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Abstract

The representation plays an important role in recognition
and understanding of human action from video
sequences. A view-invariant representation of action
consisting of dynamic instants and intervals, which is
computed using spatiotemporal curvature of a trajectory,
is presented. In order to validate our representation, we
report experiments on several different actions
performed by different people, and captured in different
viewpoints.
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1. Introduction

What do we mean by an action? Webster’s dictionary
defines action: the doing of something; state of being in
motion; the way of moving organs of the body; the
moving of parts: guns, piano; military combat;
appearance of animation in a painting, sculpture, etc.
More or less, hand gestures, sign language, facial
expressions, lip movement during speech, human
activities like walking, running, jumping, jogging, etc,
and aerobic exercises are all actions.  Consider a typical
office scene, at a given time a person can be performing
either one of the following actions: reading, writing,
talking to other people, working on a computer, talking
on a phone, opening and closing cabinets, leaving or
entering the office.

Actions can be classified into three categories: events,
temporal textures and activities [1]. Motion events do not
exhibit temporal or spatial repetition. Events can be low-
level descriptions like a sudden change of direction, a
stop, or a pause, which can provide important clues to the
type of object and its motion. Or they can be high level
descriptions like “opening a door”, “starting a car”,
“throwing a ball”, or more abstractly “pick up”, “put
down”, “push”, “pull”, “drop”, “throw”, etc. Motion verbs

can also be associated with motion events. For example,
motion verbs can be used to characterize trajectories of
moving vehicles [2], or normal or abnormal behavior of
the heart's left ventricular motion [3]. The temporal
textures exhibit statistical regularity but are of
indeterminate spatial and temporal extent. Examples
include ripples on water, the wind in the leaves of trees, or
a cloth waving in the wind. Activities consist of motion
patterns that are temporally periodic and possess compact
spatial structure. Examples include walking, running,
jumping, etc.

Recognition of human actions from video sequences
is very popular in computer vision. This work has
applications in video surveillance and monitoring,
human-computer interfaces, model-based compression,
and augmented reality. One standard approach for
human action recognition is to extract a set of features
from each frame of a sequence, and use those features to
train Hidden Markov Models (HMMs) to perform
recognition. The features can be an image location of a
particular point on the object, a centroid of image
region, moments of an image region, gray levels in a
region, optical flow in a region (used as magnitude of
optical flow, or concatenated u and v in a vector), sum of
all changed pixels in each column (XT trace), 3-D
locations (Xi, Yi, Zi) of particular point on the object,
joint angels; how the parts of body move with respect to
time, muscle actuations, properties of optical flow in a
region like curl, divergence, etc, coefficients used in the
eigen decomposition of above features, etc. A HMM
consists of a set of states, a set of output symbols, state
transition probabilities, output symbol probabilities, and
initial state probabilities. The model works as follows.
The features extracted from video sequences are used to
train the HMMs. Matching of an unknown sequence
with a model is done through the calculation of the
probability that an HMM could generate the particular
unknown sequence. The HMM giving the highest
probability is the one that most likely generated that
sequence. Siskind and Morris gave a good proposal for
this kind of approaches [6]. The tracking results of
objects, hand, and arm are fitted with ellipses. Then the
characteristics of these ellipses are fed into HMM. The



recognition result is from the model, which gives highest
likelihood of the action going on.

Researchers also use the similar approaches to solve
handwriting, speech, and American Sign Language
(ASL) recognition problems [8]. The input values can be
the curvature and direction of pen trajectory, or even raw
pixels for handwriting [7]; the voice data for speech;
position, shape, angle of the arm for ASL [8]. And there
is a lot of research focus on various HMMs to get better
computation performance, for example Hierarchical
HMM, tree-based formalism for indexing and searching,
neural-network approaches. Pre-processing methods,
such as PCA, linear/non-linear transform, wavelet, can
also improve the recognition rate.

In previous research, the most emphasis has been on
discovering appropriate features. Therefore, not much
work has been done on HMMs; they have been treated
as a black box. There are several important issues
related to HMMS. First, since HMMs rely on
probabilities they require extensive training, therefore
one needs to have a large number of training sequences
for each activity to be recognized. Second, for each
activity to be recognized, a separate HMM needs to be
built. Therefore, this approach can only recognize some
predefined set of activities. It does not have a capability
to learn new activities. Third, since HMM is treated as a
black box, it does not explain what a particular activity
is? It just outputs the probability an unknown activity is
recognized as a model activity. Regarding features, the
issue of representation of features has mainly been
ignored.

In this paper, we focus our attention on human
actions performed by a hand. These actions include:
opening and closing overhead cabinets, picking up and
putting down a book, picking up and putting down a
phone, erasing a whiteboard, etc. While performing an
action, a hand essentially generates a 3-D trajectory in
(x, y, z) space with respect to time. Our aim is to first
compute a 2-D projection of this trajectory from a video
sequence, and then to analyze this trajectory to derive a
compact representation, which will be useful in
recognizing these actions. We propose a new
representation scheme based on sptiotemporal curvature
of a trajectory. A trajectory is represented by a sequence
of dynamic instants and intervals.

