scene with sufficient depthuxx 5 (2U 1 xW)

­2

­2x S1
ZD1 2W

­

­x S1
ZD1 2B

variation so that randomly sampling along only two lines
will not sample at coplanar points, the theoretical minimum
needed is two lines (because the FOE will be at the inter-uyy 5 (2U 1 xW)

­2

­2y S1
ZD section of these two lines). The theoretical minimum num-

ber of points needed along a line is three for the same
vxx 5 (2V 1 yW)

­2

­2x S1
ZD stringent conditions of not sampling at coplanar points. In

practice, such as for the implementation presented later,
between 50 and 250 points are used along each line, the

vyy 5 (2V 1 yW)
­2

­2y S1
ZD1 2W

­

­y S1
ZD2 2A exact number depending on how many grid points the line

intersects. In the implementation to be described later, 16
lines were used. Along such a line, overlapping triplets of

vxy 5 (2V 1 yW)
­2

­x­y S1
ZD1 W

­

­x S1
ZD1 B image velocity are used and summed (see Fig. 3b). Within

the set of points along the line, the within-triplet spacing,
S (i.e., how far apart the points within each triplet are),

uxy 5 (2U 1 xW)
­2

­x­y S1
ZD1 W

­

­y S1
ZD2 A, and the between-triplet spacing, s (i.e., how far apart the

centers of adjacent triplets should be), parameters need
yielding to be chosen.

The absolute values of all triplet sums (as defined by
Eq. (4)) along a line are summed to give a LineSum, andSum 5 2

­2

­x2 S1
ZD (2U 1 xW) sin u cos2 u

then the LineSums are summed to get a Response at the
center (x0 , y0), given by

2
­2

­y2 S1
ZD (2U 1 xW) sin3 u

Response(x0 , y0) 5
ouk

osj
uSumS,uk

u

TotalTriplets
,

1
­2

­y2 S1
ZD (2V 1 yW) sin2 u cos u

where TotalTriplets is the total number of triplets used for
computing the response at (x0, y0), where

1
­2

­x2 S1
ZD (2V 1 yW) cos3 u

SumS,uk
5 [m 2 (m 1 n) n] 3

u21 v21

u0 v0

u1 v1
432 sin uk

cos uk 4 ,22
­2

­x­y S1
ZD (2U 1 xW) sin2 u cos u

1 2
­2

­x­y S1
ZD (2V 1 yW) sin u cos2 u,

and where
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FIG. 3. (a) The FOE operator. This shows how an operator is made up of intersecting lines of points in the image. On a regular 256 3 256
square grid of points, at a single point it is possible to have about 60–70 intersecting lines, each of which passes through at least several image
points. Here, only nine lines are shown. The image is a regular gird of points, shown as hollow squares, each with a flow estimate associated with
it. Some of the points used by each line have been blackened to identify them. Along each line a LineSum is calculated (see Fig. 3b). The LineSums
are added to give the response of the operator at position (x, y), which is where the lines intersect. (b) This shows how points on a line are processed.
Flow estimates at points are grouped into triplets and summed according to the weighted sum specified in Eq. (4). Then the absolute values of
these weighted sums are summed to give the LineSum for the line. For now, discussions of the optimal selection of within-triplet spacing, i.e., how
far apart the points within each triplet should be, and the optimal between-triplet spacing, i.e., how far apart the centers of adjacent triplets should
be, are postponed.

ui 5 u(x0 1 (sj 1 iS)(cos uk), y0 1 (sj 1 iS)(sin uk)) the operator would give a zero response at the peak of a
single conical shape that spanned the whole scene.vi 5 v(x0 1 (sj 1 iS)(cos uk), y0 1 (sj 1 iS)(sin uk)).

The response map can obviously be computed by opera-
tors in parallel, after choosing an appropriate between-

For a rigid scene, there are three reasons why the re-
operator spacing. Then the operator with the zero response

sponse could be zero. First, each of the triplets summed
must be found. If the between-operator spacing is large

by this operator could be a collinear triplet in the scene;
(i.e., if the response is coarsely sampled), the responses

however, along each line the triplets overlap, thus implying
are interpolated to find a zero (see subsection 4.9.2). In

that for this situation to occur the whole scene would have
practice, due to noise in the input flow field there may not

to be a single plane, which for typical scenes is a rare
be a zero in the response map, but there will be a global

occurrence. Second, there could be no translation. Third,
minimum. In the case where the FOE lies in the image,

the true FOE could be at the position of the center of the
and where the noise is uncorrelated and not excessive,1

operator. Fortunately, the former two are distinguishable
the global minimum typically corresponds to the FOE.

from the third by the fact that if either of the two were to
For the implementation of the FOE algorithm in the

hold, the operator responds with zero everywhere;
upcoming section and in later sections, unless otherwise

whereas, in the third case, assuming the first two do not
specified, the following parameters were used for the FOE

hold, there is a unique zero. The first two cases can be
operator. The FOE operator was centered at each node

detected easily and eliminated. Thus, the FOE operator
of a 256 3 256 grid. Each FOE operator consisted of 16

can be swept across the whole image (i.e., the whole flow
lines passing through it (see Fig. 3). Along each line, a

field) to obtain a response map, detecting where it gives
a zero response surrounded by nonzero responses that
are above some prespecified threshold. Note that if the 1 Empirically, as described later, it was found that the mean of the
operator were not designed with overlapping triplets in Gaussian distribution of the percentage of added (for additive) noise

should not exceed about 8%.each line and with triplets that straddle the operator center,
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FIG. 4. (a) Range data that were used to generate flow field used in these experiments. Observer moves with some instantaneous 3-D rotation
and translation parameters with respect to these depth points and the flow equations are used to give an image velocity vector at each image point.
(b) Flow field generated using 3-D motion and the range data shown earlier. The rotation used was (0.004, 0.003, 0.004) and the translation used
was (4.5, 8.5, 10.0). Field shown subsampled.

triplet was centered at each point on that line, so that the was the following. The field of view spanned horizontally
and vertically by this data is simulated to be an angle ofbetween-triplet spacing, s, is one unit. Note that the spacing

of points on a line depends on the slope of the line. See 2 Arctan (1.28), which is approximately 1058 visual arc,
and diagonally (from upper left to bottom right) to be anFig. 3a and inspect the spacing between the blackened

pixels for the different lines. Within each triplet, the within- angle of 2 Arctan (1.28 Ï2), which is approximately 1228
visual arc. The image grid used here simulates 1/100 focaltriplet spacing, S, was such that three alternate points on

the line were used (i.e., a triplet spanned five pixels). length units (FLUs) between each grid point horizontally
(and vertically), while diagonally the grid points are sepa-
rated by Ï2/100 FLUs. Thus near the image origin, the

4.9. Empirical and Analytical Findings horizontal space between grid points subtends about 0.58
visual arc, while at the border of the image this horizontalIn this section, the FOE algorithm is tested on a variety
space subtends about 0.28 visual arc. Diagonally, theseof synthetic input under controlled conditions. Several fac-
parameters are 0.5 Ï28 visual arc and about Ï2 3 0.28tors influencing its robustness are studied.
visual arc.

