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Abstract

This paper proposes a novel method for recognition and
classification of events represented by Mixture distributions
of location and flow. The main idea is to classify observed
events into semantically meaningful groups even when mo-
tion is observed from distinct viewpoints. Events in the pro-
posed framework are modeled as motion patterns, which
are represented by mixtures of multivariate Gaussians, and
are obtained by hierarchical clustering of optical flow in
the four dimensional space (x, y, u, v). Such motion pat-
terns observed from varying viewpoints, and in distinct lo-
cations or datasets, can be compared using different fami-
lies of divergences between statistical distributions, given
that a transformation between the views is known. One
of the major contributions of this paper is to compare and
match two motion pattern mixture distributions by estimat-
ing the similarity transformation between them, that min-
imizes their Kullback−Leibler (KL) divergence. The KL di-
vergence between Gaussian mixtures is approximated by
Monte Carlo sampling, and the minimization is accom-
plished by employing an iterative nonlinear least squares
estimation method, which bears close resemblance to the
Iterative Closest Point (ICP) algorithm. We present a ro-
bust framework for matching of high-dimensional, sampled
point sets representing statistical distributions, by defining
similarity measures between them, for global energy min-
imization. The proposed approach is tested for classifica-
tion of events observed across several datasets, captured
from both static and moving cameras, involving real world
pedestrian as well as vehicular motion. Encouraging re-
sults are obtained which demonstrate the feasibility and va-
lidity of the proposed approach.

1. Introduction and Related Work
Action, event, and behavior recognition is one of the im-

portant high level tasks in classical computer vision. In par-
ticular, the ability to recognize and classify events across
distinct views, is crucial to solving real world problems in
practical scenarios. The proposed framework is a step for-

Figure 1. Two examples showing events, (top) ‘divergence’, and
(bottom) ‘right U-turn’ respectively. The left column shows a few
flow points as arrows indicating direction of motion. Right col-
umn displays the learned conditional expectation of flow, where
the flow orientation is shown by color, and magnitude by bright-
ness, as per the color wheel on the right.

ward in this regard and describes an intuitive approach to
allow comparison between events captured across datasets,
viewpoints, and locations.

Even though the area of action analysis has been ex-
plored in depth [13], and very reasonable performance re-
sults have been achieved for human action recognition, nu-
merous other kinds of behaviors and events are observable
in videos that do not correspond to similar, articulated, hu-
man actions. Such behaviors include global, multi-agent,
collective events, examples of which include both vehicu-
lar and pedestrian events, such as traffic turns, ‘stop and
start’ events, queuing or lane formation, and convergence
and divergence, etc. Techniques developed in human action
recognition, are not well suited to the modeling of these
high-level, global events (henceforth, the term ‘events’ cor-
responds to such activities and behaviors, as opposed to ar-
ticulated human ‘actions’).

Since global events comprising human or vehicle agents
are inherently different from articulated actions, the ques-
tion of how they should be modeled is an important one.
One of the simpler answers is the clustering and modeling
of trajectories of objects involved in the event, where the



tracks are obtained using the conventional object detection,
and tracking pipeline. This technique is exploited by Hu
et al. in [4]. Most of the interesting events however, are
observed in scenarios of dense, crowded motion, which ex-
hibit rich and diverse behaviors. Such dense crowd videos
impose a severe limitation on the pre-processing step in tra-
jectory modeling based techniques, i.e., the ability to track
individual objects.

In recent years, event and behavior modeling and un-
derstanding is increasingly being viewed as the problem of
‘motion patterns’ estimation [12, 14, 3, 6, 11, 7, 9], where
motion patterns can be described as contiguous regions of
the scene that contain a similar, smoothly varying motion
flow field. These methods tend to move away from the
object-level representation paradigm, and instead rely on
raw, noisy, low-level motion features. Although they em-
ploy different low-level features (e.g., spatiotemporal gra-
dients [6], and optical flow [12]), as well as diverse pattern
recognition frameworks (e.g., Gaussian mixtures [6, 11],
and topic models [12, 3]), the motion patterns in general
are ideally suited to discriminatively represent a wide range
of observable events, including but not limited to, road traf-
fic patterns like vehicular turns, circular motion, accelera-
tion, etc., and pedestrian behaviors such as entry and exit,
and convergence and divergence, etc., behaviors that do not
lend themselves easily to modeling using existing action
representation frameworks. Two examples of such events
are shown in figure 1.

