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Several structural scene cues such as gist, layout,
horizontal line, openness, and depth have been shown
to guide scene perception (e.g., Oliva & Torralba, 2001);
Ross & Oliva, 2009). Here, to investigate whether
vanishing point (VP) plays a significant role in gaze
guidance, we ran two experiments. In the first one, we
recorded fixations of 10 observers (six male, four female;
mean age 22; SD¼ 0.84) freely viewing 532 images, out
of which 319 had a VP (shuffled presentation; each
image for 4 s). We found that the average number of
fixations at a local region (80380 pixels) centered at the
VP is significantly higher than the average fixations at
random locations (t test; n¼ 319; p , 0.001). To address
the confounding factor of saliency, we learned a
combined model of bottom-up saliency and VP. The AUC
(area under curve) score of our model (0.85; SD¼0.01) is
significantly higher than the base saliency model (e.g.,
0.8 using attention for information maximization (AIM)
model by Bruce & Tsotsos, 2005, t test; p¼ 3.14e-16) and
the VP-only model (0.64, t test; p , 0.001). In the second
experiment, we asked 14 subjects (10 male, four female;
mean age 23.07, SD¼ 1.26) to search for a target
character (T or L) placed randomly on a 3 3 3 imaginary
grid overlaid on top of an image. Subjects reported their
answers by pressing one of the two keys. Stimuli
consisted of 270 color images (180 with a single VP, 90
without). The target happened with equal probability
inside each cell (15 times L, 15 times T). We found that
subjects were significantly faster (and more accurate)
when the target appeared inside the cell containing the
VP compared to cells without the VP (median across 14
subjects 1.34 s vs. 1.96 s; Wilcoxon rank-sum test; p ¼
0.0014). These findings support the hypothesis that
vanishing point, similar to face, text (Cerf, Frady, & Koch,
2009), and gaze direction (Borji, Parks, & Itti, 2014)
guides attention in free-viewing and visual search tasks.

Introduction

Visual attention is crucial in understanding complex
scenes and processing an enormous amount of infor-
mation (around 108 bits) bombarding our retina each
second. Primates use focal visual attention and rapid
eye movements to analyze complex visual inputs in
real-time, in a manner that highly depends on
behavioral priorities and goals. Studies of physiology
and psychophysics have proposed that several factors
such as bottom-up cues, nature of the target, and
knowledge of the task play important roles in guiding
attention and eye movements. In what follows, we
briefly explain these cues.

Bottom-up cues guide attention based on low-level
image-based features. Such cues make a red dot more
salient among a set of blue dots. According to the
Feature Integration Theory (FIT) by Treisman and
Gelade (1980), several feature maps such as color,
orientation, and intensity are computed in parallel
across the visual field and are then combined to guide
the attention. Koch and Ullman (1987) later introduced
a computational architecture to generate a master
saliency map and proposed a selection process to
sequentially deploy attention to spatial locations in
decreasing order of their salience. Several computa-
tional attention models have been proposed since then
to detect bottom-up salient regions that stand out from
their surroundings in an image (Borji, Sihite, & Itti,
2013b; Borji & Itti, 2013; Bruce & Tsotsos, 2005; Itti,
Koch, & Niebur, 1998). These models have been shown
to reliably predict fixations in free viewing of natural
scenes (Borji et al., 2013b; Borji, Frintrop, Sihite, & Itti,
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2012; Bruce & Tsotsos, 2005; Parkhurst, Law, &
Niebur, 2002).

Prior knowledge of the target facilitates target
detection in visual search tasks (See Borji, Lennartz, &
Pomplun, 2015; Chen & Zelinsky, 2006; Zelinsky,
2008). The guided search theory (Wolfe, 2007) proposes
that attention can be biased towards targets of interest
by modulating the relative gains through which
different features contribute to attention. Psychophys-
ics experiments have shown that knowledge of the
target contributes to an amplification of its salience.
For example, Blaser, Sperling, and Lu (1999) report
that white vertical lines become more salient if we are
looking for them. Some studies have shown that better
knowledge of the target leads to faster search; e.g.,
seeing an exact picture of the target is better than seeing
a picture of the same semantic type or category as the
target (Kenner & Wolfe, 2003; Maxfield, Stalder, &
Zelinsky, 2014). Physiology experiments have shown
that target search modulates neural activity by en-
hancing the responses of neurons tuned to the location
and features of a stimulus (Bichot, Rossi, & Desimone,
2005; Martinez-Trujillo & Treue, 2004; Saenz, Buracas,
& Boynton, 2002; Treue & Trujillo, 1999). Naval-
pakkam and Itti have investigated computational and
behavioral underpinnings of these processes (2005,
2006, 2007) and have proposed models to bias the low-
level visual system with the known features of the target
to make the target more salient (also known as the
optimal gain theory). Borji and Itti (2014b) have
studied how parameters of neurons in a neural
population should be optimally biased to search for a
target.

Further, it has been shown that attention in the real
world is mainly task-driven (Ballard, Hayhoe, & Pelz,
1995; Borji & Itti, 2014a; Hayhoe & Ballard, 2005). The
classic eye movement experiments of Yarbus, Haigh,
and Riggs (1967) show drastically different patterns of
eye movements over the same scene, depending on the
task. He demonstrated a striking example of how a
verbally communicated task specification may dra-
matically affect attentional deployment and eye move-
ments. He argued that variable spatio-temporal
characteristics of scanpath for different task specifica-
tions exemplify the extent to which behavioral goals
may affect eye movements and scene analysis. Another
example in this regard is the study by Tanenhaus,
Spivey-Knowlton, Eberhard, and Sedivy (1995) who
investigated the interplay between task demands
(spoken sentence comprehension) and gaze control by
tracking eye movements of subjects when they received
ambiguous verbal instructions regarding manipulating
objects on a table. Tanenhaus et al. demonstrated that
visual context influenced spoken word recognition and
syntactic processing when subjects had to resolve
ambiguous verbal instructions by analyzing the visual

scene and objects. These two studies indicate that visual
attention and scene understanding are intimately
interrelated and that gaze is controlled by task
demands. In another work, Triesch, Ballard, Hayhoe,
and Sullivan (2003) suggested that our brain may adopt
a need-based approach, where only desired objects are
quickly detected in the scene, identified, and repre-
sented. In natural vision, bottom-up saliency, search
template (object features), scene context and layout,
and task demands interact with each other in guiding
visual attention.