Scene depth simulated by this data puts the closest point
at a Z-value of 60 FLUs and the farthest points (the range4.9.1. With Ideal Data
image’s background plane) at 600 FLUs. This represents

The range image shown in Fig. 4a was used to generate the depth variation available when an observer moves rela-
the synthetic flow field shown in Fig. 4b. This image con- tive to an object that is close up against a background,
tains the kind of depth variation that a perceiver may with the background Z-value 10 times away.
encounter in typical situations of navigation where there With this scenario and the motions used here, if these
are obstacles, or where the scene itself is naturally not flat. were to correspond to a real motion sequence, completely

dense flows could not be obtained: occlusion/disocclusionThe manner in which this data was used to synthesize flow
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FIG. 5. (a) Response map for noise-free flow. In these maps, brightness is shown proportional to Log(Response). For this input, the global
minimum is exactly at the true FOE. (b) 1-D slice passing through the detected minimum of this map.

would leave certain pieces of the scene without sufficient position of the minimum is found. When the true FOE
lies in between sampling positions, the minimum is foundinformation to compute flow. Fortunately, this behavior is

confined to small portions of the scene. Thus, for the pur- by interpolation as described next.
poses of the experiments here, these regions of occlusion/

4.9.2. Interpolation to find Minimum in Response Mapdisocclusion are ignored and flow is synthesized every-
where. This shortcoming is compensated for by using a A quadratic is fit around the located minimum sample
flow model with noise which can emulate the behavior point and its two closest neighbors horizontally (and the
occurring at these regions. same is repeated vertically).

The translation and rotation parameters used to gener-
ate this flow field were (U, V, W) 5 (4.5, 8.5, 10.0) and r(x) 5 ax2 1 bx 1 c,
(A, B, C) 5 (0.004, 0.003, 0.004). Using Eqs. (1), the field
acquired flow values at every pixel position. It was used where
as input to the FOE algorithm and the FOE was computed.

Figure 5a shows the response map for the operator as
a 5

1
2

(r1 1 r21) 2 r0 b 5
1
2

(r1 2 r21) c 5 r0 .a function of image location (x, y). All response maps are
shown with brightness proportional to the Log (Response).
The darkest point in the map is the global minimum; this So, taking the derivative and setting it to zero,
corresponds to the computed FOE and it is not surprising
that it is exactly correct.

xmin 5 2b/2a
Figure 5b shows the profile of a one-dimensional vertical

r(xmin) 5 c 2 b2/4a.slice through the response map passing through the
minimum.

In this case, the direction of translation had been simu- A similar computation gives the estimated minimum
along the y-dimension. The minimum is taken to be thelated to have an FOE positioned at exactly one of the

grid points. Given that the between-operator spacing was position specified by (xmin , ymin). An alternative method
of interpolation would be to use a full quadratic ax2 1aligned with that of the grid points, the true FOE was

located at an FOE operator sample point, hence the exact bxy 1 cy2 1 dx 1 ey 1 f on six points in a neighborhood.
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deviation of the density function is, say, 2.0, the noisy flow
estimate is generated according to

vWnoisy 5 3u 1 sign1 p N(8.0, 2.0) p 0.01 p u

v 1 sign2 p N(8.0, 2.0) p 0.01 p v4 , (7)

where signi is a binary function that is randomly chosen
with equal probability and N(a, b) is a Gaussianly chosen
random number with mean a and standard deviation b.
Throughout the paper, this noise model is referred to with
the phrase ‘‘Gaussian noise with mean a% and s 5 b%.’’
While an annular error distribution could have been used,
instead of selecting four portions of the annular region as
our error model does, in practice we found that this choice
has insignificant effects on our results. What is far more

FIG. 6. FOE error (due to interpolation) versus distance of true FOE important is the magnitude of the mean of the error distri-
from closest sample point. FOE error is in units of degree of visual arc. bution.

This error model provides the ability to synthesize errors
whose range is similar to that produced by an optical flow
technique for a dense field. See [3] for a review of currentWhen the true FOE does not coincide with an operator
optical flow techniques. Typical optical flow techniquessample point, there is some error. This is captured in the
produce results with an error distribution that have a sub-plot of Fig. 6 showing error versus distance of true FOE
stantial number of outliers. The parameters actually usedfrom its closest sample point, which for the ideal data
for the error models adopted in the experiments with syn-used is none other than the grid point identified as the
thesized data results in less error than would be practicallyResponse’s minimum sample point. (The FOE error for
computed by currently available techniques with realall upcoming plots are in degrees of visual arc.) The worst
data [3].FOE error due to interpolation for this range data is 0.088

visual arc, and this is when the true FOE is about 0.28
visual arc (about midway between two grid points). These 4.9.4. With 8% Mean Gaussian Noise
results are stable for even 1000-fold increases in the magni-

The ideal flow field was made more realistic by addingtude of rotation.
random Gaussian noise with mean 8% and standard devia-For example, Figs. 7a, 7b, and 7c show the initial range
tion 2% of each of the image velocity estimates (as de-data used for flow synthesis, the synthesized flow, and the
scribed in Section 4.9.3). A good approximation to theresponse map. The closest point is about 60 FLUs away
correct direction of translation was still found. The re-and the furthest is about 300 FLUs away from the optical
sponse map is shown in Fig. 8a. Figure 8b shows a onecenter of the observer. The 3-D motion parameters used
dimensional vertical slice of the response map through theto synthesize flow were [U, V, W] 5 [25.32, 1.61, 10.0]
minimum. The FOE error is 0.2278 visual arc.and [A, B, C] 5 [5.0, 8.1, 3.6], and the recovered FOE is

When noise is included, the error in the response mini-correct to within 0.018 visual arc of the true FOE. Note
mum was found to increase with the magnitude of rotation.that the rotation used to synthesize this data is very large.
Figure 9a plots this behavior for flow data where acrossThis insensitivity to the magnitude of rotation is not sur-
experiments the mean of the percentage of noise is keptprising, because for this error-free data the rotation is ex-
fixed at 8%, and the translation is fixed, while rotation isactly cancelled.
varied in magnitude. The effects observed here have to do
with the fact that noisy rotation introduces residual effects

4.9.3. Model of Noise Used to Simulate Realistic Data
that are not cancelled and that affect the rest of the compu-
tation. On the other hand, changes in translational magni-To better simulate a realistic flow field, noise is intro-

duced into the ideal data. The model of noise used has a tude are more robust to noise. See Fig. 9b, showing the
results for experiments in which the mean of the GaussianGaussian probability density function, but its mean is cho-

sen not at zero but rather at some nonzero real number. noise was kept fixed at 15%.
These patterns of behavior are consistent across a varietyThus, if the real number is, say, 8.0, then if the standard
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FIG. 7. (a) Another range image used to synthesize flow for these experiments. (b) Flow synthesized from motion parameters [U, V, W ] 5

[25.32, 1.61, 10.0] and [A, B, C ] 5 [5.0, 8.1, 3.6], and the range image of faces. Note that since rotation is quite large, it dominates the flow, so
that on superficial inspection of the flow, the underlying depth structure is not apparent. (c) Response map for the flow data synthesized from the
faces range-image.
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FIG. 8. (a) Response map for flow field with 8% mean Gaussian noise. (b) 1-D vertical slice through it.

of range data profiles2 with the depth variation kept the creasing the noise or using larger rotations with moderate
noise causes rotation not to be exactly eliminated and thesame as in the first experiment.