2. Computing Trajectories

In this section, we discuss how to compute motion
trajectories from video sequences. In our method, hand
is located in each frame, and centroid of a hand in each
frame is connected to obtain a trajectory. We apply skin
detection to locate a region corresponding to the hand in
an image sequence. Skin detection uses pixel color
value. Based on the color predicate, the system labels
the incoming pixel as skin or non-skin. During the
training phase a color histogram is generated. The pixels
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Figure 1. a) Correct detection of hand using color
predicate. b) Color predicate is too tight, only few
hand pixels are detected as skin pixels. c) Color
predicate is too loose, several non-skin pixels are
labeled as skin pixels.

are manually labeled as skin or non-skin, and a 3-D
Gaussian function for every pixel is generated. If the
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subtracted from the color histogram. At the end of
training, a threshold is applied to color histogram in
order to divide histogram bins into skin and non-skin.
This way, a predicate is generated, which takes a color
pixel value as an input, and outputs the skin or non-skin
label, based on which histogram bin the pixel color falls
in. Then during detection, we just check the pixel flags
in color predicate to decide its label. This process runs
very fast, since only lookup table operations are
involved.

Determining the exact value of threshold for the color
predicate is difficult task. If the the the threshold is too
tight, only few pixels corresponding to hand will be
detected as skin pixels (Figure1b). In this case, many
pixels corresponding to hand will be missed. On the
other hand if the threshold is too loose, many non-skin
pixels will be detected as skin (Figure 1c). In order to
deal with this problem we employ temporal information
between two frames. We set up a tracking window in the
current frame based on the position of hand in the
previous frame. If a pixel is in the tracking window, and
its color is close to skin color (not necessarily exactly
equal) then that pixel is labeled as skin pixel.

The main reason for the problems in skin detection is
that the skin color changes, due to different light
conditions, and due to blur created by the hand motion.
The use of tracking window improves the quality of skin
detection operation greatly, especially for those images,
for which we do not have training samples. At the same
time does not introduce false positives, which classify
non-skin pixels as skin pixels. Our skin detection
algorithm is essentially a modified version of the
technique described by Kjeldsen and Kender [4].

After skin detection, a connected component
algorithm is applied to obtain largest connected
component, which is hypothesized to be a hand. We
assume that the only skin color object is hand. However,
if this is not the case, then we can introduce some other
constraint, for example the fastest moving skin region is
a hand. Next, the centroid of this skin region is comput-
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Figure 2. (a)“opening overhead cabinet” trajectory,
(b) smooth version of trajectory, (c) dynamic
instants (marked by “*”) and intervals.

ed for each frame, and the trajectory of hand is created
by joining the centroids.

3. Smoothing Trajectories

A trajectory is a spatiotemporal curve defined as: (x[1],
y[1], 1), (x[2], y[2], 2),…, (x[n], y[n], n). There are
essentially two functions: x(t) and y(t) in the above
definition of a trajectory. The trajectory for action
“opening overhead cabinet” is shown in the Figure 2a.
This trajectory contains some noise due to errors in skin
detection, lighting conditions, projection distortions,
occlusion, etc. Also, since the centroid of hand region is
not always a true centroid of a hand, the trajectory
obtained by connecting centroids of skin regions
contains some errors. In order to deal with this noise, we
use anisotropic diffusion to smooth x(t) and y(t)
coordinates of trajectory. Anisotropic diffusion was
proposed in the context of scale space [4]. This method
iteratively smoothes the data (I) with a Gaussian kernel,
but adaptively changes the variance of Gaussian based
on the gradient of a signal at a current point as follows:
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The conduction coefficients are updated at every
iteration as a function of the gradient:
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Figure 3. Spatiotemporal curvature, and detected
maxima (dynamic instants) in “opening overhead
cabinet” trajectory.

The constant k can be fixed either manually at some
fixed value, or can be estimated from the “noise
estimator”. We choose k = 10 in our experiments. Figure
2b shows a trajectory after anisotropic diffusion of x and
y coordinates. Notice that now the trajectory is much
smoother.

4. Calculating Spatiotemporal Curvature

We use spatiotemporal curvature to compute view
invariant representation of an action. The spatiotemporal
curvature of a trajectory is computed by a method
described by Besl and Jain [6]. In this case, a 1D version
of the quadratic surface fitting procedure is used. The
spatiotemporal curvature, k is given as follows:
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The notation |·| denotes the determinant, and x’(t) = x(t)
– x(t – 1), x”(t) = x’(t) – x’(t – 1). Since the time interval
is constant, so t’ = 1, and t" = 0.

Spatiotemporal curvature captures both the speed and
direction changes in one quantity. Moreover, a special
case of spatiotemporal curvature when t = 0, in the
above equation is the spatial curvature, commonly used
in 2-D shape analysis. The spatiotemporal curvature of
“opening overhead cabinet” trajectory is shown in
Figure 3.