The geometry of a scene provides global contextual
information that assists rapid scene analysis in visual
search and navigation (Ross & Oliva, 2009). Structural
cues such as layout, depth, openness, and perspective
can be perceived in a short presentation of an image
(Greene & Oliva, 2009; Joubert, Rousselet, Fize, &
Fabre-Thorpe, 2007; Sanocki & Sulman, 2009; Schyns
& Oliva, 1994). Further, global scene context or Gist1

(Torralba, Oliva, Castelhano, & Henderson, 2006) and
layout2 (Rensink, 2000) also guide attention to likely
target locations in a top-down manner. Given a task
such as ‘‘find humans in the scene,’’ in addition to
visual features representing the appearance of a person,
the gist of the scene also guides the search process. For
example, humans are more likely to be found on the
sand, rather than on the sky, in a beach scene. Ehinger,
Hidalgo-Sotelo, Torralba, and Oliva (2009) proposed a
model to linearly integrate three components (bottom-
up saliency, gist, and object features) for explaining eye
movements in looking for people in a database of about
900 natural scenes. Structural scene information has
also been extensively modeled and utilized in several
computer vision applications, for example, geometry
context (Hoiem, Efros, & Hebert, 2005) and Manhat-
tan world (Coughlan & Yuille, 2003). Whereas
influences of structural information on visual recogni-
tion (e.g., rapid scene categorization and understand-
ing) have been studied, their role in visual attention has
not yet been systematically explored.

In the context of driving, previous research has
shown that drivers rely on the road tangent point (the
point of the inner lane marking bearing the highest
curvature in the 2D retinal image) when negotiating a
bend. The bend radius (and hence the steering angle)
relates in a simple geometrical fashion to the visible
angle between the instantaneous heading direction of
the car and the tangent point (Land & Lee, 1994).
Drivers can easily use this strategy by looking at the
tangent point and inferring the required steering angle
from the rotation angle of their gaze and head. Driving
by the tangent point has been observed from both
normal and racing drivers in real world scenarios
(Chattington, Wilson, Ashford, & Marple-Horvat,
2007; Land & Lee, 1994; Land & Tatler, 2001), as well
as in simulated conditions (Wilson, Chattington, &
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Marple-Horvat, 2008). Another study has found that
drivers look straight ahead at the road 59% of the time,
to the right side of the road 15% of the time, and to the
left side of the road 25% of the time (Ko, Higgins,
Chrysler, & Lord, 2010). Underwood, Chapman,
Brocklehurst, Underwood, and Crundall (2003)
showed that the far-ahead road and the midahead road
attract more fixations than other parts of the scene.
Further, they found that road near-left and the road
near-right tend to attract fewer fixations.

In summary, several cognitive cues that attract
attention and guide eye movements in natural vision
have been already discovered (e.g., color, texture,
motion, face, and text (Cerf et al., 2009), object center-
bias (Nuthmann & Henderson, 2010), scene center-bias
(Tatler, Baddeley, & Gilchrist, 2005), cultural cues
(Chua, Boland, & Nisbett, 2005; Rayner, Castelhano,
& Yang, 2009), semantic distance (Hwang, Wang, &
Pomplun, 2011), and gaze direction (Borji et al., 2014;
Castelhano, Wieth, & Henderson, 2007). Further,
structural scene information such as global context,
horizontal line,3 and openness (Torralba et al., 2006),
scene layout (Rensink, 2000), and depth (Le Meur,
2011; Ouerhani & Hügli, 2000) have been shown to
influence eye movements as well as human scene
categorization (Friedman, 1979; Potter, 1976; Oliva &
Torralba, 2001). Here, we systematically investigate the
role of a particular type of scene structural information
known as the vanishing point (VP) and perspective on
eye movements during free-viewing and visual search in
natural scenes. In a graphical perspective, a vanishing
point is a 2D point (in the image plane) which is the
intersection of parallel lines in the 3D world (but not
parallel to the image plane). In other words, the
vanishing point is the spot to which the receding
parallel lines diminish. In principle, there can be more
than one vanishing point in the image. VP can
commonly be seen in fields, railroads, streets, tunnels,
forest, buildings, objects such as ladder (from looking
bottom-up), etc. It has been used in camera calibration,
3D reconstruction as well as in painting.

Experiment 1: Free viewing

Methods

Stimuli

We collected 700 images with vanishing points from
the Web, MIT300 (Judd, Durand, & Torralba, 2012)
and DUTOMRON (Yang, Zhang, Lu, Ruan, & Yang,
2013) datasets. We used a vanishing point detector
based on the Hough transform (Ballard, 1981) to
discard images with multiple VPs or VPs falling off the
image plane. The VP detector did well in localizing the

VP for some images and failed for some others. We also
discarded low resolution images and images with logos.
Eventually, we were left with 319 images each with only
one vanishing point. Overall, we attempted to create a
diverse stimulus set containing images from roads,
buildings, beaches, corridors, tunnels, forest, indoor,
outdoor, natural, man-made, etc., with vanishing
points in multiple locations.

We asked two subjects to annotate the VP location.4

They were shown images with the maximum resolu-
tion5 of 400 3 300 pixels, and were asked to mark the
VP with a bounding box of an arbitrary size. The
average height and width of the VP bounding boxes
were 10 and 14 pixels, respectively. In the latter
analyses, we only use the center of the bounding boxes.