An overview of the behavior with increasing noise is response map is no longer flat and near-zero. Note that
for two transparent planar surfaces (such as a picket fenceseen from Fig. 10, where the errors are averaged over three

range data profiles with the same operator parameters in front of the wall of a house), if the planar surfaces
are sufficiently separated in depth, there is enough depthand scene parameters as the experiment with ideal data

described above. The mean of the Gaussian noise in the variation to yield a solution to the moving observer’s
FOE computation.input flow is increased to 12% in steps of 1%.

When observer motion is purely rotational, the response
4.9.5. On a Planar Scene or when Motion is map is indistinguishable from that for a scene composed

Purely Rotational of a single plane. An algorithm for detecting the behavior
in these two cases involves taking FOE operator responsesOn a planar scene with 4% noise in flow, the height plot
at several points, well-spaced apart, and confirming thatof the response map is presented in Fig. 11a.
some very large percentage of them are below a threshold.The response map is mostly flat, with the response every-
The algorithm used in this paper uses 16 FOE operatorwhere being near zero. This behavior is robust to slants,
responses in a well-spaced 4 3 4 grid. The threshold istilts, and different combinations of small rotations and
chosen arbitrarily, and 75% of the responses must be belowarbitrary translations. However, planes of steep slant or
this threshold in order to be classified in this category oftilt (for example, those parallel to or near the ground plane)
planar or purely rotational. These numbers were chosenwill typically have a horizon in the scene, thus not providing
to keep the computation efficient, while still providinga complete flow field. Hence the behavior of the algorithm
enough confidence in the result of the computation.with these cases was not confirmed with experimentation.

For a case where motion is only rotational and noisy
4.9.6. Effects of Depth Variation(1%), the height plot of the response map is presented in

Fig. 11b. The flat response is robust to any depth profile The depth factor in Eq. (6) controls whether a triplet
(trivially, since depth has no influence on the flow) and has a significant nonzero Sum when the image triplet line
choice of rotation axis. However, as observed earlier, in- is unaligned with the line from the triplet center to the

FOE (i.e., an FOE field line). This, in turn, influences the
ability of the FOE operator to accumulate counterevidence2 Other profiles used to synthesize flow were an image of some blocks

and an image containing human faces. for wrong FOE candidates. As seen, with scenes involving
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FIG. 9. (a) FOE error versus magnitude of rotation (for noisy data). (b) FOE error versus magnitude of translation. Noise in input was Gaussian
with mean 15%. (This is a lot of error.) For lower noise levels, for example, Gaussian with mean 8%, the FOE error has a slight decrease with
increasing translational magnitude.

single planes this approach will not provide an FOE solu- earlier, a unique solution is found. Clearly, it is to be
expected that as depth variation decreases, performancetion or even a finite set of candidate solutions (which distin-

guishes it from an approach such as that of [11]), while declines. This can be understood by examining Eq. (6).
Inspecting it shows that the depth factor on the left-handwith the depth variation of the first experiment described
side is influenced by two relevant factors. First, there is
the influence of the difference in gradients, kW, of the two
limbs composing the chevron3; second, for a fixed chevron,
moving it away from the observer increases the product
Z1Z2Z3 while not changing the numerator (Y1 2 Y2)
(Y2 2 Y3) and hence decreases the depth factor. The de-
crease in the depth factor is only partially due to the trivial
decrease in m and n that occurs as a result of moving the
chevron away. A substantial part of the decrease is due to
the relative changes within the three Zi . Thus, to obtain
a high depth factor, it is necessary that the image triplets
are sampling scene points in highly curved (away from
collinear) chevron-shaped formations and also that these
structures not be too distant from the viewer. In the pres-
ence of noise, a high depth factor will increase the ro-
bustness to noise.

In the seminal paper [12], it has been shown that there
exists a unique solution to the egomotion problem if the
scene has any more structure than a hyperboloid of one
sheet. However, as seen in Fig. 12, a far greater amount

FIG. 10. Averaged results showing FOE error versus mean of the 3 The term chevron is used here to describe the structure formed by
the three scene points which project collinearly to the image (see Fig. 2a).random Gaussian percentage error distribution.
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FIG. 11. Data range 1 to 5: (a) Height plot of response map for a planar scene with 4% noise in flow. The response is near zero everywhere.
(b) Height plot for the response map for a purely rotational field and 1% noise in flow. The response is near zero everywhere.

of depth variation is needed for robust performance. Figure range image is placed at a distance such that (Zmax 2 Zmin)/
12a plots the FOE error against (Zmax 2 Zmin)/Zmax which Zmax is 0.22 (quite shallow), and 8% mean Gaussian noise
is a simple way to approximately capture depth variation is added to the flow. The computation is sensitive to noise
for a scene that is already known to have curvature in for small spacings but robust for spacings corresponding
it. Depth variation is introduced into the experiments by to over 108 visual arc. Similar behavior persists even when
moving the block of range data closer to or further from the range data is closer (making the scene less shallow).
the synthesized viewer, while the block simulates the sub- This is because the convex chevron structures in the scene
tending of the same field of view in all cases. Throughout truly have to be impossibly acutely angled before the effect
all experiments 8% mean Gaussian noise was added to of faster recession dominates for convex triplets to reduce
the ideal synthesized data. The results confirm that depth the depth factor (the recession referred to here is that of
variation is an important requirement for the algorithm to the convex chevron’s endpoints receding in depth away
maintain robustness in the presence of noise. The effect from the viewer as the triplet spacing is widened). Thus,
of this factor is also emphasized in [18]. using wider spacing within triplets gives larger depth fac-

tors and hence leads to more robust computations.
4.9.7. Effects of Varying the Within-Triplet-Spacing, S Several authors have noted that measurements from

within a wide field of view are needed to get robust perfor-Once again inspecting the depth factor in Eq. (6), it can
mance, while others have shown that taking a second deriv-be observed that it grows with increasing separation of the
ative is very sensitive to noise. The obvious benefit of thescene coordinates along the X and Y axes. However, this
framework here is that the robustness due to wide within-is reciprocated by a division by the three depth values Zi .
triplet spacing, S, eliminates the detrimental potential ofThus, if when using wider within-triplet spacings, ky is kept
the second derivative operation.constant and the numerator (the separation in X and Y)