Although location of observed flow is an important cue
and constraint in grouping and analysis of spatiotemporal
flow data, the same constraint transforms into the limitation
of extremely view-dependent representations, which in turn
makes comparison and recognition much harder. Due to
the presence of spatial dimension in these representations,
the above mentioned methods are unable to perform gen-
eralized event recognition or classification, for behaviors
captured from varying view points, for videos of distinct
datasets, or moving camera videos. However, Li and Chel-
lappa [9] have recently proposed a technique to perform
motion segmentation for group behavior recognition (GaT-
ech Football Play dataset), albeit from the same viewpoint.

As opposed to human action videos which often capture
frontal pose of the actors, from ground level viewpoints,
events related to surveillance scenarios lend themselves ap-
propriately to exploration of the task under consideration,
i.e., transformation invariant event matching and recogni-
tion. This is due in part to the fact that surveillance videos
depict a a reasonably wide field of view of the scene, and are
often captured from high oblique to nadir viewpoints. The
proposed similarity transformation therefore is well suited
to view invariant matching of events, given that due to over-
head views, the most dominant components of transforma-
tion are mostly related to rotation and scaling, in addition to

translation, as opposed to perspective.

Given input videos, the goal of the proposed framework
therefore, is to estimate a measure of similarity between
representations of two observed event instances, F and G,
regardless of the view from which they were observed. This
goal can be achieved in three main steps:

(i) Automatic detection of events and their representation
as probabilistic distributions, f(x) and g(x);

(ii) Analysis of the effect of a transformation, T, on
the multivariate distribution, g(x), to analytically obtain a
transformed distribution, gT(x); and

(iii) Estimation of the transformation, T, such that some
measure of dissimilarity or divergence, D, between f and
gT is minimized. A test example of an event can then suc-
cessfully be matched against all learned event models for
the purpose of classification or labeling.

The proposed framework begins with estimation of mo-
tion patterns that correspond to semantically meaningful
events observed in the videos. Our choice for the represen-
tation is a mixture of Gaussian model, similar to [11], which
is learned over the four dimensional space (x, y, u, v),
where (x, y) corresponds to a pixel location, and (u, v) is
the instantaneous flow observed at (x, y). The reason for
this choice is that this is a rich generative representation
which is ideally suited to obtaining an analytical form for
the representation of transformed motion patterns, as op-
posed to histogram representations [14] and topic models
[12]. Although the estimation of motion patterns is not
claimed to be a novel contribution of our framework, we
introduce a few noteworthy improvements and simplifica-
tions over the method of [11], as detailed in section 2. In the
second main step, we propose to employ a similarity trans-
formation, T to obtain parameters of a transformed motion
pattern. This is a reasonable assumption given that the pro-
posed event representation essentially captures motion in a
plane, which is often observed from nadir viewpoints, es-
sentially mimicking an orthographic projection. The goal
in the third step is to estimate the rotation and scale pa-
rameters R, and translation parameters t, of the transforma-
tion, T, that minimizes a measure of divergence between
two Gaussian mixtures. In the proposed method, we at-
tempt the minimization of Kullback−Leibler (KL) diver-
gence. The KL divergence for Gaussian mixtures has no
closed form expression, and its minimization is not trivial.
We propose an approximation to the minimization, which
bears resemblance to the Iterative Closest Point (ICP) al-
gorithm [1], wherein we present novel application-specific
cues and point set matching techniques.
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(a) marginal probability (b) expected magnitude (c) expected direction (d) expected flow
Figure 2. Visualization of Gaussian mixture distributions representing two events, left turn (top), and acceleration (bottom). Each image
shows, (a) probability of a pixel belonging to the pattern,

∫ ∫
p(x)dudv, (b) conditional expectation of flow magnitude, given pixel

locations, E[
√
u2 + v2|x, y], and (c) conditional expected flow orientation, E[tan−1(v/u)|x, y]. The image in (d) shows (b) and (c) in

terms of brightness and color respectively, according to the color wheel. Notice that (a) and (b) will not always be similar, for example, in the
second row, although all pixels in the pattern have high likelihood, the magnitude increases as the objects travel downward (acceleration).