Since showing only images with a VP may guide
observers to adopt a viewing strategy, we collected
additional 213 images without vanishing points and
shuffled them among images with VPs. Therefore,
viewers would not know in advance whether a
presented image would contain a VP. In total, we had
532 images to record human fixations (319 with VP and
213 without). In what follows, only images containing
vanishing points are analyzed. For presenting to
subjects, images were resized to 1920 3 1080 pixels by
adding gray margins to them while preserving the
aspect ratio.

Figure 1A shows examples of our stimuli, annotated
vanishing points, as well as fixation locations. Figure
1B shows the average annotation map as well as the
average fixation map over 319 images with VPs. Both
of these maps have maximum activation near the image
center making center-bias a potential confounding
factor for our hypothesis. We will address this
confound extensively in our analyses. Figure 1C shows
the histogram of VP window size (bounding box).
About 82% of annotated VP bounding boxes have a
size smaller than 0.2% the image area.

Observers

Observers were undergraduates from different ma-
jors (six male, four female). Mean observer age was 22
(range 21–24, median¼ 22, SD¼ 0.84). Observers had
normal or corrected-to-normal vision and received
course credits for participation. They were naive to the
purpose of the experiment and had not previously seen
the stimuli.

Procedure

An image was shown for 4 s followed by a gray
screen for 3 s. Observers sat 60 cm away from a 19 00

LCD monitor such that scenes subtended approxi-
mately 37.68 3 248 of the visual field. A chin rest was
used to stabilize head movements. Stimuli were
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Figure 1. (A) Example stimuli with vanishing points (yellow boxes) and fixations (dots) used in Experiment 1. These images were

shown to observers shuffled among some other images without vanishing point to avoid viewing bias (i.e., strategy in viewing). For

images with some highly salient items, vanishing point attracts less attention (e.g., second image in the fourth row). (B) Average VP

annotation map and average fixation map over 319 images with VPs. A sample image and its corresponding human VP annotation,

eye movements of 10 observers, and Gaussian blob centered at the VP is also shown. The inset shows two squares with size 803 80

pixels (blue¼ square centered at the VP location, red¼ square centered at the VP location of another randomly chosen image). (C)

Histogram of VP window size. About 82% of VP bounding boxes have a size smaller than 0.2% of the image area. Inset shows two

Gaussian blobs with smallest and largest r values.
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presented at 60 Hz at a resolution of 19203 1080 pixels
(with added gray margins while preserving the aspect
ratio). Eye movements were recorded via a Tobii X1
Light Eye Tracker at a sample rate of 30 Hz. The eye
tracker was calibrated using five-point calibration at
the beginning of each recording session. Images were
presented to observers in a random order. Observers
were instructed to simply watch and enjoy the pictures
(free viewing task).

Model-free analysis

In our first analysis in this section, we compute and
compare the density of fixations inside the VP and
random bounding boxes of the same size (80 3 80
pixels). We take the center of the annotated rectangles
and draw an 80 3 80 square at that location.6 To
generate a random bounding box for an image, we use
the VP bounding box of another randomly chosen
image. This way, random locations have the same
central bias as the VPs.

The average number of fixations inside the VP
squares is 33.1 (SD¼ 15.5) which is significantly higher
than the average number of fixations at random
locations (19.8; SD¼ 16.2) using the t test (n¼ 319; p¼
2.98 e-35). This implies that fixations are driven to
vanishing points (see Figures 2A, 2B).

In our second analysis, we repeat the first analysis
with saliency maps (Figure 2). We find that average
saliency, using Itti (Itti et al., 1998), AIM (Bruce &
Tsotsos, 2005), and Boolean map saliency (BMS)
(Zhang & Sclaroff, 2013) models in the VP square, is
significantly higher than random squares (t test; n ¼
319; p ¼ 4.23e-13 using the Itti model, p¼ 2.03e-08
using the AIM model, and p¼ 0.02 using the BMS
model). Please see Figures 2C and 2D. One may argue
that the higher number of fixations and map activations
using the human fixation map at vanishing points
compared to random points could be because of higher
saliency (as computed by conventional bottom-up
saliency models) around vanishing points (as shown
above). In other words, feature congestion at VP
induces higher low-level image-based saliency and
drives attention. This makes bottom-up saliency a
potential confounding factor for our hypothesis here.
To address this confound, we measured the ratio of
average activation at VP versus random locations using
saliency models as well as the blurred human fixation
map (by convolving with a small Gaussian blob of r¼
10 pixels; Figure 1B). The ratio using the human
fixation map is 1.5, which is higher than ratios using
models (1.3 for Itti, 1.2 for AIM, 1.1 for BMS). This
means that while saliency plays a role, it cannot fully
account for the VP effect. We will investigate this

further in the next section by utilizing a model-based
analysis.

To investigate how early is the bias towards the
vanishing point, we calculate the ratio of first fixations
that landed on the VP square over the total number of
first fixations (from all subjects on an image) and
compare it with the same ratio using second fixations
(these ratios were computed for each image and were
then averaged over all images). The former value is 0.45
which is significantly higher than the latter value of 0.38
(t test; p , 0.001). This indicates that observers were
driven to the vanishing point early in their viewing.
Figure 3 shows the heatmaps of first and second
fixations on some example images.

Model-based analysis

In the previous analyses, we showed that saliency at
the VP is higher than random locations. To investigate
whether attraction of fixations towards vanishing point
is solely due to the higher saliency at VP or there is a
significant additional value, we perform a model-based
analysis. If the vanishing point offers redundant
information to what saliency already offers, then
explicit emphasis on the vanishing point should not add
significant prediction power. Similar analyses have
been pursued in the past to study whether other types
of cues such as face or text (Cerf et al., 2009), object
center-bias (Borji, 2015; Borji & Tanner, 2015), and
gaze direction (Borji et al., 2014; Parks, Borji, & Itti,
2015) guide eye movements and attention.