Figure 13a plots FOE error versus numbers of tripletsgrows relative to the denominator (the Zi), the depth factor
used for the FOE operator, for ideal data plus 15% meanincreases. Consider a typical convex triplet in the scene that
Gaussian noise. The plot is low and flat signifying littleprojects to collinear image points, such that the midpoint is
consequence of using fewer triplets.closer in depth to the viewer than the outer two. The outer

The plots in Fig. 13b are profiles of one-dimensionaltwo lie on limbs that recede from the viewer. Now, if a
slices through the response maps for experiments usingwider triplet is used but the center point is held constant,
about 1000 triplets and about a quarter of that amount,ky stays constant, while the outer two points are now points
both including 15% mean Gaussian noise. The point ofthat are further away, and at the same time the separation
this figure is to show that the characteristics of the profilesalong Y also grows. For shallower structures, the separation
do not change, only the heights vary a bit. Note that bothalong Y grows faster than the points recede in depth, and
profiles yield very similar (but wrong) FOEs (due to lowthe depth factor grows. Similarly for all concave structures,
SNR).the separation along Y grows while the outer points are

The effect of fewer triplets is most pronounced whennow more proximal to the viewer, hence the depth factor
there are large outliers in the flow data, possibly due toalways grows. This is confirmed empirically with experi-
correlated noise or patches in the image that are movingments on shallow depth variation for which results are
independently (see Section 5). This is because for a givenshown in Fig. 12b. Figure 12b shows a plot of FOE error

versus the spacing within triplets, for the case where the distribution of outliers, there is the chance that when fewer
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FIG. 12. (a) Plot showing effects of depth variation encoded as (Zmax 2 Zmin)/Zmax. Mean of Gaussian noise used was 8%, and a small within-
triplet spacing, S 5 2, was used. (b) Plot showing influence of within-triplet-spacing, S. Depth variation used was 0.22 and mean of Gaussian noise
used was 8%.

triplet samples are used in the FOE computation, the outli- a small constant number of steps, called StepsSum. The
variable TotalTriplets varies with position in the field ofers are disproportionately highly sampled. For uncorre-

lated Gaussian noise only the heights of the response pro- view, with peripheral positions allowing fewer lines which
compose the operator. On each line an average of aboutfiles change, not the important characteristics of their

outline. Thus the main reason to use more triplets is to 50 triplets are used, making TotalTriplets about 800 (for
16 lines), and the cost about 800 3 StepsSum steps. Clearly,offset the effects of correlated noise or patches of indepen-

dent motion. for cases where the scene was known to not contain inde-
pendently moving objects, far fewer triplets could be used.

4.9.8. Effects of Off-Linear Triplets Eliminating the possibilities of pure rotation and of the
entire scene being a single plane takes 16 FOE operatorSituations may arise where the points at which flow is
responses and 16 comparisons with some prespecifiedavailable are not exactly collinear, and hence it is important
threshold. Thus, the cost for this stage is about 16 3to understand how this may affect the FOE computation.
800 3 StepsSum steps.For the experiments reported in Figure 13c the collinearity

The time to compute the response map on a sequentialwas violated in the following manner. In the FOE operator,
machine is the number of sample points on the map timesfor each triplet, one of the points was randomly perturbed
the time for computing each response. In the implementa-so that the flow measurement used for that point was actu-
tion described, 256 3 256 sample points were used, thus

ally from a neighboring point of the flow field. Here, wide
needing 256 3 256 3 800 3 StepsSum steps. For the case

within-triplet spacing of 20 grid-points between points was
of dense flow (about 256 3 256 flow vectors), this FOE

used. Figure 13c shows the FOE error versus the perturba- algorithm involves linear cost. Finding the minimum is
tion of a point within a triplet. The perturbation is mea- accomplished by keeping track of the minimum thus far, as
sured in number of pixels distant from the correct position the computation progresses, hence adding little additional
of the perturbed point. cost. Finally, the interpolation of the map around the mini-

mum point takes an insignificant number of steps.4.9.9. Run Time of the FOE Computation
On a SPARC station, for the experiments reported

Each FOE operator response takes the TotalTriplets above, the complete computation takes less than 10 min of
CPU time. The algorithm may be parallelized effectively.number of triplet Sum computations, which in turn involves
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FIG. 13. (a) Plot showing effects of using fewer triplets on the FOE error. (b) 1-D slices through response maps for experiments using about
1000 triplets (top figure) and about a quarter of that many (bottom figure), both for 15% mean Gaussian error. The point of these plots is to show
that the characteristics of the profiles do not change, only the heights vary. Note that both of them give similar wrong FOEs. (c) Plot showing
effects of off-linear triplets. Abscissa represents perturbation of triplet’s central point, i.e., distance of center point that was actually used, from
where it should have been taken, in units of pixel distances.

4.10. Computing Translation’s Sign: shown how to tell whether the translation is backwards or
forwards. Since this task merely involves computing a sign,Backward/Forward
it is a qualitative decision. The technique proposed here

Thus far, the FOE computation has only provided the is an extension of the observation in [32] that rotation can
be cancelled for two points on a spherical projection ifaxis of translation but not the sign; i.e., it has not yet been
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each point’s component along the great circle joining the of degrees of visual arc. Here, noise tolerance is defined
as the point at which the noise in the flow of the arbitrarilytwo points is considered. That observation was also made

use of in [30] when computing the directional divergence chosen points causes the sign computation to compute the
wrong sign. The arbitrarily chosen points before noise wasbut employed for different purposes than the one here.

The foundation of this observation is that on a spherical added came from the ideal flow of experiment 1.
projection, the rotational component of flow projected

5. FUNCTIONING WITH INDEPENDENTLYalong a great circle is constant. This means that for the
MOVING OBJECTSspherical projection, for any two points in order to cancel

rotation, it suffices to compute their flow measurements’
Objects in a moving observer’s view will often moveprojection along the great circle and to subtract one from

independently—a typical scene is rarely rigid. It is im-the other; this eliminates rotation. In planar projection,
portant that any egomotion algorithm maintain compe-the subtraction for any two points’ components of flow
tence in these situations. Figure 15a depicts the flow fieldalong the counterpart of a great circle must be appropri-
generated by combining one of the rigid flow fields usedately weighted due to the distortion caused by unfolding
in earlier experiments in Chapter 4 with the flow for anthe sphere and its flow field onto the plane. For any two
independently moving rectangular patch in the upper mid-points in the image plane, this distortion (and, hence, the
dle of the image. The frontoparallel patch translates up-weights) are known. In Appendix A, these weights are
ward, to the right, with an image flow magnitude compara-algebraically derived.
ble to those of the flower petals. It subtends an angle ofThus given an FOE position the algorithm is the follow-
about 98 visual arc by 68 visual arc. The FOE algorithming. Take several (the theoretically required minimum here
was tested on this combined flow field. The output FOEis one measurement) flow measurements peripheral to the
is still within 18 visual arc distance away from the true FOEFOE. For each of them, consider the counterpart of the
(operator response map in Fig. 15b.) Tests indicate thatgreat circle joining the FOE to it. Then subtract the FOE’s
even with modestly larger patches the FOE computationprojected flow along the great circle from the point’s pro-
is accurate to within a degree of visual arc, demonstratingjected flow weighted by the term needed to compensate
robustness to patches of independent motion in the scene.for the distortion caused by using planar projection. Since
However, this breaks down at some point. Next, effects ofthe rotation will be cancelled out by this operation, what
independently moving objects on the FOE computationremains is the subtraction of the projected translation com-
are studied systematically and empirically. Then, theoreti-ponents of the two points (the FOE and the point under
cal results showing how collinear points assist in detectingconsideration). Since the FOE’s translation component is
independent motion are presented. After that, previouszero, the result of this subtraction is the translation compo-
work is briefly discussed, followed by an algorithm fornent of the point, and it should point either towards the
detecting independent motion that relies on knowledge ofFOE or away from the FOE. This exactly indicates whether
the direction of translation.or not the translation component of the observer’s motion