2. Proposed Framework
We begin the description of the proposed framework

with the method used for detection and estimation of mo-
tion patterns representing real world events. We then in-
vestigate the effect of a similarity transformation on the 4d
motion pattern probability distribution, and finally derive
our algorithmic framework for simultaneous estimation of
the transformation and matching score between two pattern
distributions.

2.1. Motion Patterns Estimation

For the purpose of representing events as distributions,
we first need to categorize pixels of a video into clusters
that correspond to an event. This step employs the method
of [11] after a few modifications, to perform a hierarchical
clustering of data points representing pixel locations and
their flows. The first stage in this step is to estimate opti-
cal flow from consecutive frames of the video. Since we
also propose to detect and compare events in aerial (UAV)
videos, e.g., the CLIF dataset [2], which the related meth-
ods mentioned earlier do not deal with, image alignment
and warping is performed as a pre-processing step to re-
move camera motion.

Given a large set of flow vectors, x = (x, y, u, v), within
a short video clip containing a few frames, obtained via op-
tical flow [5], K-means clustering is first performed in the
four dimensional space. The cluster means, covariance ma-
trices, and weights (percentage of points belonging to each
cluster), eventually become the parameters of the compo-
nents in the Gaussian mixture. Our goal is to cluster these
components again, across all video clips, so that each high
level cluster of components represents a single event as a
Gaussian mixture. As opposed to performing an expen-
sive, multistage approach for this goal, as suggested in [11],

which involves point sampling and computation of KL di-
vergences, we obtain the Gaussian mixtures in a single step.
In this step, a planar graph, C = (V,E,W ), is constructed,
where V , the set of vertices is the set of all clusters ob-
tained from K-means,E, the set of edges connects k nearest
neighbors of each vertex, and W represents a sparse weight
matrix with non-zero entries corresponding to the edges in
E. The weight between two, four dimensional Gaussian
components, (µq,Σq), and (µr,Σr), is a squared weighted
Mahalanobis distance, given as,

wqr = αM
(
µrxy|µqxy,Σq

xy

)
+ βM

(
µrρ|µqρ, σqρ

)
+ (1− α− β)M (µrθ|µ

q
θ, σ

q
θ) , (1)

where,
M
(
µrxy|µqxy,Σq

xy

)
=
(
µrxy − µqxy

)>
Σq
xy
−1 (µrxy − µqxy) ,

(2)
such that the Gaussian component parameters are repre-
sented in polar form, (x, y, ρ, θ), instead of cartesian form
(x, y, u, v). The underlying idea is that location and flow
are heterogenous features with distinctly varying influences,
and an unweighted distance involving the full covariance
matrix, either in polar or cartesian coordinates for flow, will
diminish the influence of flow, compared to spatial loca-
tions (x, y). The weight matrix, W is then simply bina-
rized, and the connectivity of the graph C, determines the
set of components in each Gaussian mixture. We observed
in our experiments, that the decision to ignore the effect of
temporal information (as opposed to [11]) does not effect
performance. We therefore, obtain a representation of event
G, as a motion pattern, which can be written as,

g (x) =

Ng∑
n=1

ωnN (x|µn,Σn) , (3)

where Σ is the 4× 4 covariance matrix, and ω is the mixing
proportion for theNg mixture components. The next step is



to obtain the representation of the event, g (x), undergoing
a similarity transformation.

2.2. Transformation of Motion Patterns

Our goal is to obtain the analytical expression for the
distribution, gT (x), which corresponds to the distribution,
g, undergoing a transformation T. In other words, we need
to estimate the transformed parameters, (µT,ΣT). We begin
by observing that the data point, x = (x, y, u, v) can be
interpreted as relating two distinct pixels, (x, y) and (x′, y′),
such that, [

x′

y′

]
=

[
x
y

]
+

[
u
v

]
, (4)

and therefore, instead of transforming x, we can equiva-
lently transform the two points independently, using the
same transformation. Since we propose using a similar-
ity transformation, a 2d point p is transformed into p′ as,
p′ = Rp + t, where R is a 2 × 2 matrix representing 2d ro-
tation and scale, while t is a 2d vector of translation. If the
data point x, is represented as 5d vector in homogenous co-
ordinates, we can write a 5 × 5, rigid, linear transformation
matrix, T, compactly as,