Learning a combined model of saliency and
vanishing point

To learn a combined model of saliency and vanishing
point, we represent each image pixel as a vector X¼ [s
v] where s is the output of a bottom-up saliency model7

and v is the value from the vanishing point map (VP).
The VP map is modeled as a variable size Gaussian
placed at the vanishing point as shown in Figure 1.8

VPðx; yÞ ¼ 1

2pr2
tp

e
�ðx�iÞ

2þðy�jÞ2

4r2
tp ð1Þ

where (i, j) is the coordinate of the annotated vanishing
point and rtp is the (variable) standard deviation of the
Gaussian blob.

We aim to learn function /(X)¼WT
Xþb, which is a

binary classifier determining whether a particular image
pixel with feature vector X should be attended or not—
i.e., / (X) � {–1, 1}. To do so, we utilize an ordinary
support vector machine (SVM; Cortes & Vapnik, 1995)
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with a linear kernel. For a test pixel, we assign the real
value m ¼WT

X þ b as the label of the pixel.9 Final
saliency values are then normalized for each map, that
is, (m�min)/(max�min). We deliberately avoid using
complicated nonlinear learning functions, since we are
interested in the exclusive added value of the vanishing
point.

We choose 50 random images to train the SVM and
use the remaining 269 images for testing. This
procedure is repeated 20 times and then the average is
computed (i.e., cross-validation). We randomly select
50 pixels respectively from fixated locations and non-
fixated locations, yielding 100 samples (50 positive

samples and 50 negative samples) for each training
image, i.e., 5,000 training samples in total. We learn the
combined models (e.g., AIMþVP, BMSþVP, and Itti
þ VP) and compare them with the original bottom-up
saliency models. For a fair comparison, we optimize
models by sweeping10 rtp from 15 to 50 pixels and find
the r where performance peaks.11 Please see Figure 4A.

Model evaluation

Table 1 summarizes the test results using three types
of scores: area under the curve (AUC), normalized

Figure 2. Results of the first experiment. (A) Histogram of fixations at random (left column) and annotated VP squares (80380 pixels).

Plot titles show mean and standard deviations (in parentheses). (B) The mean number of fixations at VP and random squares

(sampled with the same bias as VP annotations to account for center-bias). The difference is statistically significant using t test (n¼
319). (C) Histogram of saliency map activations at VP and random squares (see Figure 1B) using human saliency map (fixation map

convolved with a small Gaussian blob with r¼ 10 pixels). The second parenthesis on the title of the right bar column shows the ratio

of the means (i.e., mean-at-VP/mean-at-random). (D) Differences in VP and random squares means. All differences are statistically

significant using t test. Error bars show standard error of the mean (SEM).
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scanpath saliency (NSS) proposed by Peters, Iyer, Itti,
and Koch (2005), and linear correlation coefficient
(CC). Please see Borji and Itti (2013) for a detailed
definition of these scores in the context of fixation
prediction. We make three observations explained
below (see Figure 4A).

First, we observe that the VP performs significantly
above chance in predicting fixations using all three
scores (Table 1, last column). Using the AUC score, VP
map offers at least 43% improvement versus chance.

Second, adding VP to models significantly outperforms
baseline models using three scores (MþVP vs. M; Table
1, fifth column). We observe more than 8.5% improve-
ment in performance using the AUC score (more than
48% using NSS and more than 52.5% using CC). This
result confirms our hypothesis that VP offers significant
additional prediction power than bottom-up saliency.

Third, the MþVP model outperforms the VP model
using the AUC score but performs slightly lower than
the VP using NSS and CC scores due to a different
amount of activation generated by these models (Table
1, fourth column). This comparison is not very relevant
to our hypothesis here as it compares VP and bottom-
up saliency. Marginal improvement of MþVP over VP
(and sometimes lower performance), hints towards the
strong attraction of gaze towards the vanishing point
such that emphasizing more on bottom-up salient items
degrades the accuracy. Nonetheless, results from fourth
and fifth columns of Table 1 confirm that both bottom-
up saliency and vanishing point contribute statistically
significantly in guiding attention and gaze in free
viewing and none in a subset of the other one.

Addressing center-bias

It has been shown that human observers tend to
preferentially look near the center of the image due to

reasons such as viewing strategy or photographer bias
(the tendency of photographers to frame interesting
objects at the center of the picture). This phenomenon
is known as center bias and has challenged researchers
in testing hypotheses in eye movement studies and
comparing saliency models (Borji et al., 2013a; Tatler et
al., 2005; Tseng, Carmi, Cameron, Munoz, & Itti,
2009). In this section, we address this confounding
factor in detail. Notice that VP happens at the center of
some of our images.

We perform two comparisons. First, we investigate
whether VP and CG (Central Gaussian) models offer
nonredundant information. Notice that both models
have been optimized for their best r. The scatter plot in
Figure 4B shows that for 97 of 269 test images, the VP
model wins over the CG model. Inspecting images in
which VP wins, we see that VP falls off the image center
and observers look at the VP location. For images
where CG wins, there is either: (a) a salient object at the
image center, (b) a VP at the image center, or (c) the
scene contains mainly background clutter. In the latter
case, observers tend to look at the center as there is not
much interesting in the periphery to look at.

Second, we compare the Mþ CGþ VP model versus
the MþCGmodel (parameters optimized for each model
separately). The rationale behind this comparison is to see
whether VP boosts the performance of the augmented
(with CG) model. Figure 4C shows performance increase
for 221 images (about 82% of images). The third column
in Table 1 shows the quantitative results and statistical
tests (t test; n¼ 269). The difference between Mþ CGþ
VP andMþCGmodels is statistically significant using all
bottom-up saliency models and scores. These two
comparisons confirm that vanishing point and central
bias are two different nonoverlapping cues that attract
fixations and guide attention.