is forwards or backwards. See Fig. 14a. 5.1. Effects of Independent Motion
The only difficulty with this scheme is that there may on FOE Computation

not be a flow measurement at the FOE since the FOE may
lie between flow grid sample points. In that case, the closest First, it is important to understand that as far as the

FOE operator is concerned, when it is centered at theflow measurement to the FOE is used in lieu of the FOE.
In practice, 20 arbitrarily chosen peripheral points were correct FOE, barring small amounts of noise in the flow

field, the lines it radiates should typically encounter flowused for this backwards/forwards computation and after
the computation with each point, the vote of a two-thirds values for which the triplet Sums are zero. Any nonzero

Sum contributions are noise to this computation. The mag-majority was used as the decision criteria for whether the
motion was backwards or forwards. These figures were nitudes of this contribution to noise are dependent on the

magnitude of the flow value that is not consistent with thechosen to keep the computation efficient, while still sam-
pling a sufficient number of points to avoid spurious results. correct FOE. Thus the magnitude of the velocity of the

independently moving patch is a contributing factor to theThere are very few conditions under which this majority
requirement is not satisfied. Such conditions would include noise component. The size of the independent patch is

clearly a contributing factor to the noise, as the larger thecases where many of the points come from independently
moving objects or are extremely noisy measurements, patch the more often its flow values will appear in the

computation of the operator’s response. So, it is intuitivelyhence leading to inconsistent and inconclusive evidence,
such as a 50–50 split. Figure 14b shows how the sign compu- clear that the magnitude (and direction) and the size of

the patch, and similarly the number of patches, degradetation can tolerate substantial noise in the arbitrary points’
measurements even if the FOE estimate is off by a couple the performance of the FOE operator.
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FIG. 14. (a) Figure shows how rotation can be cancelled between the FOE and an arbitrary point, and thus used to tell the sign of translation
from the translation of the arbitrary point. The dark arrows are the flow measurements at the FOE and at the point, and the dotted arrows are
the projections of flow along the great circle joining the two points. In spherical projection, the rotational component along the great circle (the
dotted arrow) is identical for two points along the great circle. (b) Plot showing noise tolerance of sign computation to error in FOE position.

Figures 16a, 16b, and 17 show the range data for the the direction of translation for the rest of the scene is also
relevant to how damaging a patch’s effect is on the FOEscene containing blocks, the flow associated with this

scene in which the upper-middle block (a larger patch computation. This effect is shown in Figure 19a. The patch
used here subtended 308 visual arc, so that this will causethan before) moves independently, and the FOE response

map for the flow. (To simulate motion from the range a substantial FOE error when the direction of patch motion
is such that the patch’s detrimental effect is maximal. Thedata, the closest point in the scene is at 60 FLUs and

the furtherst is at 600 FLUs.) Note that in this case to magnitude of the patch’s flow was kept constant across
experiments. As the figure shows the effect peaks whenkeep the FOE detectable, the flow values of the object

had to be smaller than in the patch used earlier. The the translation direction of the patch is orthogonal to the
scene’s local direction of translation (i.e., the FOE fieldobject subtends about 208 of visual arc in the horizontal

and vertical directions. lines) and ebbs when the directions coincide. This is to be
expected because as the patch’s direction of translationFigure 18a shows the inverse nature of the size of object

and its maximum velocity allowable to permit the FOE approaches that of the rest of the scene, this method inter-
prets it as part of the rigid scene.computation to still produce the correct result, for the

original scene’s ideal flow with 3% mean Gaussian noise. Another factor that has potential influence is the proxim-
ity, as measured in the image plane, of an independentNote that in all the experiments for this figure, the direction

of flow of the object is kept almost or exactly perpendicular patch to the FOE. As an independently moving patch is
just noise, the frequency of its contribution to the FOEto the set of lines from the FOE traversing the object. In

this way, the effects of the patch, as noise, on the FOE operator is clearly a factor in its overall influence. The
FOE operator, as it has been currently designed, is biasedcomputation was maximal. (Later, Fig. 19a presents the

effects of patch motion direction relative to scene motion to flow values near the center of the operator due to the
fact that more lines traverse that area of support than anydirection, i.e., the FOE field lines.)

Figure 18b shows how for a fixed velocity of a patch, a other area. Thus, when the operator is centered at the
FOE, a patch’s deleterious effect is inversely related to itsfixed mean (of 3%) for the backround’s Gaussian noise,

and a fixed position of the patch’s center, increasing the distance to the operator center (which is the FOE). Figure
19b shows the effects of proximity of the patch to the FOEpatch’s size increases the FOE error.

The overall direction of the patch velocity relative to on the FOE computation.
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FIG. 15. (a) Flow field combining the original rigid flow field and an independently moving patch in the upper right part of image. The
frontoparallel rectangular patch translates upward, to the right, with an image flow magnitude that is comparable to those of the flower petals. (b)
Response map for the flow associated with the nonrigid scene in which a patch moves independently. The global minimum is in the same position,
indicating that the FOE computation is robust to some nonrigidity in the scene.