T =

 R 0 t>

0 R 0>

0 0 1

 , (5)

such that the transformed data point, x′ is given by Tx. Sim-
ilarly, the mean of a transformed component, µT, is given as,
Tµ. For the derivation of transformed covariance matrices
of the mixture components, assume that the set of original
4d data points generating the Gaussian mixture distribution,
are written as a 4× n matrix, X, and their mean, µ is E[X].
The covariance of the point set can then be written as,

Σ = E
[
(X− E [X]) (X− E [X])

>
]
. (6)

By application of the transformation T to the point set X, a
set of transformed points X̂ = TX is obtained, the mean of
which has previously been computed as Tµ by transforma-
tion of µ, and can also be written as E[TX]. The covariance
of the transformed set, X̂ can be derived by simple manipu-
lation as,

ΣT = E
[(

X̂− E
[
X̂
])(

X̂− E
[
X̂
])>]

= TΣT>.

(7)
It should be noticed in the above derivation, that the data

point sets are not in homogenous coordinates and T is the
first 4 × 4 entries of the matrix shown in equation 5, i.e.,
[R 0; 0 R]. This is meaningful since the translation
parameter, t, obviously does not effect covariance.

2.3. Divergence Minimization

We recall that the goal of the proposed framework is to
find the similarity between two events, represented as Gaus-

sian mixtures, after computing a potential spatial transfor-
mation between them. We propose to estimate this trans-
formation, by minimizing KL divergence between the dis-
tribution representing the first event, and the distribution of
the second event after transformation. We have already ex-
plained how to obtain the Gaussian mixture representation,
as well as how to compute the parameters of a distribution
undergoing transformation. The divergence minimization
will not only estimate the transformation, but the minimum
divergence serves as the required similarity measure. There-
fore, given two events, represented by f(x) and g(x) re-
spectively, we can compute a measure of dissimilarity, Z ,
between them as,

Z (f, g) = D (f‖gT∗) , (8)

where D is chosen to be the KL divergence. There how-
ever, is no closed form expression for KL divergence be-
tween Gaussian mixtures and various approximations are
often used. In this paper, divergence is approximated by
Monte Carlo sampling over the first distribution, f . A large
set of N , 4d points, {xj}Nj=1, is thus sampled from the mix-
ture distribution f , where N is typically equal to 1000 in
our experiments. A straightforward algebraic simplification
of KL divergence differentiation with respect to T allows us
to see that,

T∗ = argmin
T

N∑
j=1

f(xj) log

(
f(xj)
gT(xj)

)
,

= argmax
T

log

N∏
j=1

Ng∑
n=1

ωnN
(
xj |Tµn,TΣnT>

)
, (9)

because the term f(xj) is independent of T. We see from
equation 9, that the problem of estimating the optimal trans-
formation that minimizes the KL divergence, is equivalent
to maximum likelihood estimation (MLE) of the Gaussian
mixture parameters given the set of sampled points. One
notable exception is that in our case, the set of parameters
{(ωn, µn,Σn)}Ng

n=1, has previously been computed during
motion pattern estimation, and we only seek to estimate
the transformation, T. Another equivalent way of describ-
ing this problem is that the goal is to estimate the trans-
formation, T, such that the points {T−1xj}Ni=j , (inverse-
transformed sample points), have the maximum joint likeli-
hood, given the parameters of g (not gT). Notice however,
that this is not an easier problem compared to estimation
of mixture parameters (e.g., using Expectation Maximiza-
tion), and an analytical expression of the joint likelihood
derivative, with respect to even the linear transformation T,
is non-trivial. We therefore propose an approximate, itera-
tive maximization algorithm that shares similarities with the
Iterative Closest Point (ICP) algorithm [1].