We also compute another score known as the
shuffled AUC (sAUC) score (Zhang, Tong, Marks,

Figure 3. Sample images with distribution of first and second fixations.
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Figure 4. (A) The performance of models using AUC, NSS, and CC scores with varying Gaussian r. The x axis indicates the r of the

central Gaussian blob. The r of the VP Gaussian blob is fixed to the best sigma for each model. (B) AUC score of the VP map versus the

CG central Gaussian (CG) map using the best r (here both r values are 31 pixels). Each dot represents one image. Some examples

above and below diagonal are shown. (C) Scatter plot of ModelþCG versus ModelþCGþVP using the NSS score. This plot shows the

added value of VP over the original model, taking into account the center bias confound. This plot also indicates that the added value

is not due to the center-bias. For 221 images, we observed performance improvement. Vanishing point usually happens off the center

on these images. We did the same analysis by plotting the Modelþ VP versus M and observed performance improvement for 243 of

the images (not shown).

Score

Model

¼ M

M þ CG þ VP

versus M þ CG

M þ VP

versus VP

M þ VP

versus M

VP

versus Chance

AUC AIM 0.833 versus 0.819 (1.7%) 0.793 versus 0.739 (7.3%) 0.793 versus 0.720 (10.13%) 0.739 versus 0.5 (47.8%)

BMS 0.837 versus 0.823 (1.7%) 0.798 versus 0.719 (11%) 0.798 versus 0.711 (12.2%) 0.719 versus 0.5 (43.8%)

Itti 0.826 versus 0.811 (1.84%) 0.792 versus 0.756 (4.7%) 0.792 versus 0.730 (8.5%) 0.756 versus 0.5 (51.2%)

NSS AIM 1.695 versus 1.545 (9.7%) 1.467 versus 1.450 (1.2%) 1.467 versus 0.953 (53.9%) 1.450 versus 0

BMS 1.751 versus 1.587 (10.33%) 1.543 versus 1.508 (2.3%) 1.543 versus 0.916 (68.4%) 1.508 versus 0

Itti 1.592 versus 1.445 (10.2%) 1.361 versus 1.381 (�1.4%) 1.361 versus 0.918 (48.25%) 1.381 versus 0

CC AIM 0.697 versus 0.628 (11%) 0.584 versus 0.598 (�2.3%) 0.584 versus 0.358 (63.12%) 0.598 versus 0

BMS 0.720 versus 0.652 (10.42%) 0.609 versus 0.608 (0.16%) 0.609 versus 0.341 (78.5%) 0.608 versus 0

Itti 0.672 versus 0.603 (11.44%) 0.563 versus 0.580 (�2.9%) 0.563 versus 0.369 (52.6%) 0.580 versus 0

Table 1. Scores of our combined model (Model þ VP) versus the original model and the VP-only channel. Notes: Numbers in
parentheses are the performance improvement in percentages. Scores of the center-bias augmented models are also shown (third
column). Differences are all statistically significant (t test; n¼ 269; p , 0.05) except the CC score of Mþ VP versus VP using the Itti
model ( p ¼ 0.83).
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Shan, & Cottrell, 2008) to compare M þ VP versus M
(Model). The only difference between this score and the
classic AUC score is that negative samples, instead of
uniform locations, are drawn from fixations on other
images to discount the center bias (see Borji et al.,
2013a, for a detailed explanation of these scores). We
learn a weighted linear model first, and then optimize
its VP sigma over 50 random train images. The learned
model is then tested over the remaining 269 test images
and the process is repeated five times. The average
sAUC score of the combined model is significantly
above the base saliency models (t test; p , 0.05; scores
in order using AIM, BMS, and Itti models are 0.658 vs.
0.626, 0.671 vs. 0.631, and 0.644 vs. 0.61). Note that
there is no center-bias Gaussian addition here. See
Appendix B for more details.

Qualitative evaluation

Here, we evaluate model prediction maps qualita-
tively. Figure 5 shows examples where our combined
model performs poorly (i.e., MþVP scores lower than
M). In almost all of these cases, an object off the
vanishing point overrides the VP effect. For example, in
the second row of the first column, a standing person in
the metro station attracts gaze more than VP (the same
is true for images in first row, second column and first
row, third column).

Figure 6 shows examples where our combined model
performs well. Scores of models are also shown. The
original baseline models (AIM, BMS, and Itti) fail to
render the vanishing point salient in almost all of the
shown cases. Augmented with VP, however, we see an
improvement in the prediction power (Compare M þ
VP vs. M). M þ CG model also outperforms the M
model. The best performance is achieved using the Mþ
VPþ CG model. This model however sometimes loses
to the M þ VP model as adding CG causes false
positives in some cases. Comparing the VP and CG

models (the last two columns) indicates that VP
sometimes wins over CG, especially in cases where VP
is off the image center.

Complementary analysis

In a complementary analysis, to investigate whether
vanishing point guides attention in other tasks, we
evaluate the performance of our combined model over
existing datasets in the literature. Fourteen images with
vanishing points were selected from the FIGRIM
(Bylinskii, Isola, Bainbridge, Torralba, & Oliva, 2015)
dataset and VP locations were annotated. FIGRIM
images have been used for memorability testing to probe
whether eye movements relate to whether a subject will
later remember an observed image. Note that these
images have been shown to observers among many other
images without VP. Therefore, there is no bias towards
looking at the vanishing point on these datasets. The
performance of our combined model over these images is
shown in Table 2. As it can be seen, our model performs
better than original models using all three scores. Figure
7 shows an illustration over the FIGRIM dataset.

Experiment 2: Visual search

Our aim in this experiment is to investigate whether
our findings from the free-viewing task generalize to other
tasks. In particular, we attempt to see whether presence of
a vanishing point attracts attention during visual search.