5.2. Finding Points that Thwart Rigidity viewed. Then it is shown that the egomotion algorithm can
be straightforwardly extended to indicate whether or not

For a 3-D motion algorithm that maintains competence
all three points in a triplet lying on a line through the FOE

despite some independently moving scene parts and noise,
are moving with the 3-D motion of the rest of the scene.

the next step in its enhancement is to enable it to detect
It suffices to test if the triplet Sum for the three points is

parts of the scene where the overall-rigidity assumption
near zero or not. Since it has already been shown in Section

does not hold.
4 that if such a collinear triplet were moving with the same

A point may be measured as moving differently from
rigid parameters as the scene, the triplet Sum must be zero,

the rest of the scene either because it may be a noisy
then, when Sum is sufficiently4 above zero, at least one of

measurement, in which case when the shape reconstruction
the three points is moving inconsistently with the rest of

step is being carried out this erroneous measurement
the scene.

should be treated with caution, or because it could legiti-
mately belong to an independently moving part of the 5.3. Detecting the Absence of Rigidity:
scene. If this is the case, this moving part will probably Theoretical Limits
need additional attention and possibly some special pur-

The question addressed here is: given an FOE, howpose processing. Such processing might lead to segmenting
many points should a subset consist of before it is possiblethe moving objects from their background or segmentation
to tell whether this subset includes at least one point notinto parts (in articulated motion). Analysis of the nonrigid-
moving consistently with that FOE.ity may also provide data for classifying objects in scene

recognition. PROPOSITION. Given two flow measurements and an
As a first step, it is desirable to have the algorithm signal

that certain points are moving inconsistently with respect 4 This threshold, as noted later, is set so that even noise as high as
to the rest of the scene. Here, first, some theoretical prelim- 15% in the flow field does not cause a noisy triplet to be signalled as

independently moving.inaries are presented and then other approaches are re-



EGOMOTION AND INDEPENDENT MOTION 43

FIG. 16. (a) Range data of scene containing blocks. (b) Flow associated with the blocks scene, in which an object subtending a larger patch
moves independently. The object is the block at the upper central portion of the image: it translates independently to the right and slightly upwards.

FOE, it is not possible to determine definitively whether or parameters (U0 , V0 , W0 , A1 , B1 , C1) that could have gener-
ated both flow measurements, where (U0 , V0 , W0) is anot they are moving rigidly with the parameters of that FOE.
translation component whose direction (the FOE) is speci-

Proof. What needs to be shown here is that for any
fied in advance. As shown in Appendix A (Eq. (8)), in

two flow measurements, there is always a set of motion
relation to an observation in [32], there is a way to cancel
the hypothesized common rotation (A1 , B1 , C1) for the
two points. Then the calculation TwoSum applied to the
two measurements can be interpreted as,

TwoSum(u1 , v1 , u2 , v2)

5
1

Z1 3
U

V

W
4 ? 3

CU,1

CV,1

CW,1
41
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Z2 3
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CU,2

CV,2

CW,2
4 ,

where the CU,i , CV,i , CW,i are simple polynomials in the
position-coordinates of the two points. TwoSum is a linear
sum of the flow inputs.

Clearly, to get the equality to work for a specific choice
of direction for (U0 , V0 , W0), the sign of translation and
relative values of Z1 and Z2 merely need to be adjusted.
Thus there is a consistent set of motion parameters (includ-
ing the translation parameters are constrained by a particu-
lar FOE) that could have generated the two flow measure-
ments. Another way to see this is to use the result in [24],FIG. 17. Response map for the blocks’ scene flow containing the

larger independent patch. that for a given FOE, projecting the flow orthogonally to
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FIG. 18. (a) Plot shows some independent patch sizes and the maximum allowable flow magnitude orthogonal to the FOE radial lines traversing
the object. (b) Plot shows how FOE error increases with independent patch size. Here, a fixed velocity of a patch, a fixed level of background noise
of mean 3%, and a fixed position of its center were used.

FIG. 19. (a) Plot shows how FOE error is dependent on the relative directions of translation between the patch and the overall scene data. The
background used here had noise-free flow, and the directions of the patch relative to the direction of translation of the rest of the scene in this
region are varied from 0.0 to f. (b) Graph shows effects of patch’s proximity to FOE on FOE computation. Abscissa is in grid-point distance units.
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a radial line gives a linear equation in the three rotation 5.4. Previous Work on Segmenting Independently
Moving Objectsparameters. Thus if this is done for the two points, one

obtains two linear equations in three rotation unknowns,
Methods of detecting independently moving objects can

and so it is clear that there are in fact an infinite number
be classified into 2-D methods and 3-D methods. The 2-of sets of rotation parameters that are consistent with a
D methods use a heuristic or make assumptions about theparticular FOE and two flow measurements. n
world or about the motion, so as to permit direct inspection

PROPOSITION. Given an FOE and flow measurements of the flow to achieve the segmentation.
at three points that are not all collinear with the FOE, it Some authors assumed that the camera is stationary,
is not possible to definitively exclude a rigid explanation so that significant image motion indicates independently
consistent with that FOE, as there is a set of rotation parame- moving objects. [17] extracted interframe differences to
ters and depth values that is consistent with that FOE and extract images of moving objects, and [16] pursued a re-
the three flow measurements. lated method. This approach does not offer any solutions

for a moving camera.Proof. The simplest way to confirm the existence of a
A recent proposal by [15] is representative of the 2-Dparameter set that is consistent with these three points,

approach. They assume that projected 3-D motions can benot all of which are collinear with the FOE, is to use
approximated by a 2-D parametric transformation in theLonguet-Higgins and Prazdny’s rotation projection result
image plane such as pure translation, affine transformation,again. For the particular choice of FOE, there are three
and projective transformation. Once a motion has beenlinear equations in the three rotational parameters (these
determined, the region is identified; the two images areequations are derived from the projections orthogonal to
registered using the detected motion and nonstationarythe radial lines). As long as the three points are not all
regions are segmented. This scheme works well in practicecollinear with the FOE, the linear system always5 has a so-
but has difficulty with motion in depth or significant rota-lution. n
tion of the independently moving object.

Next, the significant theoretical contribution of this sec- The 3-D methods, on the other hand, explicitly utilize
tion is stated in the form of a theorem. an underlying model of 3-D motion and possibly make

simplifying assumptions about the model. The most gen-THEOREM. The minimum number of points for which it
eral method was that of [1], described earlier for computingis possible to detect inconsistency of motion with a particular
the parameters of 3-D motion of patches. There, motionFOE is three points in a collinear relationship to the FOE.
segmentation was proposed based on the difference of

Proof. Taking the three orthogonal projections of these 3-D parameters. This is, of course, very desirable in
Longuet-Higgins and Prazdny’s rotation projection result motion vision but, as has been shown repeatedly since
again, the three projected rotational components are ob- then, is difficult for patches subtending small fields of view.
tained. However, due to the fact that these are collinear The authors of [42] investigate a variety of combinations
points, according to the Collinear Point Constraint, these of limited motions and known parameters. For known pure
orthogonal components must vary linearly along position. translation, the motion epipolar constraint, namely that
Thus, if they do not, the points must be moving inconsis- the flow is restricted to FOE field lines, offers enough
tently with that FOE and a single set of rotation parame- constraint to permit a test for independence. They also
ters. Hence, the triplet Sum as defined in Eq. (4) must be investigated detecting independent motion assuming that
zero for rigid points. Otherwise, at least one of the three the rotation is known, and, in another experiment, that
points is moving independently from that specified FOE. depth is known. [29] used the analysis of [42], adding as-
Since it has already been shown that for two points in any sumptions about the ranges and possible direction of ob-
configuration, as well as for three points not all collinear server motion. [41] attempted to apply ideas from robust
with the FOE, there is no way to detect the absence of statistics to compute global motion parameters in the pres-
rigidity, this is the smallest configuration that can indicate ence of outliers, where the outliers are likely to be associ-
this property. n ated with independently moving objects. Orthography is