Given the point set {xj}Nj=1 sampled from f , which
we now write as Xf , we assume the initial value of the
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v xxy
xuv

Figure 3. Illustration of the “path-context” cue s = xuv .v. The
green dots represent the spatial component of 4d points sampled
from the mixture of Gaussians, represented as yellow error el-
lipses. The red arrows depict flow direction of each sampled point,
and blue arrows represent v, pointing towards the center of the
mixture, cf , shown as black dot. The scalar ‘s’ acts as a path-
context for each sampled point, and is a cue towards its location
within the event distribution.

transformation to be identity, and write it as T0. In other
words, R0 = I2×2, and t0 = [0 0]. The proposed max-
imization algorithm then begins by first sampling another
set of N points, XgT0

, from gT0
≡ g. At each iteration,

i ≥ 1, the goal of the maximization process is to itera-
tively find 1-1 correspondence between the point sets, Xf
and XgTi−1

, and compute intermediate transformation, T̂i,
so that, Ti = T̂iTi−1. The underlying idea can be visu-
alized by considering the ideal case, where a perfect cor-
respondence result implies, Xf ≡ XgTi

, and therefore, as
N →∞, f ≡ gTi , and Z (f, g) = 0.

As opposed to most methods employing ICP which, for
each point in a set, find the closest corresponding point
in the other set, we propose to minimize the global cost
of matching by defining a meaningful weighting mecha-
nism. We first define a graph, H = (V,E,W ), where,
V = Xf

⋃
XgTi

, E = {ejk}, where 1 ≤ j, k ≤ N , and
ejk ∈ {0, 1}, and ejk = 1 iff Vj ∈ Xf

∧
Vk ∈ XgTi

. We
define W to be an N ×N weight matrix, even though V is
size 2N . This is because by definition of E, Xf and XgTi

are independent sets of H .
We observe that even the choice of similarity as a trans-

formation can make the optimization process end up in a
local minima, as shown in figure 7. Therefore, to incorpo-
rate an additional cue during optimization, we compute a
vector for each distribution sample that points towards the
distribution’s spatial center. We compute the center as,

cf =

Nf∑
n=1

ωnµnxy, (10)

and for each point, x ∈ Xf , we then compute a vector,
v = cf−xxy , which points from each point to the mixture’s
center. We then take the inner product of this vector with
the sample point’s optical flow and use it as an additional
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Figure 4. Transformation estimation for two pairs of events. The
pair shown in the 2nd column is a mismatch. Notice that the sam-
pled points shown in rows 3, 4, and 5, are actually 4D (flow not
depicted). Compare the last row to first, to gauge quality of esti-
mated transformation.

weight in the graph G. We call this product “path-context”,
and write it as s = xuv .v. This constraint is applied to
avoid the matching of patterns with a directional mismatch,
which can easily happen, for instance with events that repre-
sent motion in straight line. Such a mismatch indicates the
convergence of maximization process to a local minimum.
We demonstrate by extensive experiments that the proposed
framework avoids this scenario. The usefulness of this con-



Input: 4d Guassian mixture distributions, f and g, rep-
resenting two motion patterns, or events.
Output: T and D (f‖gT), such that D is minimum.

I Initialize index, i← 0
I Ri ← I2×2, ti ← [0 0]
I Construct matrix Ti as in eq. 5
I Zi ←∞
I Compute cf using eq. 10.
I Repeat while Zi > ε and i < imax,

• Xf ←
{

xj |xj ∼ f(.)
}N
j=1

• For each xj ∈ Xf ,
N vj ← cf − xxy
N sj ← xuv . vj

• XgTi
←
{

xk|xk ∼ gTi
(.)
}N
k=1

• Compute cgTi
using eq. 10.

• For each xk ∈ XgTi
,

N vk ← cgTi
− xxy

N sk ← xuv . vk
• Create N ×N weight matrix, W
• Set wjk as in eq. 11, for 1 ≤ j, k ≤ N
• Find correspondences between Xf and XgTi

([8])
• Convert point sets to X′f and X′gTi

, using eq. 4

• Perform linear least squares to estimate T̂i
• Ti ← T̂iTi−1
• Zi ← D (f ‖ gTi

)
• i← i+ 1

I Return Ti and Zi
Figure 5. Algorithmic overview of the proposed framework. See
text for details.