Methods

Stimuli

Our stimuli contain 270 color images, selected from
images used in Experiment 1, 180 of which with vanishing

Figure 5. Qualitative evaluation: cases where our combined model performs poorly. In almost all of these cases, an object off the

vanishing point overrides the VP effect and attracts fixations.
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points and 90 without. Images without VP were used to

reduce the viewing bias towards the vanishing points. A

target character (T or L) was placed randomly on a 33 3

imaginary grid overlaid on an image (see Figure 8B,

fourth row, first column). The target character occupies

0.808 3 0.678 of the visual field and is placed at the center

of a grid cell. The target happened with equal probability

(1/9) inside each cell (30 times: 15 times L, 15 times T).

Twenty times, out of this 30 happened on images with a

vanishing point (10 L, 10 T) and 10 times over images

without a VP (5 L, 5T). Figure 8 shows example stimuli

used in the visual search experiment.

Figure 6. Qualitative evaluation: cases where our combined model performs well (using the AUC score).
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Subjects

Fourteen subjects (10 male, four female) voluntarily
participated in this experiment. Mean subject age was
23 (range 22–27, median¼ 23, SD¼ 1.27). All subjects
were undergraduates from different majors. They were
naive to the purpose of the experiment and had not
previously seen the stimuli.

Procedure

As in Experiment 1, observers sat 60 cm away from a
19 00 LCD screen. Stimuli were presented at 60 Hz at a
resolution of 1920 3 1080 pixels with added gray
margins (dva 37.68 3 248). Subjects were asked to
search for the target character. They were instructed to
report their answers by pressing one of two arrow keys
(left arrow for T, right arrow for L). If no key was
pressed after 10 s, the trial automatically moved to the
next one. Subjects were not asked to look at the center
of the screen before each trial. The reason was to avoid
preference towards the center where vanishing point
usually happens.12 Each stimulus was succeeded by a
gray screen for 4 s. Overall, it took about 30 min for a
subject to complete this task. We measured subjects’
response times and accuracies.

Analysis and results

Figure 9 shows the results of our second experiment.
Analyzing images with VP, we found that all subjects13

were significantly faster when the target happened
inside the cell containing the VP compared to off-VP
cells (median across 14 subjects, 1.34 s vs. 1.96 s;
Wilcoxon rank-sum test; p¼ 0.0014; Figure 9A).
Median (and also mean) accuracies over subjects were
above 95% (Figure 9B). Accuracies for the target in VP
cells were significantly higher than off-VP cells (medi-
ans 100% vs. 97%; p ¼ 0.02). This result supports our
hypothesis that vanishing point guides attention during
visual search.

To investigate whether center-bias is a confounding
factor here (since VP often happens near the image
center), we conducted two analyses. First, we computed
the mean distance of the target cell (center of the cell
containing the target) from the image center in VP and
off-VP trials. These two values in order are: 442.12
(120.9) and 428.36 (193.54). Numbers in parentheses
are standard deviations. As can be seen, on average off-
VP cells are closer to the image center (since a larger
number of these cells happen near the center compared
to cells containing VP). Although off-VP cells are
slightly closer to the image center, their response time is
still higher than the VP cells. Second, we measured the
response time for trials when the target happened at the
central cell. The median response time for those trials
(across subjects) is 1.94 (mean equal 2) which is higher
than response time over VP cells. These results indicate
that central bias cannot explain the lower response time
towards the vanishing point.

The images without vanishing points were merely
used as fillers to reduce the viewing bias. They do not

Score model AIM þ VP BMS þ VP ITTI þ VP SALICON þ VP

AUC 0.837 (0.758) 0.854 (0.764) 0.846 (0.799) 0.825 (0.795)

NSS 1.731 (1.081) 1.851 (1.151) 1.716 (1.221) 2.611 (2.379)

CC 0.511 (0.308) 0.533 (0.321) 0.523 (0.363) 0.683 (0.614)

Best VP r 31 27 37 16

W [9.453, 6.693] [10.716, 6.982] [6.883, 6.931] [16.222, 6.164]

Table 2. Maximum scores of our combined models over 14 images with vanishing points selected from the FIGRIM (Bylinskii et al.,
2015) dataset. Notes: Numbers in parentheses are scores of the original models.

Figure 7. Illustration of predictions of the SALICON model (as one of the best existing saliency models; Bylinskii et al., 2014) versus

SALICON þ VP model over images taken from the FIGRIM dataset.
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Figure 8. Stimuli used in the visual search experiment (270 images in total). (A) Images with the target at the vanishing point, (B)

Images with vanishing point but target off the VP. The image in the fourth row, first column shows a 3 3 3 imaginary grid with the

target at the center cell, (C) Images without VP. The inset in the image in the third row, second column, shows the zoomed out target

region for better illustration. Try to see if you can locate the grid cell containing the target character (T or L) in images. Answer key: (A)

7, 2, 2, 2, 8, 2; (B) 9, 5, 2, 6, 4, 9; and (C) 4, 5, 7, 9, 7, 7.
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influence our results reported above. Nonetheless, we
analyzed the data over these images as well. Response
time for the images without VP was significantly higher
than response time for those with VP (median 2.37; p¼
4.77e-05) and off-VP cells (p¼ 0.0072). This does not
necessarily mean that, in general, response time on
images without vanishing point is higher than images
with vanishing point as our finding could be solely due
to the statistics of chosen images without VP. Indeed, a
further inspection of these images revealed that the
majority of them contain faces, text, and other salient
stimuli leading to higher complexity and thus higher
response time over these images (see, for example,
Figure 8C). Notice, however, that the important
straight comparison pertaining to our hypothesis is the
response time and accuracy in VP versus off-VP cells.
The choice of images without vanishing point does not
interfere with this comparison.

Discussion

Our data show that there is a viewing guidance
towards the vanishing point on images with a strong
vanishing point. There might be a continuum between
these types of examples and those where the geometry
defines a vanishing point that is out of the frame, or
wherein the images are less ‘‘tunnel-like’’ (see Figure
10A). It would also be interesting to measure the
vanishing point guidance on images with multiple
vanishing points (Figure 10B).