used along with a qualitative analysis. Due to the use of
orthography, a substantial number of independently mov-5 The reader may wonder about the case where two of the three are
ing points are not detected as independent, and, in addi-collinear with the FOE. In this case, these two points give projected

equations that determine (due to the linear variation of the orthogonal tion, the LMedS procedure from robust statistics is very
component to the line that a common rotation is required to satisfy) the computationally intensive.
rotation component orthogonal to the line joining these two points and [9] assumes that motion parameters are known for thethe FOE. However, the component of rotation along this line is still a

case of pure translation and uses a complex logarithmicfree parameter, and this allows the third point to have an arbitrary image
motion vector. mapping (CLM) representation of the motion epipolar
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FIG. 20. (a) Points from an independently moving patch as in the upper right corner will be detected by lines passing through it. (b) The program
marks points in triplets that overlap the patch in this flow as inconsistent triplets. Because the patch itself is moving in a planar fashion, the triplet
sum, when all three points are inside the patch, is zero. So, these internal points are not marked.

constraint. The method needs horizontal or near-hori- lel as a convolution on sets of three inputs, followed by a
zontal edges in the CLM image. [37] investigates the use Loser-Take-All computation; the Winner-Take-All algo-
of purely normal flow in the detection of independent rithm presented in [45] can be trivially modified to find a
motion. It is assumed that translation dominates, and minimum value of a set in a parallel, iterative and highly
hence, normal components found towards the FOE imply efficient manner. Figure 20b shows the region around the
independent motion. patch in the flow field of Fig. 20a marked by the program

Several interesting ideas have been considered in previ- as a set of inconsistent triplets. Note that in this case be-
ous work, but none have succeeded in the case of unknown cause the image patch itself is moving as a planar scene
rotation. Here, because the collinear points allow the sim- region would, the triplet sum, when all three points are
ple cancellation of rotation, a powerful constraint is ob- inside the patch, is zero. So, at an independently moving
tained on rigid motion, making independent motion detec- planar region, only the boundary areas of the region will
tion easy. be detected (this depends on the within-triplet spacing

used). For an independently moving nonplanar region, all
5.5. A New Algorithm for Segmenting Independently the triplets, in any manner overlapping the region’s points,

Moving Objects will be detected. In this case the patch corresponded to an
object subtending 108 of visual arc.A practical way to detect independently moving objects

Figure 21a shows the outcome of the above sequenceis to use the operator that gave the minimum response
of steps for the larger object used in the flow shown earlier.indicating that the FOE is nearest to its center. Each of

The issue of choosing an appropriate threshold to decideits various lines (only 16 lines were used in this implementa-
when a triplet should be considered to have a nonzerotion) (see Fig. 20a) can be scanned, searching for triplets
Sum is a difficult one that has not yet been adequately ad-that do not provide near-zero sums. Inspecting from the
dressed.end of a line, triplets of within-triplet spacing 1 grid unit

Isolated triplets that are found to be non-zero probably(a triplet spans about 1.58 visual arc) are examined consecu-
represent noisy flow measurements rather than indepen-tively. When Sum is above a certain threshold (determined
dent motion. Grouping these triplets to identify regions isby trial and error, so that even noise levels as high as 15%
one approach to distinguishing between isolated high noisein the flow field would not cause a noisy triplet to be
points and independent motion.signalled as independently moving), the center of the trip-

let is marked. The computation can be performed in paral- The center of the independent motion detector may not
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FIG. 21. (a) The larger independent object used in the above figure, being signalled as independent. (b) Threshold necessary to avoid flagging
many of the rigid points vs the clock position of the assumed FOE relative to the correct FOE. Data shown for assumed FOE at 1 pixel away (solid
lines) from correct FOE and at 2 pixels away (dotted lines).

be positioned at the exact FOE due to the operator’s lim- 9 flow measurements, depending on the orientation of the
line. No matter where it is centered in the image, one orited sampling, or due to FOE computation error. Figure

21b shows how for exactly the same data, the threshold two of its lines will be oriented in directions close to that
of a line joining the operator’s center to the FOE. Alongneeded for independence detection varies with an error in

the estimated FOE. Here to represent the error in the each line, the three (or five, depending on the orientation
of the line) triplets are examined in sequence. For the oneassumed FOE, clock positions are used to show the relative

position of the assumed FOE with respect to the correct or two lines (which are unknown), the triplet sums will be
near zero, so that a traversal along the line should giveone. Data are shown for distances one pixel away and two

pixels away. near-zero responses throughout, unless at one end of the
line there is a flow value from an independently moving
patch. This will cause a step in the triplet Sum as a function6. DETECTING INDEPENDENT MOTION
of position. If this pattern occurs along a line, the step isBEFORE THE FOE
marked. If two lines have similar patterns in that the step
occurs around proximal ends of the two lines, that regionIn the previous section, it was seen that the FOE compu-
is marked as being a boundary to an independently mov-tation is not robust to arbitrary amounts of independent
ing patch.motion. There were limitations on size and speeds and

The only case that needs to be eliminated beforenumbers of patches moving independently to ensure ro-
applying this operator is the case where there is a depthbustness of the FOE operator. Hence, an important direc-
boundary adjacent to a planar region. This can be dealttion for research is to try to presegment the independent
with by not applying the operator to regions that may bemotion before applying the FOE operator. Here, this direc-
planar. Regions can be considered possibly planar whention is pursued.
the eight triplets that straddle the operator’s center flowConsider the operator in Fig. 22a. It is a smaller version
measurement all give near-zero Sums.of the post-FOE-computation-independent-motion-detec-

The main drawback to this approach is that indepen-tor, in the form of a 9 3 9 grid (the number 9 was chosen
dently moving objects against planar backgrounds are notto keep the region of support for the operator small, while
signalled. The intuitive reason for this failure is the follow-at the same time permitting a sufficient number of triplets
ing. The 3-D motion based segmentation approach out-to be chosen along each line to permit the detection of

independent motion). Through each of its lines it has 5 or lined in this section needs vague information of the location
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FIG. 22. (a) Operator for segmenting independent motion before the FOE computation. (b) The flow field for the faces range data, with three
large independently moving patches in the field of view. Gaussian noise (with mean 3%) is added to the background flow values.

of the FOE. With a planar background, the collinear point Figure 22b shows the flow field for the faces data, with
three large independently moving patches in the field ofapproach is completely incapable of giving any information

about the FOE. Hence, in the local environment of a planar view. Figure 23 shows these patches signalled by the new
algorithm. In this implementation, only one line was re-region, a local approach to independent motion detec-

tion fails. quired to have a near-zero Sum before it was used to detect
a discontinuity. Note that some other spurious regions are
also signalled; thus, the output of this algorithm needs
further processing to remove false positives.