straint is illustrated in figure 3. Given the data points from
the two sets and their path contexts, the entries of theN×N
weight matrix, W , are defined as,

wjk = λ‖xj − xk‖2 + (1− λ)|sj − sk|, (11)

where, λ is a fixed value parameter that serves to balance
the influence of Euclidean distance between heterogenous
vector x, and absolute difference between scalar s. The im-
balance between these quantities also arise due to the vastly
disparate ranges of values they take. The correspondences
are then established by bipartite graph matching over H ,
using the Hungarian algorithm [8]. An illustration of es-
tablishing the first point correspondence between Xf and
XgT0

can be seen in figure 6. Given the N correspondences,
2d point sets with 2N elements are obtained, where the
N members correspond to locations (x, y), while the sec-
ond half incorporates flow correspondences, by computing
(x′, y′), as in equation 4. A least squares fit over the com-
bined set is then performed to obtain, T̂i. We observed in
our experiments, that the proposed maximization algorithm
converged quickly, i.e., often within 5 iterations. It is also

Figure 6. Illustration of the correspondence established between
point sets Xf and XgT0

, depicted as blue lines. Both sets are sam-
pled form motion patterns corresponding to ‘right turns’, and only
a few randomly chosen correspondences are shown to avoid clut-
ter. The colored dots represent data points sampled from the two
mixtures, and their orientation and magnitude are shown by the
color and brightness as per the color wheel. Notice that although
the correspondences cannot be exact, they give a very reasonable
estimate of the transformation between the mixtures.

Event 1: E-N left turn Event 2: N-W left turn

Event 2 warped using Event 2 warped
path context s without s

Figure 7. An example of a transformation of a ‘left turn’, onto
another ‘left turn’. Without path context optimization results in a
local minimum (bottom right) whereas with the use of path context
the correct transformation is achieved.

worth noting that in order to avoid sampling bias, both the
sets Xf and XgTi

, are sampled anew in each iteration. More-
over, the set XgTi

at the ith iteration is not sampled from g
and transformed, rather the parameters of gTi

are computed
and the points are sampled from the transformed distribu-
tion. An overview of the algorithm is listed in figure 5.

3. Experiments and Results
We performed extensive experiments on motion patterns

estimation for a set of diverse events. A broad variety of
videos were used, including the NGSIM dataset [10], CLIF
dataset [2], and a collection of publicly available videos
from Getty images. Notice that the CLIF dataset consists of
wide area aerial videos, and therefore the proposed frame-



Acceleration Circular Convergence Divergence Left turn Deceleration

Left U-turn Right turn Right U-turn Stop and start Straight line

Figure 8. Examples of events learned using the proposed approach, visualized as conditional expected optical flow given pixel locations.

Event class / tx ty Scale Angle
Error
(µ± σ) (% pixels) (% pixels) (%) (% rads)
Straight -0.2 ± 0.3 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0
Left Turn -0.2 ± 0.4 0.2 ± 0.4 0.1 ± 0.0 0.0 ± 0.1
Right Turn -0.2 ± 0.2 0.0 ± 0.1 0.0 ± 0.0 -0.1 ± 0.2
Acceleration -0.5 ± 0.8 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0
Deceleration -0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.0 0.0 ± 0.0
Right U Turn -1.9 ± 2.4 0.6 ± 1.6 0.2 ± 0.1 0.0 ± 0.1
Left U Turn -3.7 ± 7.9 0.7 ± 3.4 0.3 ± 0.1 0.1 ± 0.2
Circular -2.2 ± 4.5 0.1 ± 2.0 0.4 ± 0.2 -0.1 ± 0.2
Divergence -0.9 ± 1.8 0.3 ± 1.1 0.1 ± 0.0 0.0 ± 0.0
Convergence -0.3 ± 0.8 0.3 ± 0.5 0.1 ± 0.0 0.1 ± 0.1
Stop and Start 0.0 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.0

Table 1. Average transformation error for synthetically trans-
formed event distributions. The manual transformation, followed
by estimation of the transformation allows quantification of per-
formance of the proposed method, by comparison against ground
truth transformation parameters. Error is reported as ‘error in
value, divided by the value to be estimated’.

work is the first to perform event recognition by statistical
motion patterns modeling in moving cameras, as opposed
to related methods [12, 6, 11] which have experimented
only with static camera surveillance scenarios. Moreover,
the proposed similarity measure (equation 1) allowed us
to learn and recognize complex events including conver-
gence, divergence, move-stop-move conditions, and accel-
eration, deceleration patterns, in addition to relatively sim-
plistic straight line and turn events learned in existing meth-
ods. A few examples of the 11 event categories discovered
and classified using our approach are shown in figure 8.