A finer-grained analysis of fixations towards the
vanishing point might reveal interesting patterns. For
example, we notice that subjects have a higher tendency
to look beneath the vanishing point (see Figure 11)
maybe because of the higher feature density at those
locations. In some cases, fixations seem to be marked
by a trail that leads towards the vanishing point (e.g.,
fourth, sixth, seventh, ninth, and 12th images, counting
row-wise, in Figure 1) which raises the question of
whether an anisotropic profile for this bias factor might
produce even stronger results. Emphasizing more on
these regions may further improve the prediction power
of our combined model.

As we showed in Section 4, explicit addition of a
vanishing point channel to a saliency model signifi-
cantly improves performance on images with vanishing
points. Even the best existing saliency model (SALI-
CON by Jiang, Huang, Duan, & Zhao, 2015) according
to the MIT saliency benchmark (Bylinskii et al., 2014),
trained on a large amount of data, falls short in
explaining fixations driven by the vanishing point (see
also Bylinskii et al., 2016). The main reason could be
because this model has been trained on explicit saliency
judgments in which observers were asked to click on
salient regions. It is not clear whether subjects are able
to discover high-level factors that are known to direct
gaze (e.g., gaze direction; Borji et al., 2014). Further,
this model has not been trained on many images
containing vanishing points. Thus, we believe mining
behavioral factors that guide attention and gaze is very
valuable in constructing more predictive fixation
prediction models.

Figure 9. Results of the visual search experiment. (A) Response time. (B) Accuracy. ***¼ p , 0.001, **¼ p , 0.01, ns¼ nonsignificant

(here p ¼ 0.055; almost significant).
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Is it a preference to fixate points having a greater
perceived distance, or does the VP fixation preference
reflect the contribution of a lower level visual factor?
By definition, the vanishing point is the point in infinity
in the scene (3D world). So, it might be difficult to rule
out the depth cue. Note, however, that several points
with depth at infinity might exist in the image which

may capture less attention compared to the vanishing
point (see images in Figure 1). Further, for different
sets of parallel lines, their respective vanishing points
will lie on a line in the image called vanishing line or
horizon line. This line is obtained by the intersection of
the image plane with a plane parallel to the ground
plane, passing through the camera center. All vanishing
lines end at the horizon line. A likely explanation for
the tendency of humans to look near the vanishing
point could be a special form of mid- or high-level
processing dedicated to vanishing point detection
(similar to faces and text). Low-level features such as
orientation, color, or intensity alone might not suffice
for VP bias. This is one reason why existing bottom-up
saliency models fail to account for the vanishing point
effect.

During the course of this work, two other studies
have emerged investigating the role of vanishing point
in scene viewing. Deng, Yang, Li, and Yan (2016)
addressed gaze in the context of driving. They analyzed
the eye-tracking data of 40 nondrivers and experienced
drivers when viewing 100 traffic images (road scenes
only). They found that a driver’s attention was mostly
concentrated on the end of the road in front of the
vehicle, and bottom-up saliency models can only
describe a small portion of the fixations driven by
vanishing points. Replicating our prior study (Borji,
Feng, & Lu, 2015), Ueda, Kamakura, and Saiki (2016)
found that vanishing point attracts fixations during
scene free viewing. They also embedded a Gabor patch
in a natural scene and asked participants to search for
it. Their results show that the first saccade in each trial
tended towards a vanishing point. They also found that
the vanishing point attracts attention even in scenes

Figure 10. (A) Some images with varying degrees of vanishing point inside the image. Note that in some cases, attention can be

attracted to VP areas even though the VP itself falls off the image (e.g., third image in the first row). In some other cases, VP is less

likely to capture attention (e.g., fourth image in the third row). (B) Some example images with multiple vanishing points.

Figure 11. Average fixation map at the vanishing point location

(averaged over 319 crops of size 80 3 80 in Experiment 1; see

Figure 1). Each of the horizontal and vertical lines halves the

image. Subjects tend to look more below the vanishing point.
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composed of simple geometric figures. These two
studies align with our findings in this study.

To explore possible neural mechanisms of vanishing
point representation in the visual system, we conducted
a synthetic computational experiment. A convolutional
neural network (CNN; here Krizhevsky, Sutskever, &
Hinton, 2012) was trained to predict whether an image
contains a vanishing point or not. After training, we
observed that some VP-selective neurons emerged in
higher layers of the network. Please see Appendix D for
details. A similar observation has been reported in Le
(2013) where authors found neurons selective to cat
face by training a neural network on unlabeled images.
Two findings suggest that, as in CNNs, some VP-
selective neurons might also exist in the brain. First, it
has been shown that CNNs resemble computational
processes underlying object recognition in the visual
ventral stream (e.g., Yamins & DiCarlo, 2016). Second,
it is known that there are face-selective neurons in the
fusiform gyrus (McCarthy, Puce, Gore, & Allison,
1997). Whether such VP-selective cells indeed exist,
however, needs to be investigated by careful electro-
physiology experiments. Candidate brain regions in-
clude parahippocampal place area (PPA), the lateral
occipital complex (LOC), as well as other regions in the
ventral stream. It has been shown that these regions are
involved in the analysis of objects, spatial layout of
scenes, and scene geometry (e.g., Park, Brady, Greene,
& Oliva, 2011). Altogether, these findings support the
hypothesis that devoting some specialized neurons or
regions to specific features or categories might be a
general design principle in the brain for representation
and recognition of complex scenes and objects (see, for
example, Leibo, Mutch, & Poggio, 2011).