7. SUMMARY

This paper has presented a theory based on the Collinear
Point Constraint for computing the instantaneous direction
of translation for an observer moving with unrestricted
motion and for computing the locations of independently
moving objects. The constraint is based on cancelling linear
variation of the flow field, as this eliminates rotation. It
also eliminates the translational flow due to motions of
planar regions, and hence the detection of the FOE is
based on higher order variation in the flow field such as
that occurring where there is translation in an environment
which looks sufficiently different from a single plane. We
showed how collinear points can be used to cancel the
rotation and simultaneously constrain the direction of
translation’s FOE, which can then be localized from the
intersection of constraint lines. An FOE operator was con-
structed that consists of radial lines that sample the flowFIG. 23. Multiple and large patches signalled using the early segmen-
measurements projected orthogonally to these lines andtation method. Note that some spurious regions are also signalled; these

will need to be processed by some grouping mechanism later. locates the FOE when the operator is swept across the



EGOMOTION AND INDEPENDENT MOTION 49

flow field. The use of collinear points provides an elegant and independently moving objects representations will
form critical inputs for the successful navigation behaviorcharacterization of the depth variation needed to succeed,

as well as an analysis of the effects of the spacing between of the robot.
points used in the computation.

The FOE computation was found to be reasonably ro- APPENDIX A
bust to noise in the input flow, with robustness improving
with greater depth variation and wider spacing between For the two image points pi , the x- and y-components
points in the unit computation with three collinear points. of the image velocities will be (from Eqs. 1)
The method of location of the FOE involves a 2-D search,
and it is convenient to limit the search to the nodes on a

u1 5
2U 1 x1W

Z1
2 Ax1 y1 1 B(x2

1 1 1) 2 Cy1grid. The effects of interpolation due to the discrete sam-
pling imposed by the grid on the computation, of differing
amounts of rotation and translation, of marginally noncol-

u2 5
2U 1 x2W

Z2
2 Ax2 y2 1 B(x2

2 1 1) 2 Cy2linear image points assumed to be collinear, and of using
different numbers of sample points have been empirically
studied and reported. A technique for obtaining the quali- v1 5

2V 1 y1W
Z1

2 A(y2
1 1 1) 1 Bx1 y1 1 Cx1

tative sign bit of the direction of translation was presented
and empirically tested on synthetic data.

v2 5
2V 1 y2W

Z2
2 A(y2

2 1 1) 1 Bx2 y2 1 Cx2 .Next, we examined how the FOE computation performs
in the presence of independent motion and deals with the
issue of detecting these motions. The FOE computation

Now noting that there are four equations that are linearwas found to be susceptible to independent motion that
in three of the unknowns A, B, C, these three will behas very large magnitude, that occupies a large percentage
eliminated from the system, thus reducing the system toof the field of view in either whole or disjoint chunks, and
one equation in the other unknowns. This can be summa-that occupies a patch very close to the true FOE. The
rized asexact points at which the algorithm would break down are

dependent on the interplay among these and other factors,
such as noise, depth variation, and the spacing of triplets.

To understand the possibilities for independent motion
TwoSum 5

1
Z1 3

U

V

W
4 ? 3

CU,1

CV,1

CW,1
41

1
Z2 3

U

V

W
4 ? 3

CU,2

CV,2

CW,2
4 ,detection, theory was presented that showed that three

collinear points is the minimum structure needed to be
able to accomplish this task. Then, a review of previous
work on independent motion detection was done, and a where TwoSum is a linear sum of the flow values involving
new algorithm was presented and tested empirically. coefficients that are polynomials in the image position co-
Lastly, another avenue was explored, in which indepen- ordinates and the RHS is its interpretation, where the
dently moving objects are detected before the FOE is com- symbol ? represents the inner product and where the Ctj,iputed. Preliminary results were presented in [8], and fur- are polynomials in the image position coordinates. The
ther details appear in [7]. Ctj,i are either obtained by simple Gaussian elimination or

This framework based on the Collinear Point Constraint by using the observation of Prazdny [32] that the compo-
has shown promise in the domain of egomotion and inde- nent of flow in the direction of a line joining two image
pendent motion. It needs to be further studied in the area points has constant rotational contribution on a spherical
of the development of a control strategy for the detection retina. Note that Prazdny’s observation was also used in
of large numbers of independently moving objects, the obstacle avoidance work by Nelson and Aloimonos [30]
extension to benefitting from multiple image frames, and employing directional divergence. The directional diver-
the use of purely normal optical flow. Other current work gence projects the flow for two points onto the great circle
includes the integration of the representations of egomo- arc joining the two and takes their difference, thus cancel-
tion direction and independently moving objects into the ling the rotation component.
attentional framework of [45, 5]. At the moment, the sys- The inner products above can be expressed as
tem integrates and uses representations of luminance,
edges, abrupt onset and offset, motion categories, and pe-
ripheral cues for directing attention and provides attentive
control signals which form part of the control strategy for 3

U

V

W
4 ? 3

CU,i

CV,i

CW,i
45 uTu Pri

the TRISH stereo head [25]. The head is mounted on a
mobile platform, and thus the addition of the egomotion
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P1P2 the line segment joining 3-D points P1where uTu is translation’s magnitude and Pri is the projec-
tion of the vector [CU,ki , CV,i , CW,i]T onto the translation and P2

kx difference between gradients of two limbsvector [U, V, W]T. So,
along Y

ky difference between gradients of two limbs
TwoSum 5 uTu Pr1/Z1 1 uTu Pr2/Z2. (8) along X

( )T transpose
sW direction vector
nW vector perpendicular to sWAPPENDIX B: SYMBOLS
, gradient
· dot (or scalar) productXW scene (3-D) vector consisting of 3 compo-

nents, X, Y, Z S spacing within triplet
s spacing between tripletsX component of scene (3-D) vector

Y component of scene (3-D) vector LineSum the sum along a line
Response the response of the FOE operatorZ component of scene (3-D) vector

x component of position in image TotalTriplets total triplets used to compute a single re-
sponsey component of position in image

p label for point in image o summation
u u absolute valueP label for point in scene

TW translation (3-D) vector; components are r(x) curve interpolating response map
a coefficient for interpolationU, V, W

VW rotation (3-D) vector; angular velocity; b coefficient for interpolation
c coefficient for interpolationcomponents are A, B, C

U component of translation (3-D) vector xmin coordinate of grid point with minimum
responseV component of translation (3-D) vector

W component of translation (3-D) vector ymin coordinate of grid point with minimum
responseA component of rotation (3-D) vector

B component of rotation (3-D) vector s standard deviation
kW difference vector of gradients of limbs;C component of rotation (3-D) vector

u component of image motion vector components kx, ky

Zmax furthest visible point in viewv component of image motion vector
d/dt derivative with respect to time Zmin closest visible point in view

CU,i, CV,i, CW,i polynomials for computing TwoSumX9 coordinate of 3-D point after motion
Y9 coordinate of 3-D point after motion Pri projections for computing TwoSum
Z9 coordinate of 3-D point after motion
x9 coordinate of image point after motion
y9 coordinate of image point after motion
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