One of the first experiments performed for testing of the
proposed approach was to synthetically transform distribu-
tions of estimated event motion patterns. Given a mixture
distribution, it is transformed using the analytical expres-
sion derived in section 2.2, and finding transformed parame-
ters by equation 7, etc.. Arbitrarily chosen values of param-
eters given by R and t result in new events, using which the
proposed matching framework is tested. The transformed
pattern is then warped to the original distribution by es-
timation of T using the proposed iterative KL divergence
minimization framework. This experiment allows us to di-
rectly compare the parameters of the estimated transforma-
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(a) KL Divergence (b) Graph matching cost
Figure 9. Confusion tables for classification of 132 event in-
stances, into 11 classes. Using KL divergence based NN, the aver-
age accuracy was 96.21%. An accuracy of 92.73% was achieved
when using graph matching cost at last iteration for classification.

tion against the ground truth parameters. The quantitative
results of this experiment are reported in table 1.

The main goal of the proposed framework is the ability
to recognize event classes by matching two event distribu-
tions after estimating the potential transformations between
them. We tested this capability by classifying 132 event
distributions into one of the 11 event classes. Some of these
distributions were synthetically generated by applying ran-
dom transformations to existing patterns as mentioned ear-
lier. Each class was represented by a single mixture dis-
tribution chosen arbitrarily, and all 132 test event instances
were attempted to be matched to each of the 11 model dis-
tributions, and the corresponding KL divergences at last it-
eration were noted. The test distributions were then given
the label of the model distribution with the least KL diver-
gence. The global correspondence framework employed in
the proposed method resulted in very encouraging results
for this experiment, and even though instances of the same
class are not exactly the same shape, an average classifica-
tion accuracy of 96.21% was obtained. The confusion table
for this experiment is shown in figure 9(a).

We also tested a different measure of similarity or dis-
tance between the matched event distributions. While ex-
ploiting the same iterative transformation estimation frame-
work, we used the cost of matching the graph, H , as the
distance between the model and transformed test event pat-
terns. This experiment allowed us to separate the influence
of transformation and matching steps, by choosing differ-
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(a) KL Divergence (b) Graph matching cost
Figure 10. Matrices depicting “post-transformation” dis-similarity
between all pairs of event instances. High similarity blocks along
diagonal illustrate discrimination between classes.

ent metrics for each step. The results of this experiment
were also very satisfactory and largely similar to the first,
as shown in figure 9(b).

To quantify and visualize the discriminative nature of our
rich statistical event distributions, and the proposed trans-
formation estimation framework, we also computed exhaus-
tive, pair-wise distances between 55 event instances, taken
evenly from 11 classes, resulting in a self-similarity matrix
for each classification metric. The two matrices obtained
using KL divergence and graph matching cost as distance
measures are shown in figure 10(a) and (b) respectively.
The clearly visible 5× 5 low value blocks along the diago-
nal conclusively depict low intra-class, and high inter-class
distances after transformation estimation.

4. Conclusion

In conclusion, we propose a framework for discovery,
representation and learning of a broad range of typically
observable pedestrian and vehicular events, in static
as well as moving camera surveillance videos. More
importantly, given the statistical representation of event
instances as Gaussian mixture distributions, we proposed
a principled, rigorously derived framework for estima-
tion of a potential similarity transformation between
two distributions, such that the KL divergence between
them is minimized. The same divergence measure after
estimation of the transformation is used to provide a
measure of similarity for nearest neighbor classifier based
event recognition. The proposed framework is not only
the first to learn generative model of location and flow
for generalized events in moving camera videos using
optical flow while avoiding the need for tracking, but is
also the first to perform similarity invariant recognition of
those events. Results obtained by performing experiments
on a wide range of videos and events, validate our approach.
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