Conclusion

Previous research has shown that humans are
capable of automatic and rapid analysis of scene
structure when navigating an environment or searching
for objects. It has also been shown that several global
scene properties such as coarse spatial layout (Schyns &
Oliva, 1994), naturalness (Joubert et al., 2007), naviga-
bility (Greene & Oliva, 2009), complexity or clutter
(Rosenholtz, Li, & Nakano, 2007; Sanocki & Sulman,
2009), distance and depth (Sanocki, 2003), and openness
(Torralba et al., 2006) can be perceived in a short
presentation of a scene. Inspired by these findings, we
showed that a particular type of scene structure related
to the scene layout, known as the vanishing point,
strongly influences eye movements in free viewing of
natural scenes as well as in visual search. Our results
align with the findings that structural scene information
influence gaze guidance during visual search (e.g.,

Henderson, Chanceaux, & Smith 2009) and free-
viewing (e.g., Le Meur, 2011) and generalize the
previous finding that gaze is guided to the road tangent
point during driving (Land & Lee, 1994; Land & Tatler,
2001).

In the first experiment, we showed that the density of
fixations around the vanishing point is significantly
higher than the density of fixations around random
locations. This indicates that observers are more likely
to look at objects near the vanishing point. We also
proposed a combined model of bottom-up saliency and
vanishing point and showed that it outperforms
original models. This signifies that vanishing point
offers significant additional value than what bottom-up
saliency models already offer. Further, we showed that
VP performs significantly above chance and cannot be
explained by center bias.

In the second experiment, we showed that vanishing
point guides attention during visual search and
complements other factors involved in target search
including spatial context and local object information.
Subjects were faster and more accurate when the target
character happened near the vanishing point compared
to other locations in the image.

Results of our two experiments, together, support
the hypothesis that vanishing point, similar to face and
text (Cerf et al., 2009) and gaze direction (Borji et al.,
2014; Parks et al., 2015) attracts eye movements and
attention in free-viewing and visual search tasks and
should be considered in constructing more predictive
saliency models.

One interesting future research direction is studying
neurophysiological underpinnings of vanishing point
detection and guidance in the brain using cell recording
and fMRI techniques. Exploring the role of other
structural scene information in gaze guidance is
another direction. Finally, it would be rewarding to
find out which cues, among several cues such as face,
text, gaze direction, vanishing point, etc., human
observers prioritize in paying attention.

Keywords: visual attention, eye movements, bottom-up
attention, top-down attention, saliency, free viewing,
visual search, vanishing point, perspective, global con-
text, gist, scene perception

Acknowledgments

Commercial relationships: none.
Corresponding author: Ali Borji.
Email: aborji@crcv.ucf.edu.
Address: Center for Research in Computer Vision,
Department of Computer Science, University of
Central Florida, Orlando, USA.

Journal of Vision (2016) 16(14):18, 1–22 Borji, Feng, & Lu 15

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935848/ on 12/14/2016



Footnotes

1 An abstract spatial representation which is rich
enough to recognize the semantic category of a scene,
such as indoor office, outdoor beach, street, etc.

2 A scene can be partitioned into coherent spatial
regions based on semantic or visual similarity. For
example, a typical beach scene can be represented by
three regions: sky on top, water in the middle, and sand
at the bottom.

3 The line that separates the earth from the sky
(skyline). Observers are more likely to attend to visual
items along the horizontal line (Le Meur, 2011).

4 Subjects were highly consistent in their selection of
vanishing point locations (R2 ¼ 0.99). Please see
Appendix A

5 The largest dimension was resized to 400 pixels.
The smaller dimension was resized such as to preserve
the aspect ratio and thus may sometimes exceed 300
pixels.

6 Our investigation with other bounding box sizes
results in the same conclusions.

7 We chose Itti, AIM, and BMS models since they
use purely bottom-up cues such as orientation or color
and exclude high-level features such as face or text.

8 We experimentally verified that the Gaussian form
of VP works better than square or circle.

9 This model is essentially similar to learning a linear
model: a S þ (1 – a) VP.

10 Previous research has shown than smoothing
impacts saliency model performance (Borji et al.,
2013a; Borji & Itti, 2012).

11 Please note that for different models, different VP
r leads to the best M þ VP performance.

12 To further alleviate center-bias, we cropped the
images in such a way as to distribute the vanishing
point over the entire 3 3 3 grid on the image.

13 See Appendix C for results over individual
subjects.
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Appendix A

Figure 12 shows the consistency results of our two
annotators in marking the vanishing point location.
Each point is the location of an annotated VP in the
image. R2 is the correlation coefficient of the 2D
vectors. The bar chart shows the distribution of
annotation differences between the two subjects. For
about 280 of the images (out of 319), the difference is
smaller than or equal to 5 pixels on a 640 3 480 pixel
image. Since annotators were very consistent, we used
annotations of only one of them in our analyses.
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Figure 12. (A) Annotated VP locations by two annotators. (B) Histogram of vanishing point differences.
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Appendix B

Figure 13 shows the optimization of the VP sigma
parameter (left) and sAUC scores of Model þ VP
versus VP for three saliency models (Right). See also
the section entitled ‘‘Addressing center-bias.’’

Appendix C

Figure 14 shows the response time of individual
subjects in the visual search experiment.

Figure 13. (A) Optimizing the MþVP model for VP sigma over the training set containing 50 images. (B) sAUC score of the learned

model with the best VP sigma over 269 test images. Note that the Mþ VP model significantly outperforms the M model using three

base saliency models.

Figure 14. Response times of subjects in the visual search experiment.
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Appendix D

A convolutional neural network (Krizhevsky et al.,
2012) was trained to predict whether a vanishing point
exists on a scene or not. Positive images were road
scenes downloaded from YouTubet (37,497 images),
and negative images were randomly selected scenes

from the Web (32,419 images). The network’s accuracy

was 98.9% (chance ¼ 50%). Interestingly, we observed

that some vanishing-point-selective neurons emerged in

higher convolutional layers (Conv5 layer) of the

network. Figure 15 shows some of those neurons along

with their most favorite stimuli. Please see Borji (2016)

for more details.

Figure 15. Vanishing-point-selective neurons emerged in Conv5 layer of the Alexnet after training on the vanishing point existence

prediction task.
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