5. Representation

Representation is very important and sometimes difficult
aspect of an intelligent system. The representation is an
abstraction of a sensory data, which should reflect a real
world situation, be view-invariant and compact, and be
reliable for latter processing. We propose a new
representation scheme based on spatiotemporal
curvature of a trajectory. A trajectory is represented by a
sequence of dynamic instants and intervals. A dynamic
instant is an instantaneous entity, which occurs for only
one frame, and represents an important change in motion
characteristic: speed, direction, acceleration, and
curvature. An instant is detected by identifying maxima
(a zero-crossing in a first derivative) in the
spatiotemporal curvature. An interval represents the
time-period between any two dynamic instants, during
which the motion characteristics pretty much remain
constant. In our representation, instants and intervals
have physical meanings. Therefore, it is possible to
explain an action as a sequence of meaningful instants
and intervals. Dynamic instants and intervals for
“opening overhead cabinet” action are shown in Figure
2c.

A dynamic instant is characterized by a frame
number, the image location, and the sign. The frame
number tells us precisely in which frame, the dynamic
instant occurs; the image location provides the location
of the hand in the image when the dynamic event occurs;
and the sign represents the sign of change of motion
characteristic at the instant. The intervals are described
by an average spatiotemporal curvature. Examples of
dynamic instants include: touching, twisting, loosening;
and the examples of intervals include approaching,
lifting, pushing, and receding. Consider an opening
overhead cabinet action (Figure 4c). This action can be
described as: hand approaches the cabinet
(“approaching” interval), hand makes a contact with the
cabinet (“touching” instant), hand lifts the cabinet door
(“lifting” interval), hand twists (“twisting” instant) the
wrist, hand pushes (“pushing” interval) the cabinet door
in, hand breaks the contact (“loosening” instant) with the
door, and finally hand recedes (“receding” interval) from
the cabinet. Similarly, “picking up a phone” action
(Figure 4a) can be explained by two intervals and one
dynamic instant as: hand approaches the phone
(“approaching” interval), hand touches the phone
(“touching” instant), and finally hand lifts up the phone
towards the ear (“lifting” interval).

6. View Invariance

It is very important for a representation of action to be
view invariant. Since an action takes place in 3-D, and is
projected on 2-D image, depending on the viewpoint of
the camera the projected 2-D trajectory may vary.
Therefore, trajectories of the same action may have very

different trajectories, and trajectories of different actions
may look the same. This may create a problem in
interpretation of trajectories at the higher level.
However, if the representation of action only captures
characteristics, which are view-invariant, then the higher
level interpretation can proceed without any ambiguity.
Instants, which are the maxima in spatiotemporal
curvature of a trajectory, are view-invariant. A dynamic
instant in 3-D is always projected as a dynamic instant in
2-D, except in limited cases of accidental alignment. By
accidental alignment, we mean a viewpoint, which is
parallel to the plane, where the action is being
performed. In that case, the centroid of hand in all
frames is projected at the same location in image plane,
resulting in a 2-D trajectory, which is essentially a single
point. In Figure 5a, we show trajectories of opening
overhead cabinet action from several viewpoints. Even
though these trajectories look quite different, in all cases
three dynamic instants are detected by the proposed
method.

The trajectories of the same action from different
viewpoints look different even though all of them
contain the same number of instants, because the
intervals are different. In order to deal with view
dependence of intervals, we propose a notion of a
normal view. For each action, an arbitrary view is
selected as a normal view, and the representation
consisting of instants and intervals is computed. The
trajectory of the same action performed under the
camera view different from the normal view will still
contain the same number of instants, but the
characteristics of intervals may vary. We propose to use
correspondence between instants in a normal and a
novel view to fit the affine transformation. Since the
order and number of instants in both trajectories are the
same, the correspondence can easily be determined.
Once the affine transformation is computed, the intervals
in the novel view can be transformed into the intervals
under normal view using this affine transformation.
Figure 6 and Figure 8 respectively show the trajectories
of opening and closing overhead cabinet, and picking up
a phone, and putting down a phone actions, transformed
to the normal views. Compare these with trajectories
shown in Figure 5 and Figure 7.

7. Experiments

We have performed a large number of experiments to
validate our view-invariant representation of action. We
have considered ten different actions performed by
different people, and captured in different view points,
and have recorded a large number of video sequences.
However, due to space limitation, we are not able
present all results here. Please visit our webpage:
www.cs.ucf.edu/~rcen for more examples. Figure 4
video shows sequences of four actions (every 20th frame
of the sequence is shown), and Figures 5-8 show some
representative results.
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Figure 4.(a) “picking up phone” action. (b) “putting down phone” action.(c) “opening overhead cabinet” action.
(d) “closing overhead cabinet” action.

                   (a)                                 (b)

Figure 5: (a) Several trajectories of “opening
overhead cabinet”, (b) “closing overhead cabinet”
actions.

                     (a)                                 (b)

Figure 6: (a) Several trajectories of “opening
overhead cabinet”, (b) “closing overhead cabinets”
actions after converting them to the normal view
using affine transformation.
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Figure 7: (a) Several trajectories of “picking up a
phone”, (b) “putting down a phone” actions.
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Figure 8: (a) Several trajectories of “picking up a
phone”, (b) “putting down a phone” actions after
converting them to a normal view using affine
transformation.


